Dynamic Load Balancing with the Parallel Partitioning Tool GridSpiderPar

Dynamic adaptive meshes are often used in high-performance computing. A mesh is locally refined or derefined in spots of interest or where high gradients of an objective function arise. To balance the load of processors, it is required to periodically repartition it. Dynamic load balancing algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical models and computer simulations Ročník 14; číslo 6; s. 910 - 917
Hlavní autor: Golovchenko, E. N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.12.2022
Springer Nature B.V
Témata:
ISSN:2070-0482, 2070-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic adaptive meshes are often used in high-performance computing. A mesh is locally refined or derefined in spots of interest or where high gradients of an objective function arise. To balance the load of processors, it is required to periodically repartition it. Dynamic load balancing algorithms are developed based on the parallel geometric algorithm of mesh partitioning and the parallel incremental algorithm of graph partitioning using the partitioning tool GridSpiderPar. The initial partition of a mesh with a local refinement (6.7 × 10 6 hexahedrons) is compared with the results of repartitioning using the devised algorithms. A comparison of the results shows the advantages of the parallel geometric algorithm on this mesh and the features of using the parallel incremental algorithm.
AbstractList Dynamic adaptive meshes are often used in high-performance computing. A mesh is locally refined or derefined in spots of interest or where high gradients of an objective function arise. To balance the load of processors, it is required to periodically repartition it. Dynamic load balancing algorithms are developed based on the parallel geometric algorithm of mesh partitioning and the parallel incremental algorithm of graph partitioning using the partitioning tool GridSpiderPar. The initial partition of a mesh with a local refinement (6.7 × 106 hexahedrons) is compared with the results of repartitioning using the devised algorithms. A comparison of the results shows the advantages of the parallel geometric algorithm on this mesh and the features of using the parallel incremental algorithm.
Dynamic adaptive meshes are often used in high-performance computing. A mesh is locally refined or derefined in spots of interest or where high gradients of an objective function arise. To balance the load of processors, it is required to periodically repartition it. Dynamic load balancing algorithms are developed based on the parallel geometric algorithm of mesh partitioning and the parallel incremental algorithm of graph partitioning using the partitioning tool GridSpiderPar. The initial partition of a mesh with a local refinement (6.7 × 10 6 hexahedrons) is compared with the results of repartitioning using the devised algorithms. A comparison of the results shows the advantages of the parallel geometric algorithm on this mesh and the features of using the parallel incremental algorithm.
Author Golovchenko, E. N.
Author_xml – sequence: 1
  givenname: E. N.
  surname: Golovchenko
  fullname: Golovchenko, E. N.
  email: golovchenko@imamod.ru
  organization: Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
BookMark eNp1UN1LwzAQDzLBOfcH-FbwuXr5aJM-6tRNGChsPpc0TbeMLplJh-y_N6WiD-K93HG_jzt-l2hkndUIXWO4xZiyuxUBDsAEIQRyAE7O0LhfpcAKGP3MglygaQg7iEUJF1SM0eLxZOXeqGTpZJ08yFZaZewm-TTdNum2OnmTXratbvuhM51xtofXzrXJ3Jt6dTC19hG7QueNbIOefvcJen9-Ws8W6fJ1_jK7X6YqvkpSXGlgqmGq4o2udZGBkjzToqoyWjCZ1xXJmyKjgmhQrMo4zaWgDISsJMsySifoZvA9ePdx1KErd-7obTxZEk4xz6kQIrLwwFLeheB1Ux682Ut_KjGUfWbln8yihgyaELl2o_2v8_-iL4Bobds
Cites_doi 10.26089/NumMet.v16r448
10.1016/S0167-8191(00)00048-X
10.1006/jpdc.1997.1407
10.1109/71.926167
10.1109/IPDPS.2007.370258
10.1109/SC.2000.1003
10.1109/71.780863
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2022, Vol. 14, No. 6, pp. 910–917. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Matematicheskoe Modelirovanie, 2022, Vol. 34, No. 4, pp. 59–69.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2022, Vol. 14, No. 6, pp. 910–917. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Matematicheskoe Modelirovanie, 2022, Vol. 34, No. 4, pp. 59–69.
DBID AAYXX
CITATION
JQ2
DOI 10.1134/S2070048222060072
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2070-0490
EndPage 917
ExternalDocumentID 10_1134_S2070048222060072
GroupedDBID -5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
29M
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
40E
6NX
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
BA0
BAPOH
BGNMA
CAG
COF
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
JQ2
ID FETCH-LOGICAL-c1132-1be04cf4cb7fede950ca75e8bb5394a6db26f95382e0c4b5736a83408aba45533
IEDL.DBID RSV
ISSN 2070-0482
IngestDate Thu Sep 25 00:41:21 EDT 2025
Sat Nov 29 05:51:43 EST 2025
Fri Feb 21 02:44:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords graph partitioning
mesh partitioning
high-performance computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1132-1be04cf4cb7fede950ca75e8bb5394a6db26f95382e0c4b5736a83408aba45533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2731763888
PQPubID 2044391
PageCount 8
ParticipantIDs proquest_journals_2731763888
crossref_primary_10_1134_S2070048222060072
springer_journals_10_1134_S2070048222060072
PublicationCentury 2000
PublicationDate 20221200
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Mathematical models and computer simulations
PublicationTitleAbbrev Math Models Comput Simul
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References SchloegelK.KarypisG.KumarV.Wavefront diffusion and LMSR: algorithms for dynamic repartitioning of adaptive meshesIEEE Trans. Parallel Distrib. Syst.20011245146610.1109/71.926167
E. N. Golovchenko, M. A. Kornilina, and M. V. Yakobovskiy, “Algorithms in the parallel partitioning tool GridSpiderPar for large mesh decomposition,” in Proc. 3rd Int. Conf. on Exascale Applications and Software (EASC 2015), Edinburgh, UK, April 21–23,2015, pp. 120–125.
E. N. Golovchenko, “Decomposition of computational grids for solving continuum problems on high-performance computing systems,” Candidate’s Dissertation in Mathematics and Physics (Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2014) [in Russian].
CatalyurekU. V.AykanatC.Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplicationIEEE Trans. Parallel Distrib. Syst.19991067369310.1109/71.780863
U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, L. A. Riesen, “Hypergraph-based dynamic load balancing for adaptive scientific scientific computations,” in Proc. 21st International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, CA, March 26–30,2007, pp. 1–11. https://doi.org/10.1109/IPDPS.2007.370258
K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm for load-balancing adaptive scientific simulation,” in Proc. 2000 ACM / IEEE Conference on Supercomputing (SC’00), Dallas, TX, November 4–10,2000, pp. 1–11. https://doi.org/10.1109/SC.2000.1003
HendricksonB.KoldaT. G.Graph partitioning models for parallel computingParallel Comput.20002615191534178693810.1016/S0167-8191(00)00048-X0948.68130
E. N. Golovchenko and M. V. Yakobovskii, “Parallel partitioning tool GridSpiderPar for large mesh decomposition,” Vychisl. Metody Program. 16 (4), 507–517 (2015).
WalshawC.CrossM.EverettM. G.“Parallel dynamic graph-partitioning for unstructured meshes,” Mathematics Research Report 97/IM/20 (Centre for Numerical Modelling and Process Analysis, University of Greenwich, UK, 1997), pp. 1–10J. Parallel Distrib. Comput.19974710210810.1006/jpdc.1997.1407
4392_CR1
B. Hendrickson (4392_CR6) 2000; 26
K. Schloegel (4392_CR2) 2001; 12
4392_CR4
U. V. Catalyurek (4392_CR5) 1999; 10
4392_CR9
4392_CR8
4392_CR7
C. Walshaw (4392_CR3) 1997; 47
References_xml – reference: HendricksonB.KoldaT. G.Graph partitioning models for parallel computingParallel Comput.20002615191534178693810.1016/S0167-8191(00)00048-X0948.68130
– reference: K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm for load-balancing adaptive scientific simulation,” in Proc. 2000 ACM / IEEE Conference on Supercomputing (SC’00), Dallas, TX, November 4–10,2000, pp. 1–11. https://doi.org/10.1109/SC.2000.1003
– reference: WalshawC.CrossM.EverettM. G.“Parallel dynamic graph-partitioning for unstructured meshes,” Mathematics Research Report 97/IM/20 (Centre for Numerical Modelling and Process Analysis, University of Greenwich, UK, 1997), pp. 1–10J. Parallel Distrib. Comput.19974710210810.1006/jpdc.1997.1407
– reference: U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, L. A. Riesen, “Hypergraph-based dynamic load balancing for adaptive scientific scientific computations,” in Proc. 21st International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, CA, March 26–30,2007, pp. 1–11. https://doi.org/10.1109/IPDPS.2007.370258
– reference: SchloegelK.KarypisG.KumarV.Wavefront diffusion and LMSR: algorithms for dynamic repartitioning of adaptive meshesIEEE Trans. Parallel Distrib. Syst.20011245146610.1109/71.926167
– reference: CatalyurekU. V.AykanatC.Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplicationIEEE Trans. Parallel Distrib. Syst.19991067369310.1109/71.780863
– reference: E. N. Golovchenko, M. A. Kornilina, and M. V. Yakobovskiy, “Algorithms in the parallel partitioning tool GridSpiderPar for large mesh decomposition,” in Proc. 3rd Int. Conf. on Exascale Applications and Software (EASC 2015), Edinburgh, UK, April 21–23,2015, pp. 120–125.
– reference: E. N. Golovchenko and M. V. Yakobovskii, “Parallel partitioning tool GridSpiderPar for large mesh decomposition,” Vychisl. Metody Program. 16 (4), 507–517 (2015).
– reference: E. N. Golovchenko, “Decomposition of computational grids for solving continuum problems on high-performance computing systems,” Candidate’s Dissertation in Mathematics and Physics (Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2014) [in Russian].
– ident: 4392_CR9
– ident: 4392_CR8
  doi: 10.26089/NumMet.v16r448
– volume: 26
  start-page: 1519
  year: 2000
  ident: 4392_CR6
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(00)00048-X
– volume: 47
  start-page: 102
  year: 1997
  ident: 4392_CR3
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1006/jpdc.1997.1407
– ident: 4392_CR7
– volume: 12
  start-page: 451
  year: 2001
  ident: 4392_CR2
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.926167
– ident: 4392_CR4
  doi: 10.1109/IPDPS.2007.370258
– ident: 4392_CR1
  doi: 10.1109/SC.2000.1003
– volume: 10
  start-page: 673
  year: 1999
  ident: 4392_CR5
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.780863
SSID ssj0000327838
Score 2.2216487
Snippet Dynamic adaptive meshes are often used in high-performance computing. A mesh is locally refined or derefined in spots of interest or where high gradients of an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 910
SubjectTerms Dynamic loads
Geometric algorithms
Load balancing
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Mesh partitioning
Partitioning
Simulation and Modeling
Title Dynamic Load Balancing with the Parallel Partitioning Tool GridSpiderPar
URI https://link.springer.com/article/10.1134/S2070048222060072
https://www.proquest.com/docview/2731763888
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2070-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327838
  issn: 2070-0482
  databaseCode: RSV
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwgADb0ShIA9MoAinsWNn5N2hVBUtVbfIdmypUtWgpPD7sfNoeQ6wJbqLFZ3tu7Pv8QGc-TrC2oSRJwwlHuHYeFxq6RFBJeVGMlFUyI26rNfj43HUr-q48zrbvQ5JFpq6xB0hl4M2dq3YnUHDrqm61bur1tpxh9fwNBgtLlZw4MAjCiQ67EBV7BdVNPPHUT7bo6WT-SUuWpib-61__eg2bFbeJboql8MOrOjZLmx86Dlo3x4XjVrzPejcloj0qJuKBF27PEdl2ZC7nkWWD_VF5tBWpu6h7GvkyMM0naKHbJIMHMBsZmn78Hx_N7zpeBW4gqccuLznS42JMkRJZnSiI4qVYFRzKWkQEeFgpkITWXXY1lgRSVkQCh4QzIUUhFon8QAas3SmDwGxwLB2gsMEG0mwNNzXCbFTH2ITslBFTTivRRy_lD004uLsEZD4m7Ca0KonIa62Ux5bH8u3itCe1ptwUQt9Sf51sKM_cR_DetsVNxTJKi1ozLNXfQJr6m0-ybPTYpW9A0gSyOA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8MgFCZmmqgP3o3TqTz4pGmkLRT66G3OuC2Lm8veGqCQLFlW005_v9DL5vVB39pwSpoDnHPgHL4PgDNXhUjpIHS4JtjBDGmHCSUczIkgTAvK8xtywzbtdtloFPbKe9xZVe1epSRzS13wjuDLvocsFLt1aMiCqhu7u4yNw7KA-U_94fxgBfmWPCJnokOWVMV8UWYzf-zlsz9aBJlf8qK5u2lu_utHt8BGGV3Cq2I6bIMlNd0B6x8wB81bZw7Umu2C1m3BSA_bCY_hta1zlEYM2uNZaORgj6eWbWViHwpcI9s8SJIJvE_Hcd8SzKambQ88N-8GNy2nJFdwpCWXd1yhEJYaS0G1ilVIkOSUKCYE8UPMLc1UoENjDj2FJBaE-gFnPkaMC46JCRL3QW2aTNUBgNTX1ItRECMtMBKauSrGZugDpAMayLAOzisVRy8FhkaU7z18HH1TVh00qkGIyuWURSbGco0hNLv1OriolL5o_rWzwz9Jn4LV1qDTjtoP3ccjsObZiw554UoD1GbpqzoGK_JtNs7Sk3zGvQO8ssvE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIvrgtzid2geflLK0TZr2UZ1z4hyDzbG3kqQJDMY62unfb64fm58P4ltLrqEkl7tL7vL7IXTpqBAr7Yc215TYJMDaDoQSNuFU0EALxvMbcsMO63aD0SjslTynWVXtXqUkizsNgNI0nTdmsS45SEij72KAZQfnhgFg3djgNQJ19LBd7w8XhyzYAyKJnJUOA8GK-aLMbP7Yy2fftAw4v-RIc9fT2vn3T--i7TLqtG4KNdlDK2q6j7Y-YBGat-cFgGt2gNrNgqne6iQ8tm6h_lEaMQuObS0jZ_V4CiwsE3go8I6geZAkE-shHcd9IJ5NTdshemndD-7adkm6YEsgnbcdoTCRmkjBtIpVSLHkjKpACOqFhAP9lK9DYyZdhSURlHk-DzyCAy44oSZ4PEKr02SqjpHFPM3cGPsx1oJgoQNHxcSohI-1z3wZ1tBVNdzRrMDWiPI9iUeib4NVQ_VqQqJymWWRib0cYyDNLr6GrqsJWDb_2tnJn6Qv0Eav2Yo6j92nU7Tpwv2HvJ6ljlbn6as6Q-vybT7O0vNc-d4BThPUqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Load+Balancing+with+the+Parallel+Partitioning+Tool+GridSpiderPar&rft.jtitle=Mathematical+models+and+computer+simulations&rft.au=Golovchenko%2C+E.+N.&rft.date=2022-12-01&rft.issn=2070-0482&rft.eissn=2070-0490&rft.volume=14&rft.issue=6&rft.spage=910&rft.epage=917&rft_id=info:doi/10.1134%2FS2070048222060072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S2070048222060072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2070-0482&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2070-0482&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2070-0482&client=summon