Pareto Optimal Filter Design for Nonlinear Stochastic Fuzzy Systems via Multiobjective H /H Optimization

This paper is concerned with the multiobjective H 2 /H ∞ filtering design problem in nonlinear signal processing, which can be approximated by a Takagi-Sugerno (T-S) fuzzy signal system. We propose a multiobjective filter design to estimate state variables from noisy measurements for nonlinear signa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 23; číslo 2; s. 387 - 399
Hlavní autoři: Chen, Bor-Sen, Lee, Hsin-Chun, Wu, Chien-Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper is concerned with the multiobjective H 2 /H ∞ filtering design problem in nonlinear signal processing, which can be approximated by a Takagi-Sugerno (T-S) fuzzy signal system. We propose a multiobjective filter design to estimate state variables from noisy measurements for nonlinear signal systems, and we focus our effort on achieving optimal concurrent performance for H 2 and H ∞ filtering. In general, it is difficult to solve the multiobjective (MO) H 2 /H ∞ fuzzy filter problem directly, and we therefore propose an indirect approach to minimize the upper bounds and transform the MO H 2 /H ∞ filtering problem in to a linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we propose an LMI-based multiobjective evolution algorithm to efficiently find Pareto optimal solutions for the MOP of multiobjective fuzzy filter design for nonlinear stochastic signal processing. Furthermore, for comparison, we also suggest the MO H 2 /H ∞ filter design problem based on the weighted sum method. Our proposed indirect method can be widely employed to practically address the MO filter design problem in nonlinear signal processing. Finally, a trajectory estimation of reentry vehicle by radar is provided to illustrate the design procedure of the Pareto MO optimal filter.
AbstractList This paper is concerned with the multiobjective H 2 /H ∞ filtering design problem in nonlinear signal processing, which can be approximated by a Takagi-Sugerno (T-S) fuzzy signal system. We propose a multiobjective filter design to estimate state variables from noisy measurements for nonlinear signal systems, and we focus our effort on achieving optimal concurrent performance for H 2 and H ∞ filtering. In general, it is difficult to solve the multiobjective (MO) H 2 /H ∞ fuzzy filter problem directly, and we therefore propose an indirect approach to minimize the upper bounds and transform the MO H 2 /H ∞ filtering problem in to a linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we propose an LMI-based multiobjective evolution algorithm to efficiently find Pareto optimal solutions for the MOP of multiobjective fuzzy filter design for nonlinear stochastic signal processing. Furthermore, for comparison, we also suggest the MO H 2 /H ∞ filter design problem based on the weighted sum method. Our proposed indirect method can be widely employed to practically address the MO filter design problem in nonlinear signal processing. Finally, a trajectory estimation of reentry vehicle by radar is provided to illustrate the design procedure of the Pareto MO optimal filter.
Author Hsin-Chun Lee
Chien-Feng Wu
Bor-Sen Chen
Author_xml – sequence: 1
  givenname: Bor-Sen
  surname: Chen
  fullname: Chen, Bor-Sen
– sequence: 2
  givenname: Hsin-Chun
  surname: Lee
  fullname: Lee, Hsin-Chun
– sequence: 3
  givenname: Chien-Feng
  surname: Wu
  fullname: Wu, Chien-Feng
BookMark eNp9UMtuwjAQtCoqFWh_oL34BwLexHGSY0WbUomWSsCFS-Q4m2IUEmQbJPj6hod66KGnXWlnZmemRzp1UyMhj8AGACwZztPFcjnwGfCBH4CfxOEN6ULCwWMs4J12ZyLwRMTEHelZu2YtMoS4S1Zf0qBr6HTr9EZWNNWVQ0Nf0OrvmpaNoZ9NXekapaEz16iVtE4rmu6OxwOdHazDjaV7LenHrnK6ydeonN4jHdPh-CKqj7I91PfktpSVxYfr7JNF-jofjb3J9O199DzxFIAfehy5UNh6S6KkiNCPI2CQR0UcISgsZZmHgqmES79FsTJoQxTAFQQij_M4LII-8S-6yjTWGiyzrWmTmUMGLDt1lZ27yk5dZdeuWlL8h6S0O9t2Rurqf-rThaoR8feXiCLBIQx-ALFOewk
CODEN IEFSEV
CitedBy_id crossref_primary_10_1177_0142331218787607
crossref_primary_10_1007_s40815_015_0074_8
crossref_primary_10_1016_j_automatica_2020_108951
crossref_primary_10_1002_oca_2980
crossref_primary_10_1080_00207179_2024_2326911
crossref_primary_10_1109_TAC_2023_3244483
crossref_primary_10_1049_iet_cta_2017_0348
crossref_primary_10_1109_TCSII_2022_3192557
crossref_primary_10_1109_ACCESS_2021_3133899
crossref_primary_10_1109_TFUZZ_2020_3021699
crossref_primary_10_1016_j_jfranklin_2021_08_022
crossref_primary_10_1016_j_jai_2025_05_004
crossref_primary_10_1016_j_neucom_2018_12_002
crossref_primary_10_1109_TSMC_2016_2572145
crossref_primary_10_1007_s40815_021_01149_z
crossref_primary_10_1109_TFUZZ_2017_2698370
crossref_primary_10_1016_j_fss_2019_02_020
crossref_primary_10_1016_j_automatica_2018_04_044
crossref_primary_10_1007_s10957_025_02612_9
crossref_primary_10_1016_j_neucom_2025_130292
crossref_primary_10_1109_TFUZZ_2016_2574926
crossref_primary_10_1049_iet_cta_2018_5790
crossref_primary_10_1109_TASE_2023_3234928
crossref_primary_10_1109_TCYB_2024_3354945
crossref_primary_10_1002_asjc_2992
crossref_primary_10_1002_oca_2395
crossref_primary_10_1109_TIE_2019_2956375
crossref_primary_10_1016_j_matcom_2024_04_036
crossref_primary_10_1016_j_jfranklin_2018_04_025
crossref_primary_10_1109_TFUZZ_2018_2866823
crossref_primary_10_1109_TFUZZ_2016_2516581
crossref_primary_10_1016_j_jfranklin_2023_08_006
crossref_primary_10_1007_s40815_018_0541_0
crossref_primary_10_1016_j_amc_2022_127512
crossref_primary_10_1007_s10957_019_01553_4
crossref_primary_10_1016_j_ins_2019_10_005
Cites_doi 10.1109/29.57538
10.1109/WSC.2009.5429562
10.1109/TCSI.2010.2055331
10.1109/TCSI.2003.818624
10.1109/TCSI.2008.2007059
10.1109/4235.996017
10.1109/TCSII.2003.816904
10.1109/TEVC.2009.2017515
10.1109/TFUZZ.2006.881446
10.1109/ISDA.2005.69
10.1109/TFUZZ.2008.924206
10.1109/TCSII.2004.836882
10.1109/TSMCB.2012.2227721
10.1109/TWC.2008.060533
10.1109/78.852028
10.1109/TFUZZ.2012.2226941
10.1109/TCSI.2010.2071970
10.1109/78.887037
10.1109/TFUZZ.2008.2010867
10.1109/TCSI.2003.809816
10.1109/TCSI.2011.2173396
10.1109/TFUZZ.2012.2196522
10.1109/TCSI.2008.922026
10.1109/78.960407
10.1109/TSMCB.2008.2012350
10.1007/978-3-540-30217-9_73
10.1109/TCSI.2012.2209296
10.1137/1.9781611970777
10.1109/TFUZZ.2012.2190516
10.1109/TAC.2003.821400
10.1002/0471224596
10.1016/S0165-1684(97)00079-0
10.2514/2.4482
10.1109/78.960416
10.1007/1-84628-137-7
10.1007/s00158-003-0368-6
10.1109/TSP.2004.827182
10.1109/TSP.2005.850353
10.1109/TFUZZ.2010.2095860
10.1109/TAC.2012.2211456
10.1109/TCSI.2007.904640
10.1109/TSP.2004.840724
10.1109/TSP.2005.851116
10.1109/TAC.2003.811277
10.1016/j.fss.2006.09.001
10.1109/9.293203
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TFUZZ.2014.2312985
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 399
ExternalDocumentID 10_1109_TFUZZ_2014_2312985
6776415
Genre orig-research
GrantInformation_xml – fundername: National Science Council
  grantid: NSC102-2745-E-007-001-ASP
  funderid: 10.13039/501100001868
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c1125-4e46ce451979d7e287101b7d87e1cefafb560c94a2ce40f3518d14c136b8b85d3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Tue Nov 18 21:25:31 EST 2025
Sat Nov 29 03:12:34 EST 2025
Tue Aug 26 16:39:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multiobjective problem (MOP)
multiobjective fuzzy filter
Linear matrix inequality (LMI)
pareto optimal solutions
Takagi–Sugerno (T–S) fuzzy model
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1125-4e46ce451979d7e287101b7d87e1cefafb560c94a2ce40f3518d14c136b8b85d3
PageCount 13
ParticipantIDs crossref_primary_10_1109_TFUZZ_2014_2312985
crossref_citationtrail_10_1109_TFUZZ_2014_2312985
ieee_primary_6776415
PublicationCentury 2000
PublicationDate 2015-April
2015-4-00
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-April
PublicationDecade 2010
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ma (ref29) 0; 1?12
minkler (ref1) 1993
xu (ref12) 2003; 48
ref13
ref53
ref11
ref10
gao (ref5) 2003; 50
ref17
ref16
ref19
lin (ref48) 2013; 9
ref46
ref45
ref47
ref42
ref41
ref44
ref43
hung (ref15) 2000; 48
ref49
ref8
ref7
su (ref51) 2013; 43
gao (ref14) 2009; 17
ref9
ref4
ref3
ref6
ref40
ref35
ref34
strogatz (ref32) 1994
ref37
ref31
ref30
ahn (ref50) 2013; 9
ref2
ref39
ref38
deb (ref23) 2001
zarchan (ref36) 1990
branke (ref33) 2004; 3242
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
gao (ref18) 2005; 53
wu (ref52) 2009; 39
References_xml – ident: ref8
  doi: 10.1109/29.57538
– ident: ref30
  doi: 10.1109/WSC.2009.5429562
– ident: ref38
  doi: 10.1109/TCSI.2010.2055331
– ident: ref10
  doi: 10.1109/TCSI.2003.818624
– ident: ref20
  doi: 10.1109/TCSI.2008.2007059
– ident: ref24
  doi: 10.1109/4235.996017
– ident: ref41
  doi: 10.1109/TCSII.2003.816904
– ident: ref34
  doi: 10.1109/TEVC.2009.2017515
– year: 2001
  ident: ref23
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 1?12
  start-page: 1590
  year: 0
  ident: ref29
  article-title: An effective evolutionary approach to mixed $H_{2}$/$H_\infty$ filtering with regional pole assignment
  publication-title: Proc 6th WCICA
– ident: ref6
  doi: 10.1109/TFUZZ.2006.881446
– volume: 9
  start-page: 4781
  year: 2013
  ident: ref48
  article-title: Frequency analysis of T-S fuzzy control systems
  publication-title: Int J Innovative Comput Inf Control
– ident: ref26
  doi: 10.1109/ISDA.2005.69
– volume: 17
  start-page: 291
  year: 2009
  ident: ref14
  article-title: $H_\infty$ fuzzy filtering of nonlinear systems with intermittent measurements
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2008.924206
– ident: ref4
  doi: 10.1109/TCSII.2004.836882
– volume: 43
  start-page: 1251
  year: 2013
  ident: ref51
  article-title: Induced filtering of fuzzy stochastic systems with time-varying delays
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2227721
– ident: ref28
  doi: 10.1109/TWC.2008.060533
– ident: ref19
  doi: 10.1109/78.852028
– ident: ref49
  doi: 10.1109/TFUZZ.2012.2226941
– ident: ref37
  doi: 10.1109/TCSI.2010.2071970
– volume: 48
  start-page: 3451
  year: 2000
  ident: ref15
  article-title: Genetic algorithm approach to fixed-order mixed $H_{2}$/ $H_\infty$ optimal deconvolution filter designs
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.887037
– ident: ref47
  doi: 10.1109/TFUZZ.2008.2010867
– volume: 50
  start-page: 594
  year: 2003
  ident: ref5
  article-title: Robust $L_{2}$-$L_\infty$ filtering for uncertain systems with multiple time-varying state delays
  publication-title: IEEE Trans Circuits Syst I Fundam Theory Appl
  doi: 10.1109/TCSI.2003.809816
– ident: ref42
  doi: 10.1109/TCSI.2011.2173396
– ident: ref46
  doi: 10.1109/TFUZZ.2012.2196522
– ident: ref39
  doi: 10.1109/TCSI.2008.922026
– ident: ref9
  doi: 10.1109/78.960407
– volume: 39
  start-page: 1308
  year: 2009
  ident: ref52
  article-title: $L_{2}$-$L_\infty$ control of nonlinear fuzzy itô stochastic delay systems via dynamic output feedback
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.2012350
– volume: 3242
  start-page: 722
  year: 2004
  ident: ref33
  article-title: Finding knees in multi-objective optimization
  publication-title: Parallel Problem Solving From Nature - PPSN VIII New York NY USA Springer
  doi: 10.1007/978-3-540-30217-9_73
– ident: ref44
  doi: 10.1109/TCSI.2012.2209296
– ident: ref31
  doi: 10.1137/1.9781611970777
– ident: ref43
  doi: 10.1109/TFUZZ.2012.2190516
– ident: ref17
  doi: 10.1109/TAC.2003.821400
– ident: ref22
  doi: 10.1002/0471224596
– ident: ref45
  doi: 10.1016/S0165-1684(97)00079-0
– ident: ref35
  doi: 10.2514/2.4482
– ident: ref16
  doi: 10.1109/78.960416
– ident: ref25
  doi: 10.1007/1-84628-137-7
– ident: ref27
  doi: 10.1007/s00158-003-0368-6
– volume: 9
  start-page: 2979
  year: 2013
  ident: ref50
  article-title: New sets of criteria for exponential l$_{2}$-l$_\infty$ stability of T-S fuzzy systems combined with Hopfield neural networks
  publication-title: Int J Innovative Comput Inf Control
– ident: ref11
  doi: 10.1109/TSP.2004.827182
– ident: ref2
  doi: 10.1109/TSP.2005.850353
– ident: ref21
  doi: 10.1109/TFUZZ.2010.2095860
– ident: ref53
  doi: 10.1109/TAC.2012.2211456
– ident: ref40
  doi: 10.1109/TCSI.2007.904640
– ident: ref7
  doi: 10.1109/TSP.2004.840724
– volume: 53
  start-page: 3183
  year: 2005
  ident: ref18
  article-title: New approach to mixed $H_{2}$ /$H_\infty$ filtering for polytopic discrete-time systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.851116
– year: 1990
  ident: ref36
  publication-title: Tactical and Strategic Missile Guidance
– year: 1993
  ident: ref1
  publication-title: Theory and Application of Kalman Filtering
– volume: 48
  start-page: 900
  year: 2003
  ident: ref12
  article-title: Robust $H_\infty$ filtering for uncertain Markovian jump systems with mode-dependent time delays
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2003.811277
– ident: ref13
  doi: 10.1016/j.fss.2006.09.001
– year: 1994
  ident: ref32
  publication-title: Nonlinear Dynamics and Chaos With Applications to Physics Biology Chemistry and Engineering
– ident: ref3
  doi: 10.1109/9.293203
SSID ssj0014518
Score 2.1253154
Snippet This paper is concerned with the multiobjective H 2 /H ∞ filtering design problem in nonlinear signal processing, which can be approximated by a Takagi-Sugerno...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Filtering
Filtering algorithms
Noise
Noise measurement
Pareto optimization
Stochastic processes
Title Pareto Optimal Filter Design for Nonlinear Stochastic Fuzzy Systems via Multiobjective H /H Optimization
URI https://ieeexplore.ieee.org/document/6776415
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwHG2QeNCDKGjEr_TgTQfr2rXr0agLJ-QACeGy9GsRo8wgkMhfb9sNwsGYeGuWtln6uvbX9ffeA-A2QirXBqHAhsYqICLUgcAcBxERRjFBDOHKm02wfj8Zj_mgBu63XBhjjE8-Mx1X9Hf5ulBL96usSxmjnlG-ZwslV2t7Y0BiVNLeKA4oC-mGIBPy7jAdTSYui4t0bDQTceebvLMJ7biq-E0lbfzvdY7BURU8wocS7RNQM7MmaGyMGWD1nTbB4Y7KYAu8DpyTbQFf7OrwYZunU3dDDp987ga0QSvsl3oZwnaxKNSrcNrNMF2u19-wUjSHq6mAnqxbyLdyjYQ92O2VnVZczlMwSp-Hj72gMlgIlA2z4sAiQZVxAjOMa2bc4SlEkumEGaRMLnJp4yHFiYhsrTDHdog1IgphKhOZxBqfgfqsmJlzAFHCpKG5kJGOnYSWxNKTYKlUGimO2wBtRjxTlfq4M8F4z_wpJOSZRylzKGUVSm1wt23zWWpv_Fm75SDa1qzQufj98SU4sI3jMgfnCtQX86W5BvtqtZh-zW_81PoBLfjMwA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP0YKqgP3sW7efBN65pekuZR1DJxTh82GL6U3IoTXUU3QX-9SZqNPYjgWylJKDlt8qXfd84BOImwLJXGODChsQwSHqqAxywOooRrSXmiEyad2QTtdLJ-nz004GzKhdFau-IzfW4vXS5fVXJsf5U1CaXEMcrnrXOWZ2tNcwZJimviG4kDQkMyociErNnNe4-Pto4rOTfxTMSsc_LMNjTjq-K2lXz1fw-0Bis-fEQXNd7r0NDDDVidWDMg_6VuwPKMzuAmPD1YL9sK3Zv14dV0zwc2R46uXPUGMmEr6tSKGdwMMarkE7fqzSgff39_Ia9pjj4HHDm6biWe61UStVCzVQ_q2Zxb0Muvu5etwFssBNIEWmlgsCBSW4kZyhTV9vgUYkFVRjWWuuSlMBGRZAmPTKuwjM0UK5xIHBORiSxV8TbMDauh3gGEMyo0KbmIVGpFtEQsHA2WCKmwZPEu4MmMF9Lrj1sbjJfCnUNCVjiUCotS4VHahdNpn7dafePP1psWomlLj87e77ePYbHVvWsX7ZvO7T4smYHSunbsAOZG72N9CAvyczT4eD9yr9kPAvnQDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pareto+Optimal+Filter+Design+for+Nonlinear+Stochastic+Fuzzy+Systems+via+Multiobjective+%24H_%7B%5Cbf+2%7D+%2FH_%7B%5Cbm+%5Cinfty%7D%24+Optimization&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chen%2C+Bor-Sen&rft.au=Lee%2C+Hsin-Chun&rft.au=Wu%2C+Chien-Feng&rft.date=2015-04-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=23&rft.issue=2&rft.spage=387&rft.epage=399&rft_id=info:doi/10.1109%2FTFUZZ.2014.2312985&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2014_2312985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon