Comparison of \ell -Norm SVR and Sparse Coding Algorithms for Linear Regression
Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l 1 -norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 26; číslo 8; s. 1828 - 1833 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.08.2015
|
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l 1 -norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l 1 -norm SVR and SC can be used for linear regression. In this brief, the close connection between the l 1 -norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l 1 -norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm. |
|---|---|
| AbstractList | Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l 1 -norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l 1 -norm SVR and SC can be used for linear regression. In this brief, the close connection between the l 1 -norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l 1 -norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm. |
| Author | Xiaolin Hu Qingtian Zhang Bo Zhang |
| Author_xml | – sequence: 1 surname: Qingtian Zhang fullname: Qingtian Zhang email: forgettingzqt@yahoo.cn organization: Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China – sequence: 2 surname: Xiaolin Hu fullname: Xiaolin Hu email: xlhu@tsinghua.edu.cn organization: Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China – sequence: 3 surname: Bo Zhang fullname: Bo Zhang email: dcszb@tsinghua.edu.cn organization: Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China |
| BookMark | eNp9kM9qwzAMh83oWLuuL7Bd_ALpLCd2kmMJ-wehhbYbOwyCnSidRxIXO5e9_dK19LDDdJFAfNKP75qMOtshIbfA5gAsvd8ul_lmzhlEcx7GMY_EBZlwkDzgYZKMznP8PiYz77_YUJIJGaVXZMyFCDmkYkJWmW33yhlvO2pr-oFNQ4OldS3dvK2p6iq6GdYeaWYr0-3ootlZZ_rP1tPaOpqbDpWja9w59N7Y7oZc1qrxODv1KXl9fNhmz0G-enrJFnlQAnAYcikNoEBwplRVM2QVclZVGJcgtIJYRVwixEJqQAi10FCGutISNSZM8XBK-PFu6az3Duti70yr3HcBrDgIKn4FFQdBxUnQACV_oNL0qh9i906Z5n_07ogaRDz_kmkiJIfwB1ltc-k |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2016_2573644 crossref_primary_10_1109_ACCESS_2019_2948059 crossref_primary_10_7554_eLife_56212 crossref_primary_10_1109_TNNLS_2017_2731319 crossref_primary_10_1111_exsy_13471 crossref_primary_10_1177_09544089221124288 crossref_primary_10_1109_ACCESS_2019_2945807 crossref_primary_10_1088_0031_9155_61_19_7162 crossref_primary_10_1016_j_jfranklin_2025_107798 crossref_primary_10_1186_s12938_017_0342_y crossref_primary_10_1109_ACCESS_2021_3054823 crossref_primary_10_1016_j_neunet_2024_106633 crossref_primary_10_1016_j_neucom_2018_09_089 crossref_primary_10_1109_TNNLS_2022_3192065 |
| Cites_doi | 10.1023/B:STCO.0000035301.49549.88 10.1017/CBO9780511543241 10.1109/72.80341 10.1137/S1064827596304010 10.1016/j.neucom.2007.12.009 10.1214/009053604000000067 10.1002/cpa.20132 10.1007/978-1-4613-9617-8_2 10.1162/neco.1991.3.2.246 10.1093/comjnl/7.4.308 10.1038/381607a0 10.1093/imanum/20.3.389 10.1137/090777761 10.1109/ICASSP.2005.1416408 10.1109/78.258082 10.1109/TNN.2006.880860 10.1109/ACSSC.1993.342465 10.1023/B:COAP.0000026884.66338.df 10.1080/00207720802083018 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TNNLS.2014.2377245 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1833 |
| ExternalDocumentID | 10_1109_TNNLS_2014_2377245 6985621 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Beijing grantid: 4132046 – fundername: National Natural Science Foundation of China grantid: 61273023 funderid: 10.13039/501100001809 – fundername: National Basic Research Program (973 Program) of China grantid: 2013CB329403; 2012CB316301 – fundername: Tsinghua National Laboratory for Information Science and Technology Cross-Discipline Foundation |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c1121-23ab11a1520aadf0e0de20dde7c15ba17a426e1756b1e13b5b1c3bdb6ebe80a23 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X |
| IngestDate | Tue Nov 18 21:49:20 EST 2025 Sat Nov 29 01:39:51 EST 2025 Tue Aug 26 16:37:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Newton linear programming (NLP) sparse coding (SC) regression support vector machine (SVM) radial basis function (RBF) neural network |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1121-23ab11a1520aadf0e0de20dde7c15ba17a426e1756b1e13b5b1c3bdb6ebe80a23 |
| PMID | 25532195 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6985621 crossref_citationtrail_10_1109_TNNLS_2014_2377245 crossref_primary_10_1109_TNNLS_2014_2377245 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Aug. 2015-8-00 |
| PublicationDateYYYYMMDD | 2015-08-01 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 mangasarian (ref9) 2006; 7 ref31 ref30 ref11 ref10 ref19 efron (ref25) 2004; 32 lee (ref16) 2007; 19 müller (ref5) 1997 bache (ref32) 2013 stitson (ref6) 1999 ref24 ref23 vapnik (ref1) 1963; 24 ref22 ref21 yang (ref17) 2010 schölkopf (ref4) 1998 ref28 ref27 ref29 perkins (ref26) 2003; 20 ref8 ref7 schölkopf (ref3) 1996 ng (ref20) 2004 yang (ref18) 2009 vapnik (ref2) 1964; 25 |
| References_xml | – volume: 7 start-page: 1517 year: 2006 ident: ref9 article-title: Exact 1-norm support vector machines via unconstrained convex differentiable minimization publication-title: J Mach Learn Res – start-page: 999 year: 1997 ident: ref5 article-title: Predicting time series with support vector machines publication-title: Proc Int Conf Artif Neural Netw – volume: 24 start-page: 774 year: 1963 ident: ref1 article-title: Pattern recognition using generalized portrait method publication-title: Autom Remote Control – ident: ref19 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref28 doi: 10.1017/CBO9780511543241 – ident: ref29 doi: 10.1109/72.80341 – ident: ref12 doi: 10.1137/S1064827596304010 – volume: 20 start-page: 592 year: 2003 ident: ref26 article-title: Online feature selection using grafting publication-title: Proc 20th Int Conf Mach Learn – ident: ref22 doi: 10.1016/j.neucom.2007.12.009 – year: 2013 ident: ref32 publication-title: UCI Machine Learning Repository – volume: 32 start-page: 407 year: 2004 ident: ref25 article-title: Least angle regression publication-title: Ann Statist doi: 10.1214/009053604000000067 – start-page: 1849 year: 2010 ident: ref17 article-title: Fast $\ell 1$ -minimization algorithms and an application in robust face recognition: A review publication-title: Proc Int Conf Image Process – start-page: 47 year: 1996 ident: ref3 article-title: Incorporating invariances in support vector learning machines publication-title: Proc Int Conf Artif Neural Netw – ident: ref15 doi: 10.1002/cpa.20132 – ident: ref8 doi: 10.1007/978-1-4613-9617-8_2 – ident: ref27 doi: 10.1162/neco.1991.3.2.246 – ident: ref7 doi: 10.1093/comjnl/7.4.308 – start-page: 78 year: 2004 ident: ref20 article-title: Feature selection, $L_{1}$ vs. $L_{2}$ regularization, and rotational invariance publication-title: Proc 21st Int Conf Mach Learn – ident: ref10 doi: 10.1038/381607a0 – ident: ref13 doi: 10.1093/imanum/20.3.389 – volume: 25 start-page: 821 year: 1964 ident: ref2 article-title: A note on one class of perceptrons publication-title: Autom Remote Control – ident: ref24 doi: 10.1137/090777761 – ident: ref14 doi: 10.1109/ICASSP.2005.1416408 – start-page: 1794 year: 2009 ident: ref18 article-title: Linear spatial pyramid matching using sparse coding for image classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 285 year: 1999 ident: ref6 article-title: Support vector regression with ANOVA decomposition kernels publication-title: Advances in Kernel Methods Support Vector Learning – ident: ref23 doi: 10.1109/78.258082 – ident: ref31 doi: 10.1109/TNN.2006.880860 – ident: ref11 doi: 10.1109/ACSSC.1993.342465 – volume: 19 start-page: 801 year: 2007 ident: ref16 article-title: Efficient sparse coding algorithms publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1023/B:COAP.0000026884.66338.df – ident: ref30 doi: 10.1080/00207720802083018 – start-page: 640 year: 1998 ident: ref4 article-title: Prior knowledge in support vector kernels publication-title: Proc Adv Neural Inf Process Syst |
| SSID | ssj0000605649 |
| Score | 2.139714 |
| Snippet | Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l 1... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1828 |
| SubjectTerms | Algorithm design and analysis Frequency selective surfaces Matching pursuit algorithms Newton linear programming (NLP) radial basis function (RBF) neural network regression sparse coding (SC) support vector machine (SVM) Support vector machines Testing Training Vectors |
| Title | Comparison of \ell -Norm SVR and Sparse Coding Algorithms for Linear Regression |
| URI | https://ieeexplore.ieee.org/document/6985621 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8eDFqlWsL_bgTdPubpLd9FiKxYNEaav0IITdzbQWaiJ9-PudPBoURPAWsrsQ5stkvtnM7EfINSiF2GrtSA_A8aaWO0FshSNFoGPfcyUwm4tNqDAMJpPuU43cVr0wAJAXn0E7u8z_5cep3WRbZR3ZDTBcY66zo5QserWq_RSGvFzmbFdwKRzhqsm2R4Z1O-MwfBhlhVxeG0eU8DLFGmTTLjqs_yMkfdNYyUPMoPG_hzsg-yWVpL0C-0NSg-SINLYyDbT02iZ57FdagzSd0ldYLKgTIlelo5ch1UlMRzi8AtpPs0BGe4tZupyv395XFBktxWwVvYEOYVaUzCbH5HlwN-7fO6WOgmORTXG0hTaca4zUTOt4yoDFIBh-15TlvtFcaQzTgDxCGg7cNb7h1jWxkQhwwLRwT0g9SRM4JdSaIPY863NlfQ-5XiCNNWCMsC4yQ61ahG9NGdnykPFM62IR5ckG60Y5ElGGRFQi0SI31ZqP4oiNP2c3M9tXM0uzn_1--5zs4WK_qNi7IPX1cgOXZNd-ruer5VX-Bn0B1BPBFg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA6igr74W5w_8-CbVpO0TbpHGQ7FWWWbsgehJOltDmYr2_Tv99J1RUEE30qTlnJfr_ddepePkFNQCrHV2pMBgBf0Lfei1ApPikinYeBLYLYQm1BxHPV69ccFcl71wgBAUXwGF-6w-Jef5vbDLZVdynqE4RpznSWnnFV2a1UrKgyZuSz4ruBSeMJXvXmXDKtfduO41XGlXMEFjigROM0a5NM-umz4Iyh9U1kpgkxz_X-Pt0HWSjJJr2bob5IFyLbI-lyogZZ-u00eGpXaIM379AVGI-rFyFZp57lNdZbSDg5PgDZyF8ro1WiQj4fT17cJRU5LMV9Ff6BtGMyKZrMd8tS87jZuvFJJwbPIpzjaQhvONcZqpnXaZ8BSEAy_bMry0GiuNAZqQCYhDQfum9Bw65vUSIQ4Ylr4u2QxyzPYI9SaKA0CG3JlEQQWRtJYA8YI6yM31KpG-NyUiS23GXdqF6OkSDdYPSmQSBwSSYlEjZxV17zPNtn4c_a2s301szT7_u-nT8jKTfe-lbRu47sDsoo3Cmf1e4dkcTr-gCOybD-nw8n4uHibvgAS08Rf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+%24%5Cell+_%7B1%7D%24+-Norm+SVR+and+Sparse+Coding+Algorithms+for+Linear+Regression&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Qingtian+Zhang&rft.au=Xiaolin+Hu&rft.au=Bo+Zhang&rft.date=2015-08-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=26&rft.issue=8&rft.spage=1828&rft.epage=1833&rft_id=info:doi/10.1109%2FTNNLS.2014.2377245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2014_2377245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |