Photovoltaic parameters estimation using three metaheuristic algorithms: A comparative study
Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photo...
Uloženo v:
| Vydáno v: | Mathematical Modeling and Computing Ročník 12; číslo 1; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
2025
|
| ISSN: | 2312-9794, 2415-3788 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive research is dedicated to PV modules, with a primary emphasis on electrical modeling, which plays a crucial role in effectively controlling a PV system and determining its I-V characteristics. PV modules encompass various electrical models, including the single-diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The difficulty lies in precisely determining the unknown parameters associated with each model. This study sets out with a clear objective: to tackle the challenge of identifying the elusive parameters within the SDM. The primary aim is to compare the effectiveness of three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying these unknown parameters. In practical terms, this study extends to the evaluation of these algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar Power TP240 module, and RTC France solar cell. The evaluation of results is based on the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates superior performance, achieving the lowest RMSE of 9.860218e-04\;A for the RTC France solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the TP240 module. |
|---|---|
| AbstractList | Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive research is dedicated to PV modules, with a primary emphasis on electrical modeling, which plays a crucial role in effectively controlling a PV system and determining its I-V characteristics. PV modules encompass various electrical models, including the single-diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The difficulty lies in precisely determining the unknown parameters associated with each model. This study sets out with a clear objective: to tackle the challenge of identifying the elusive parameters within the SDM. The primary aim is to compare the effectiveness of three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying these unknown parameters. In practical terms, this study extends to the evaluation of these algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar Power TP240 module, and RTC France solar cell. The evaluation of results is based on the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates superior performance, achieving the lowest RMSE of 9.860218e-04\;A for the RTC France solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the TP240 module. |
| Author | Lidaighbi, S. Ben Hmamou, D. Yessef, M. Benslimane, M. Arjdal, El. H. Saadaoui, D. Choulli, I. Elhammoudy, A. Abazine, I. Elyaqouti, M. |
| Author_xml | – sequence: 1 givenname: A. surname: Elhammoudy fullname: Elhammoudy, A. – sequence: 2 givenname: M. surname: Elyaqouti fullname: Elyaqouti, M. – sequence: 3 givenname: El. H. surname: Arjdal fullname: Arjdal, El. H. – sequence: 4 givenname: D. surname: Ben Hmamou fullname: Ben Hmamou, D. – sequence: 5 givenname: S. surname: Lidaighbi fullname: Lidaighbi, S. – sequence: 6 givenname: D. surname: Saadaoui fullname: Saadaoui, D. – sequence: 7 givenname: I. surname: Choulli fullname: Choulli, I. – sequence: 8 givenname: I. surname: Abazine fullname: Abazine, I. – sequence: 9 givenname: M. surname: Yessef fullname: Yessef, M. – sequence: 10 givenname: M. surname: Benslimane fullname: Benslimane, M. |
| BookMark | eNotkFFLwzAUhYNMcM49-5o_0O0maXcX38ZQJwz0Qd-Ekqa3a2BtRpIO9u-tuqdz4MDH4btnk973xNijgIVUWull11kJsliAWACIGzaVuSgyhev1ZOxKyEyjzu_YPEZXwUqg0rkqpuz7o_XJn_0xGWf5yQTTUaIQOcXkOpOc7_kQXX_gqQ1EfFxNS0Nw42y5OR58cKnt4hPfcOu7X0ByZ-IxDfXlgd025hhpfs0Z-3p5_tzusv3769t2s8-sEJCyAqpamQKsXEOuK9SmqS0ZibUmkvWKqAKqUCkUYoWNMTmiQYmgtWrQopqx5T_XBh9joKY8hfF8uJQCyj8_5dVPCaIc_agfHQ1dlQ |
| Cites_doi | 10.1016/j.rser.2021.110828 10.1016/j.ecmx.2023.100405 10.1016/j.ecmx.2023.100362 10.1080/02286203.2023.2226285 10.1016/b978-0-12-398364-0.00001-2 10.1016/j.renene.2016.11.025 10.1016/j.rio.2023.100445 10.1016/j.rser.2018.01.006 10.1016/j.apenergy.2015.05.035 10.1016/j.cad.2010.12.015 10.1016/j.matcom.2021.08.013 10.1016/j.apenergy.2022.118877 10.1016/j.solener.2017.09.046 10.23939/mmc2023.03.638 10.1016/j.ecmx.2022.100234 10.23939/mmc2021.02.304 10.1016/j.engappai.2020.103479 10.1080/0305215X.2013.832237 10.23939/mmc2018.01.027 10.1007/s11042-020-10139-6 10.1080/01430750.2021.1994464 |
| ContentType | Journal Article |
| CorporateAuthor | LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University Higher School of Technology, Sidi Mohamed Ben Abdellah University Laboratory of Materials, Signals, Systems and Physical Modelling, Faculty of Science, Ibn Zohr University |
| CorporateAuthor_xml | – name: LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University – name: Higher School of Technology, Sidi Mohamed Ben Abdellah University – name: Laboratory of Materials, Signals, Systems and Physical Modelling, Faculty of Science, Ibn Zohr University |
| DBID | AAYXX CITATION |
| DOI | 10.23939/mmc2025.01.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2415-3788 |
| EndPage | 9 |
| ExternalDocumentID | 10_23939_mmc2025_01_001 |
| GroupedDBID | 9MQ AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION |
| ID | FETCH-LOGICAL-c110t-50bd3a50c28049b79afdcea27d9ee2d6eeb0eb73371167faa477a7270993f7c73 |
| ISSN | 2312-9794 |
| IngestDate | Sat Nov 29 05:31:50 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c110t-50bd3a50c28049b79afdcea27d9ee2d6eeb0eb73371167faa477a7270993f7c73 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_23939_mmc2025_01_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical Modeling and Computing |
| PublicationYear | 2025 |
| References | ref13 ref12 ref15 ref20 ref11 M. (ref21) 2017; 158 ref10 Hashim (ref18) 2022; 192 ref0 ref2 ref1 Chin (ref4) 2015; 154 Yang (ref16) 2014; 46 Gandomi (ref19) 2013; 1 A. (ref9) 2017; 103 ref8 ref7 ref3 Jiang (ref6) 2018; 85 Rao (ref17) 2011; 43 ref5 Katoch (ref14) 2021; 80 |
| References_xml | – ident: ref13 doi: 10.1016/j.rser.2021.110828 – ident: ref2 – ident: ref8 doi: 10.1016/j.ecmx.2023.100405 – ident: ref11 doi: 10.1016/j.ecmx.2023.100362 – ident: ref7 doi: 10.1080/02286203.2023.2226285 – volume: 1 start-page: 1 year: 2013 ident: ref19 article-title: Metaheuristic algorithms in modeling and optimization publication-title: Metaheuristic Applications in Structures and Infrastructures doi: 10.1016/b978-0-12-398364-0.00001-2 – volume: 103 start-page: 58 year: 2017 ident: ref9 article-title: A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values publication-title: Renewable Energy doi: 10.1016/j.renene.2016.11.025 – ident: ref10 doi: 10.1016/j.rio.2023.100445 – volume: 85 start-page: 14 year: 2018 ident: ref6 article-title: Computational intelligence techniques for maximum power point tracking in PV systems: A review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2018.01.006 – volume: 154 start-page: 500 year: 2015 ident: ref4 article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.05.035 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: ref17 article-title: A novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – volume: 192 start-page: 84 year: 2022 ident: ref18 article-title: New metaheuristic algorithm for solving optimization problems publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2021.08.013 – ident: ref20 doi: 10.1016/j.apenergy.2022.118877 – volume: 158 start-page: 192 year: 2017 ident: ref21 article-title: An efficient parameters extraction technique of photovoltaic models for performance assessment publication-title: Solar Energy doi: 10.1016/j.solener.2017.09.046 – ident: ref3 doi: 10.23939/mmc2023.03.638 – ident: ref12 doi: 10.1016/j.ecmx.2022.100234 – ident: ref1 doi: 10.23939/mmc2021.02.304 – ident: ref15 doi: 10.1016/j.engappai.2020.103479 – volume: 46 start-page: 1222 issue: 9 year: 2014 ident: ref16 article-title: a novel approach for multiobjective optimization publication-title: Engineering Optimization doi: 10.1080/0305215X.2013.832237 – ident: ref0 doi: 10.23939/mmc2018.01.027 – volume: 80 start-page: 8091 year: 2021 ident: ref14 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimedia Tools and Aapplications doi: 10.1007/s11042-020-10139-6 – ident: ref5 doi: 10.1080/01430750.2021.1994464 |
| SSID | ssib061739435 ssib046627846 ssib044752581 |
| Score | 1.8941172 |
| Snippet | Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 1 |
| Title | Photovoltaic parameters estimation using three metaheuristic algorithms: A comparative study |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2415-3788 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044752581 issn: 2312-9794 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwoELKgLEq2gPHJAsG3vteG1uaRWUC1UPReoBKVp7x6QotktiV-XCj-GXMrMbP8JDKgcuVjKK1s7Op3msZ75h7DVxiIXoh91pEMdulJEdLOICA7kslgCFSJQ2wybk6WlycZGeTSY_ul6Y67WsquTmJr36r6pGGSqbWmf_Qd39oijAz6h0vKLa8XorxZ-t6qZGo4M5f-4Qs3dJFS9bh-g0bJ-i025tk9QGgEZIqxW0lrDZUevP9eayWZVb27Kej8jBBybabgJUT_lKDb40UqfreLSzIjqvaEpDVgq3oLUmfeYN8m_qa93amoIP3gC_L9pMInDma89Z9PJjqJxFqXAhYyu98ZmF7Wy2Rg3DSeGm0g429sDKMIhwidd-zyqL39BnTWww8tXpn5wAkboRiWpZ5nRvw8q6OzDZo9v-xQ32xYmYFpkllrsFln5AlX932F0hMf2i8tDv885mEV-iGFHIRUSonwwpNgaIYRqZOa_9X7cMU-Yeb_cfchQcjaKc80P2YJee8JmF1UM2geoR-zSGFB8gxQdIcQMpbiDF9yDFB0i94zM-AhQ3gHrMPr6fn58s3N1UDjfHULFxp36mQzX1c5FgdpnJVBU6ByWkTgGEjgEyHzIZhpJe8RVKRVIqjJIxFQkLmcvwCTuo6gqeMl4IkRUQJL7SQZQVWkWhkkrHCYaR2gf9jL3ptmN5ZclXln_RzvPb__QFu0_f7DnaS3bQbFo4Yvfy6-Zyu3lltPsT_1B87g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+parameters+estimation+using+three+metaheuristic+algorithms%3A+A+comparative+study&rft.jtitle=Mathematical+Modeling+and+Computing&rft.au=Elhammoudy%2C+A.&rft.au=Elyaqouti%2C+M.&rft.au=Arjdal%2C+El.+H.&rft.au=Ben+Hmamou%2C+D.&rft.date=2025&rft.issn=2312-9794&rft.eissn=2415-3788&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.23939%2Fmmc2025.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_23939_mmc2025_01_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-9794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-9794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-9794&client=summon |