Photovoltaic parameters estimation using three metaheuristic algorithms: A comparative study

Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical Modeling and Computing Ročník 12; číslo 1; s. 1 - 9
Hlavní autori: Elhammoudy, A., Elyaqouti, M., Arjdal, El. H., Ben Hmamou, D., Lidaighbi, S., Saadaoui, D., Choulli, I., Abazine, I., Yessef, M., Benslimane, M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 2025
ISSN:2312-9794, 2415-3788
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive research is dedicated to PV modules, with a primary emphasis on electrical modeling, which plays a crucial role in effectively controlling a PV system and determining its I-V characteristics. PV modules encompass various electrical models, including the single-diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The difficulty lies in precisely determining the unknown parameters associated with each model. This study sets out with a clear objective: to tackle the challenge of identifying the elusive parameters within the SDM. The primary aim is to compare the effectiveness of three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying these unknown parameters. In practical terms, this study extends to the evaluation of these algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar Power TP240 module, and RTC France solar cell. The evaluation of results is based on the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates superior performance, achieving the lowest RMSE of 9.860218e-04\;A for the RTC France solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the TP240 module.
AbstractList Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and nuclear energy, solar energy remains the most environmentally friendly and cost-effective option. Harnessing this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive research is dedicated to PV modules, with a primary emphasis on electrical modeling, which plays a crucial role in effectively controlling a PV system and determining its I-V characteristics. PV modules encompass various electrical models, including the single-diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The difficulty lies in precisely determining the unknown parameters associated with each model. This study sets out with a clear objective: to tackle the challenge of identifying the elusive parameters within the SDM. The primary aim is to compare the effectiveness of three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying these unknown parameters. In practical terms, this study extends to the evaluation of these algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar Power TP240 module, and RTC France solar cell. The evaluation of results is based on the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates superior performance, achieving the lowest RMSE of 9.860218e-04\;A for the RTC France solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the TP240 module.
Author Lidaighbi, S.
Ben Hmamou, D.
Yessef, M.
Benslimane, M.
Arjdal, El. H.
Saadaoui, D.
Choulli, I.
Elhammoudy, A.
Abazine, I.
Elyaqouti, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Elhammoudy
  fullname: Elhammoudy, A.
– sequence: 2
  givenname: M.
  surname: Elyaqouti
  fullname: Elyaqouti, M.
– sequence: 3
  givenname: El. H.
  surname: Arjdal
  fullname: Arjdal, El. H.
– sequence: 4
  givenname: D.
  surname: Ben Hmamou
  fullname: Ben Hmamou, D.
– sequence: 5
  givenname: S.
  surname: Lidaighbi
  fullname: Lidaighbi, S.
– sequence: 6
  givenname: D.
  surname: Saadaoui
  fullname: Saadaoui, D.
– sequence: 7
  givenname: I.
  surname: Choulli
  fullname: Choulli, I.
– sequence: 8
  givenname: I.
  surname: Abazine
  fullname: Abazine, I.
– sequence: 9
  givenname: M.
  surname: Yessef
  fullname: Yessef, M.
– sequence: 10
  givenname: M.
  surname: Benslimane
  fullname: Benslimane, M.
BookMark eNotkFFLwzAUhYNMcM49-5o_0O0maXcX38ZQJwz0Qd-Ekqa3a2BtRpIO9u-tuqdz4MDH4btnk973xNijgIVUWull11kJsliAWACIGzaVuSgyhev1ZOxKyEyjzu_YPEZXwUqg0rkqpuz7o_XJn_0xGWf5yQTTUaIQOcXkOpOc7_kQXX_gqQ1EfFxNS0Nw42y5OR58cKnt4hPfcOu7X0ByZ-IxDfXlgd025hhpfs0Z-3p5_tzusv3769t2s8-sEJCyAqpamQKsXEOuK9SmqS0ZibUmkvWKqAKqUCkUYoWNMTmiQYmgtWrQopqx5T_XBh9joKY8hfF8uJQCyj8_5dVPCaIc_agfHQ1dlQ
Cites_doi 10.1016/j.rser.2021.110828
10.1016/j.ecmx.2023.100405
10.1016/j.ecmx.2023.100362
10.1080/02286203.2023.2226285
10.1016/b978-0-12-398364-0.00001-2
10.1016/j.renene.2016.11.025
10.1016/j.rio.2023.100445
10.1016/j.rser.2018.01.006
10.1016/j.apenergy.2015.05.035
10.1016/j.cad.2010.12.015
10.1016/j.matcom.2021.08.013
10.1016/j.apenergy.2022.118877
10.1016/j.solener.2017.09.046
10.23939/mmc2023.03.638
10.1016/j.ecmx.2022.100234
10.23939/mmc2021.02.304
10.1016/j.engappai.2020.103479
10.1080/0305215X.2013.832237
10.23939/mmc2018.01.027
10.1007/s11042-020-10139-6
10.1080/01430750.2021.1994464
ContentType Journal Article
CorporateAuthor LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University
Higher School of Technology, Sidi Mohamed Ben Abdellah University
Laboratory of Materials, Signals, Systems and Physical Modelling, Faculty of Science, Ibn Zohr University
CorporateAuthor_xml – name: LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University
– name: Higher School of Technology, Sidi Mohamed Ben Abdellah University
– name: Laboratory of Materials, Signals, Systems and Physical Modelling, Faculty of Science, Ibn Zohr University
DBID AAYXX
CITATION
DOI 10.23939/mmc2025.01.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2415-3788
EndPage 9
ExternalDocumentID 10_23939_mmc2025_01_001
GroupedDBID 9MQ
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
ID FETCH-LOGICAL-c110t-50bd3a50c28049b79afdcea27d9ee2d6eeb0eb73371167faa477a7270993f7c73
ISSN 2312-9794
IngestDate Sat Nov 29 05:31:50 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c110t-50bd3a50c28049b79afdcea27d9ee2d6eeb0eb73371167faa477a7270993f7c73
PageCount 9
ParticipantIDs crossref_primary_10_23939_mmc2025_01_001
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Mathematical Modeling and Computing
PublicationYear 2025
References ref13
ref12
ref15
ref20
ref11
M. (ref21) 2017; 158
ref10
Hashim (ref18) 2022; 192
ref0
ref2
ref1
Chin (ref4) 2015; 154
Yang (ref16) 2014; 46
Gandomi (ref19) 2013; 1
A. (ref9) 2017; 103
ref8
ref7
ref3
Jiang (ref6) 2018; 85
Rao (ref17) 2011; 43
ref5
Katoch (ref14) 2021; 80
References_xml – ident: ref13
  doi: 10.1016/j.rser.2021.110828
– ident: ref2
– ident: ref8
  doi: 10.1016/j.ecmx.2023.100405
– ident: ref11
  doi: 10.1016/j.ecmx.2023.100362
– ident: ref7
  doi: 10.1080/02286203.2023.2226285
– volume: 1
  start-page: 1
  year: 2013
  ident: ref19
  article-title: Metaheuristic algorithms in modeling and optimization
  publication-title: Metaheuristic Applications in Structures and Infrastructures
  doi: 10.1016/b978-0-12-398364-0.00001-2
– volume: 103
  start-page: 58
  year: 2017
  ident: ref9
  article-title: A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2016.11.025
– ident: ref10
  doi: 10.1016/j.rio.2023.100445
– volume: 85
  start-page: 14
  year: 2018
  ident: ref6
  article-title: Computational intelligence techniques for maximum power point tracking in PV systems: A review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2018.01.006
– volume: 154
  start-page: 500
  year: 2015
  ident: ref4
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.05.035
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: ref17
  article-title: A novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 192
  start-page: 84
  year: 2022
  ident: ref18
  article-title: New metaheuristic algorithm for solving optimization problems
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2021.08.013
– ident: ref20
  doi: 10.1016/j.apenergy.2022.118877
– volume: 158
  start-page: 192
  year: 2017
  ident: ref21
  article-title: An efficient parameters extraction technique of photovoltaic models for performance assessment
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2017.09.046
– ident: ref3
  doi: 10.23939/mmc2023.03.638
– ident: ref12
  doi: 10.1016/j.ecmx.2022.100234
– ident: ref1
  doi: 10.23939/mmc2021.02.304
– ident: ref15
  doi: 10.1016/j.engappai.2020.103479
– volume: 46
  start-page: 1222
  issue: 9
  year: 2014
  ident: ref16
  article-title: a novel approach for multiobjective optimization
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2013.832237
– ident: ref0
  doi: 10.23939/mmc2018.01.027
– volume: 80
  start-page: 8091
  year: 2021
  ident: ref14
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimedia Tools and Aapplications
  doi: 10.1007/s11042-020-10139-6
– ident: ref5
  doi: 10.1080/01430750.2021.1994464
SSID ssib061739435
ssib046627846
ssib044752581
Score 1.8941172
Snippet Sunlight has served as the primary energy source since the inception of life on Earth. Despite the emergence of alternative energy sources like fossil and...
SourceID crossref
SourceType Index Database
StartPage 1
Title Photovoltaic parameters estimation using three metaheuristic algorithms: A comparative study
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2415-3788
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044752581
  issn: 2312-9794
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMXVFQQjxbtoQckyyZZO901t4CCcmnVQyv1UClar8ekKLZLYlfthR_DL2VmN36Eh1QOXCx7ZK0f83l2Zj3zDWNHGcJkJEziwzhLMEBRBj8plfpCgtRE7wKRazYhT0_V5WV8Nhj8aGphbpeyKNTdXXzzX1WNMlQ2lc7-g7rbQVGA-6h03KLacfsgxZ8tyqpEo4Mxv_GI2TunjJe1R3Qark7Rq9euSGoFQC2k9QJqR9js6eWXcnVdLfK1K1k3PXLwjom26QDVUr5SgS-11GkqHl2viGZWtKkhC42voHYmfRJ08nv9raxdTsFJ0MHva2o7EXjTZeDNWvlHKLxZrnEgayuD_pqFq2x2Rg3dSeHH0jU2DsDJ0Inwidd-yyqL39DnTOyoN1fHf5oEiNSNSFTz3NC1LSvrZsFki277l2mwTU7EsMgOMd8MMB-OKPPvEdsVEsMvSg_9Pm1sFvElih6FXESE-qoLsdFBDOPI9nltH90xTNlrvN--yZ5z1PNyzvfY0014wicOVs_YAIp9dtWHFO8gxTtIcQspbiHFtyDFO0h94BPeAxS3gHrOLj5Pzz_N_E1XDt-gq1j542GShno8NEJhdJnIWGepAS1kGgOI9BggGUIiw1DSL75M60hKjV4yhiJhJo0MX7CdoizgJeNoPbJ0nIU6i3Sk6I85SKVNAoBmQh3rV-xd8zrmN458Zf4X7bx--Klv2BM6cutoB2ynWtVwyB6b2-p6vXprtfsTVN99bA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photovoltaic+parameters+estimation+using+three+metaheuristic+algorithms%3A+A+comparative+study&rft.jtitle=Mathematical+Modeling+and+Computing&rft.au=Elhammoudy%2C+A.&rft.au=Elyaqouti%2C+M.&rft.au=Arjdal%2C+El.+H.&rft.au=Ben+Hmamou%2C+D.&rft.date=2025&rft.issn=2312-9794&rft.eissn=2415-3788&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.23939%2Fmmc2025.01.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_23939_mmc2025_01_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-9794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-9794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-9794&client=summon