Distributed H\infty Estimation Resilient to Biasing Attacks

We consider the distributed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula> estimation problem with an additional requirement of resilience to biasing attacks. An attack scenario is considered, where an adversary misappropriates some...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on control of network systems Ročník 7; číslo 1; s. 458 - 470
Hlavní autor: Ugrinovskii, Valery
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.03.2020
Témata:
ISSN:2325-5870, 2372-2533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the distributed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula> estimation problem with an additional requirement of resilience to biasing attacks. An attack scenario is considered, where an adversary misappropriates some of the observer nodes and injects biasing signals into observer dynamics. This paper proposes a procedure for the derivation of a distributed observer, which endows each node with an attack detector, which also functions as an attack compensating feedback controller for the main observer. Connecting these controlled observers into a network results in a distributed observer whose nodes produce unbiased robust estimates of the plant. We show that the gains for each controlled observer in the network can be computed in a decentralized fashion, thus reducing vulnerability of the network.
AbstractList We consider the distributed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula> estimation problem with an additional requirement of resilience to biasing attacks. An attack scenario is considered, where an adversary misappropriates some of the observer nodes and injects biasing signals into observer dynamics. This paper proposes a procedure for the derivation of a distributed observer, which endows each node with an attack detector, which also functions as an attack compensating feedback controller for the main observer. Connecting these controlled observers into a network results in a distributed observer whose nodes produce unbiased robust estimates of the plant. We show that the gains for each controlled observer in the network can be computed in a decentralized fashion, thus reducing vulnerability of the network.
Author Ugrinovskii, Valery
Author_xml – sequence: 1
  givenname: Valery
  orcidid: 0000-0002-3234-6204
  surname: Ugrinovskii
  fullname: Ugrinovskii, Valery
  email: v.ougrinovski@adfa.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales Canberra, Canberra, ACT, Australia
BookMark eNp9kL1OwzAQxy1UJErpAyCWvECCz47jWEwlFIpUgQRlQ4oc54wMIUGxO_TtSWjFwMB0d8Pv_h-nZNJ2LRJyDjQBoOpyUzw8J4yCSphiKSh2RKaMSxYzwflk3JmIRS7pCZl7_04pBSaGm0_J1Y3zoXfVNmAdrV5da8MuWvrgPnVwXRs9oXeNwzZEoYuunfaufYsWIWjz4c_IsdWNx_lhzsjL7XJTrOL14919sVjHZnQXZ5pq1NJoyytroB50lbVaSgsCeJ5Bpg2TqDKaV6hSS3kuDGYauOCD55rPCOz_mr7zvkdbfvWDv35XAi1HiXIsoBwLKA8FDIz8wxgXfiKFXrvmX_JiTzpE_FXKZcpypfg3wGhqQQ
CODEN ITCNAY
CitedBy_id crossref_primary_10_1002_rnc_7252
crossref_primary_10_1109_TSMC_2022_3213516
crossref_primary_10_1109_TASE_2025_3549054
crossref_primary_10_1016_j_ins_2020_08_055
crossref_primary_10_1049_iet_cta_2020_0465
crossref_primary_10_1109_TCNS_2022_3229774
crossref_primary_10_1002_rnc_5867
crossref_primary_10_1016_j_automatica_2024_111592
crossref_primary_10_1109_TCNS_2022_3203905
crossref_primary_10_1109_TCNS_2022_3203903
crossref_primary_10_1109_JSYST_2020_3010848
crossref_primary_10_1002_rnc_6055
Cites_doi 10.1016/j.automatica.2017.07.009
10.1109/TAC.2017.2768668
10.1142/S0218127413500764
10.1109/TAC.2018.2798998
10.1109/TAC.2013.2256675
10.1109/CDC.2016.7798671
10.1109/TAC.2015.2416924
10.23919/ACC.2018.8431499
10.1016/j.automatica.2014.10.067
10.1109/MCS.2014.2364710
10.1109/MCS.2014.2364723
10.1016/j.automatica.2018.10.052
10.1016/j.automatica.2009.07.005
10.1016/j.automatica.2018.06.010
10.1109/TAC.2014.2303233
10.1109/CDC.2010.5717544
10.1049/iet-cta.2012.0732
10.1109/CDC.2014.7039911
10.1109/TAC.2013.2266831
10.1109/CDC.2014.7039428
10.1016/j.automatica.2010.10.002
10.1109/TAC.2016.2560766
10.1109/TAC.2018.2828103
10.1109/9.67291
10.1109/CDC.2016.7798537
10.1109/CDC.2007.4434303
10.1109/TAC.2015.2409905
10.1007/978-3-642-00602-9_3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCNS.2019.2924192
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 470
ExternalDocumentID 10_1109_TCNS_2019_2924192
8742899
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP120102152
  funderid: 10.13039/501100000923
– fundername: University of New South Wales
  funderid: 10.13039/501100001773
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c1109-6a0aea7caf3bfc1d8739ffa77f15138616ac27e9608be94f0385ce6a1353870d3
IEDL.DBID RIE
ISSN 2325-5870
IngestDate Tue Nov 18 20:52:09 EST 2025
Sat Nov 29 06:13:47 EST 2025
Wed Aug 27 06:30:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1109-6a0aea7caf3bfc1d8739ffa77f15138616ac27e9608be94f0385ce6a1353870d3
ORCID 0000-0002-3234-6204
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCNS_2019_2924192
ieee_primary_8742899
crossref_citationtrail_10_1109_TCNS_2019_2924192
PublicationCentury 2000
PublicationDate 2020-March
2020-3-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-March
PublicationDecade 2020
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref1
ref17
ref16
ref19
ref18
ref24
ba?ar (ref2) 1995
ref23
ref26
ref25
ref20
zhou (ref29) 1996
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1016/j.automatica.2017.07.009
– ident: ref26
  doi: 10.1109/TAC.2017.2768668
– ident: ref13
  doi: 10.1142/S0218127413500764
– ident: ref12
  doi: 10.1109/TAC.2018.2798998
– ident: ref23
  doi: 10.1109/TAC.2013.2256675
– ident: ref11
  doi: 10.1109/CDC.2016.7798671
– ident: ref5
  doi: 10.1109/TAC.2015.2416924
– ident: ref24
  doi: 10.23919/ACC.2018.8431499
– ident: ref21
  doi: 10.1016/j.automatica.2014.10.067
– ident: ref30
  doi: 10.1109/MCS.2014.2364710
– ident: ref18
  doi: 10.1109/MCS.2014.2364723
– ident: ref6
  doi: 10.1016/j.automatica.2018.10.052
– ident: ref19
  doi: 10.1016/j.automatica.2009.07.005
– ident: ref3
  doi: 10.1016/j.automatica.2018.06.010
– ident: ref7
  doi: 10.1109/TAC.2014.2303233
– ident: ref8
  doi: 10.1109/CDC.2010.5717544
– ident: ref10
  doi: 10.1049/iet-cta.2012.0732
– ident: ref27
  doi: 10.1109/CDC.2014.7039911
– ident: ref17
  doi: 10.1109/TAC.2013.2266831
– ident: ref4
  doi: 10.1109/CDC.2014.7039428
– year: 1996
  ident: ref29
  publication-title: Robust and Optimal Control
– ident: ref22
  doi: 10.1016/j.automatica.2010.10.002
– ident: ref16
  doi: 10.1109/TAC.2016.2560766
– ident: ref9
  doi: 10.1109/TAC.2018.2828103
– ident: ref14
  doi: 10.1109/9.67291
– ident: ref20
  doi: 10.1109/CDC.2016.7798537
– ident: ref15
  doi: 10.1109/CDC.2007.4434303
– ident: ref28
  doi: 10.1109/TAC.2015.2409905
– ident: ref1
  doi: 10.1007/978-3-642-00602-9_3
– year: 1995
  ident: ref2
  publication-title: H-Optimal Control and Related Minimax Design Problems A Dynamic Game Approach
SSID ssj0001255873
Score 2.1374328
Snippet We consider the distributed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula> estimation problem with an additional requirement...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 458
SubjectTerms Distributed algorithms/control
distributed attack detection
estimation theory
resilient estimation and control
robust performance
Title Distributed H\infty Estimation Resilient to Biasing Attacks
URI https://ieeexplore.ieee.org/document/8742899
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_Jri_CIHT2K3rk2bBk9zbuw0RCfsIJQseYHB2GTrBP9789o6dxDBWykpNL8mffm9rx_AjaPGAqNIe_Tv8zgXxkssGk8LztFoX06Mn4tNiOEwGY_lUwXuNrUwiJgnn2GTLvNYvlnoNbnKWonjcY4fVKEqhChqtbb8KVGUiLAMXLZ92Rp1hy-UuyWbgSMZRbDzx_RsaankpqR_8L-XOIT98sjIOsU3PoIKzo9hb6uRYB3uH6n_LUlXoWGDN7dqsk_Wc7u3KExkz7iazqjykWUL9jBV5CBgnSyjAvsTeO33Rt2BV8oieJrm5cXKV6iEVjacWN02btbSWiWEddY7TOJ2rHQg0FGTZIKSW4r9aYwVKVy43WnCU6jNF3M8AyYCExsl3KFFTLiOUIax1Zxzk1D9qx82wP9GLNVlz3CSrpilOXfwZUogpwRyWoLcgNvNI-9Fw4y_BtcJ4M3AEtvz329fwG5AbDfPALuEWrZc4xXs6I9sulpe58vhC2Xqsxs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDryrWZw6exLR5bLIJnqq2VKxBtEIPQtjsTqBQWmlTwX_vThJrDyJ4C2ED2S-7mf3m9QFcaGrM0fOkSf8-kzGuzCBFZUrOGCpphYmycrEJHkXBYBA-VeBqUQuDiHnyGTboMo_lq4mck6usGWgep_nBCqx6jDl2Ua215FHxvIC7ZejStsJm_zZ6oeytsOFomlGEO3-Mz5KaSm5MOtv_e40d2CoPjUar-Mq7UMHxHmwutRKswfUddcAl8SpURvdNr5vs02jr_VuUJhrPOBuOqPbRyCbGzVCQi8BoZRmV2O_Da6fdv-2apTCCKWlepi8sgYJLkbpJKm2lZx2mqeA81fbbDXzbF9LhqMlJkGDIUor-SfQFaVzo_ancA6iOJ2M8BIM7yleC62MLT5j0MHT9VDLGVEAVsJZbB-sbsViWXcNJvGIU5-zBCmMCOSaQ4xLkOlwuHnkvWmb8NbhGAC8Gltge_X77HNa7_cde3LuPHo5hwyHum-eDnUA1m87xFNbkRzacTc_ypfEF5di2Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+H%5Cinfty+Estimation+Resilient+to+Biasing+Attacks&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Ugrinovskii%2C+Valery&rft.date=2020-03-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=7&rft.issue=1&rft.spage=458&rft.epage=470&rft_id=info:doi/10.1109%2FTCNS.2019.2924192&rft.externalDocID=8742899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon