Applying Deep Learning and Machine Learning Algorithms to Estimate PM Concentration Using Satellite Data and Meteorological Data
Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effec...
Saved in:
| Published in: | IEEE journal of selected topics in applied earth observations and remote sensing pp. 1 - 18 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
11.10.2025
|
| Subjects: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effectively act against it. In this study, PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels were estimated using meteorological data and Sentinel-5P air pollution data through machine learning algorithms. The meteorological data utilized included air temperature, relative humidity (RH), wind speed (WS), and Sentinel-5P data. Three Air Quality Monitoring (AQM) stations in Kathmandu, Nepal, were selected as the study area. The effectiveness of several machine learning methods, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), ensemble methods, and hybrid methods, were evaluated. Both RF and XGBoost consistently outperformed SVM and KNN regarding PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> estimation accuracy. Among all the methods studied, XGBoost achieved the highest R 2 ; value of 0.8284 and the lowest RMSE value of 11.0024 using only the Sentinel-5P dataset. The addition of meteorological data further improved the model's performance. After including meteorological data with the Sentinel-5P data, the stacking ensemble demonstrated a maximum R 2 ; score of 0.8324 and a minimum RMSE score of 10.8747. Hence, this study demonstrated that utilizing advanced technologies such as machine learning (ML), deep learning (DL), and novel datasets obtained from satellites can accurately estimate PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels. This approach can significantly aid in monitoring and controlling air pollution by providing precise and timely information on air quality. These findings have significant implications for stakeholders such as policymakers and urban planners, as integrating noble technologies and datasets like machine learning with satellite and meteorological data can lead to more effective air quality management strategies. By availing low-cost solutions for accurate and timely air pollution estimates, this approach can support informed decision-making, reduce public exposure to pollutants, and improve general public health. |
|---|---|
| AbstractList | Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effectively act against it. In this study, PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels were estimated using meteorological data and Sentinel-5P air pollution data through machine learning algorithms. The meteorological data utilized included air temperature, relative humidity (RH), wind speed (WS), and Sentinel-5P data. Three Air Quality Monitoring (AQM) stations in Kathmandu, Nepal, were selected as the study area. The effectiveness of several machine learning methods, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), ensemble methods, and hybrid methods, were evaluated. Both RF and XGBoost consistently outperformed SVM and KNN regarding PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> estimation accuracy. Among all the methods studied, XGBoost achieved the highest R 2 ; value of 0.8284 and the lowest RMSE value of 11.0024 using only the Sentinel-5P dataset. The addition of meteorological data further improved the model's performance. After including meteorological data with the Sentinel-5P data, the stacking ensemble demonstrated a maximum R 2 ; score of 0.8324 and a minimum RMSE score of 10.8747. Hence, this study demonstrated that utilizing advanced technologies such as machine learning (ML), deep learning (DL), and novel datasets obtained from satellites can accurately estimate PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels. This approach can significantly aid in monitoring and controlling air pollution by providing precise and timely information on air quality. These findings have significant implications for stakeholders such as policymakers and urban planners, as integrating noble technologies and datasets like machine learning with satellite and meteorological data can lead to more effective air quality management strategies. By availing low-cost solutions for accurate and timely air pollution estimates, this approach can support informed decision-making, reduce public exposure to pollutants, and improve general public health. |
| Author | Devkota, Bidur Devkota, Bhawana Poudel Horanont, Teerayut Lamichhane, Badri Raj Thapa, Ishwor Dhakal, Raju |
| Author_xml | – sequence: 1 givenname: Ishwor surname: Thapa fullname: Thapa, Ishwor email: ishwort92@gmail.com – sequence: 2 givenname: Bidur orcidid: 0000-0001-5901-3971 surname: Devkota fullname: Devkota, Bidur email: bidur@gces.edu.np – sequence: 3 givenname: Badri Raj orcidid: 0000-0001-5873-6254 surname: Lamichhane fullname: Lamichhane, Badri Raj email: d6622300231@g.siit.tu.ac.th – sequence: 4 givenname: Bhawana Poudel surname: Devkota fullname: Devkota, Bhawana Poudel email: poudelb2@my.erau.edu – sequence: 5 givenname: Raju orcidid: 0009-0008-0492-2658 surname: Dhakal fullname: Dhakal, Raju email: dhakalr@my.erau.edu – sequence: 6 givenname: Teerayut orcidid: 0000-0002-3452-8845 surname: Horanont fullname: Horanont, Teerayut email: teerayut@siit.tu.ac.th |
| BookMark | eNpFkMtuwjAQRa2KSgXaL2gX_oFQP2InWUZAXwK1KrCOHGcCroKNHG_Y9dObNEisRjNz79XMmaCRdRYQeqRkRinJnj822_x7M2OEiRmXjMQkvUFjRgWNqOBihMY041lEYxLfoUnb_hAiWZLxMfrNT6fmbOweLwBOeAXK275TtsJrpQ_GwnWYN3vnTTgcWxwcXrbBHFUA_LXGc2c12OBVMM7iXdurN92uaUwnWKighkQI4Lxr3N5o1fzP79FtrZoWHi51inYvy-38LVp9vr7P81Wkuw_TqIqlSDXXogRCE1HxMk0ymaZlwkqtJacgoCaxzmqpNAhdpYzLWjLNFS-BSj5FfMjV3rWth7o4-e58fy4oKXqIxQCx6CEWF4id62lwGQC4Omgn4ozwP9o3chA |
| CODEN | IJSTHZ |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSTARS.2025.3620408 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 18 |
| ExternalDocumentID | 10_1109_JSTARS_2025_3620408 11202320 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD M43 |
| ID | FETCH-LOGICAL-c1108-d4658c3c5be0175d3b879688b72bcc631e5ef04c9f6ace5cd8236f62c3a3be163 |
| IEDL.DBID | RIE |
| ISSN | 1939-1404 |
| IngestDate | Sat Nov 29 07:12:43 EST 2025 Sat Oct 25 03:10:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1108-d4658c3c5be0175d3b879688b72bcc631e5ef04c9f6ace5cd8236f62c3a3be163 |
| ORCID | 0000-0002-3452-8845 0000-0001-5873-6254 0009-0008-0492-2658 0000-0001-5901-3971 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/11202320 |
| PageCount | 18 |
| ParticipantIDs | ieee_primary_11202320 crossref_primary_10_1109_JSTARS_2025_3620408 |
| PublicationCentury | 2000 |
| PublicationDate | 20251011 |
| PublicationDateYYYYMMDD | 2025-10-11 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251011 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0062793 |
| Score | 2.3998663 |
| SecondaryResourceType | online_first |
| Snippet | Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health... |
| SourceID | crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Air pollution Atmospheric modeling Deep Learning Google Earth Engine Machine Learning MODIS Monitoring PM<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> _{2.5}</tex-math> </inline-formula> Predictive models Public healthcare Remote sensing Satellites Sentinel-5P Support vector machines |
| Title | Applying Deep Learning and Machine Learning Algorithms to Estimate PM Concentration Using Satellite Data and Meteorological Data |
| URI | https://ieeexplore.ieee.org/document/11202320 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagAomFZxHlUXlgJG0TJ3Y8Vm2BpVVFQeoWxc6lVIKkalMkNn46ZydVuzCwRSfHiu5s33fx3XeE3HP0A4qpwFFaaMdHD-nESkqHKQwWQnRh0k9tswkxGoXTqRxXxeq2FgYAbPIZtMyjvctPcr02v8raiA1wag8j9H0heFmstTl2uScswy4CEukYzpiKYsjtyDau8e7LBINBL2gxQ8BumknuuKGdvirWrTye_PODTslxhR9ptzT4GdmD7JwcPtn-vN8X5MegSlO5RPsAC1qxp85onCV0aPMmYSvsfszy5bx4_1zRIqcD3OwIX4GOh7RnihmzilGX2rQCOokteScO6MdFXM6IiDtfbo5PK6-Tt8fBa-_ZqZosONpUADiJjxhEMx0owM0ZJEyFQvIwVMJTWnPmQgBpx9cy5bEGQyXgMZ5yT7OYKUA0d0lqWZ7BFaFKMFe7CCgZJL7AuM_jKgGWcu11YgDZIA8bnUeLkksjsjFIR0aliSJjoqgyUYPUjca3QytlX_8hvyFH5nXjWFz3ltSK5RruyIH-KuarZdMG2027ZH4BHpS-CA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QD8GF5xDjmQNHurVJmzbHaQ-GYBNiQ-JWNakLSNCi0SFx46fjpJ3gwoFbZUVWZSfx59b-TMi5wDiguAocpUPt-BghnURJ6XCFyUKEIUz6mR02EY7H0cODvK2b1W0vDADY4jNomUf7Lz8t9Nx8KmsjNkDVDDP0lcD3mVu1ay0uXsFCy7GLkEQ6hjWmJhnyXNnGXd65m2A6yIIWNxTsZpzkr0D0a7KKDSyDrX--0jbZrBEk7VQu3yFLkO-StUs7ofdzj3wZXGl6l2gP4I3W_KmPNMlTOrKVk_Aj7Lw8FrPn8un1nZYF7eNxRwAL9HZEu6adMa85daktLKCTxNJ34oJeUiaVRsTcxWxxgVp5g9wP-tPu0KnHLDja9AA4qY8oRHMdKMDjGaRcRaEUUaRCprQW3IMAMtfXMhOJBkMmwLjIBNM84QoQz-2T5bzI4YBQFXJPewgpOaR-iJkfEyoFngnN3ARANsnFwubxW8WmEdssxJVx5aLYuCiuXdQkDWPxn6W1sQ__kJ-R9eF0dBPfXI2vj8iGUWXCjOcdk-VyNocTsqo_yuf32andON-u98Ba |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Deep+Learning+and+Machine+Learning+Algorithms+to+Estimate+PM%24_%7B2.5%7D%24+Concentration+Using+Satellite+Data+and+Meteorological+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Thapa%2C+Ishwor&rft.au=Devkota%2C+Bidur&rft.au=Lamichhane%2C+Badri+Raj&rft.au=Devkota%2C+Bhawana+Poudel&rft.date=2025-10-11&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FJSTARS.2025.3620408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3620408 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |