Applying Deep Learning and Machine Learning Algorithms to Estimate PM Concentration Using Satellite Data and Meteorological Data

Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing pp. 1 - 18
Main Authors: Thapa, Ishwor, Devkota, Bidur, Lamichhane, Badri Raj, Devkota, Bhawana Poudel, Dhakal, Raju, Horanont, Teerayut
Format: Journal Article
Language:English
Published: IEEE 11.10.2025
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effectively act against it. In this study, PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels were estimated using meteorological data and Sentinel-5P air pollution data through machine learning algorithms. The meteorological data utilized included air temperature, relative humidity (RH), wind speed (WS), and Sentinel-5P data. Three Air Quality Monitoring (AQM) stations in Kathmandu, Nepal, were selected as the study area. The effectiveness of several machine learning methods, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), ensemble methods, and hybrid methods, were evaluated. Both RF and XGBoost consistently outperformed SVM and KNN regarding PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> estimation accuracy. Among all the methods studied, XGBoost achieved the highest R 2 ; value of 0.8284 and the lowest RMSE value of 11.0024 using only the Sentinel-5P dataset. The addition of meteorological data further improved the model's performance. After including meteorological data with the Sentinel-5P data, the stacking ensemble demonstrated a maximum R 2 ; score of 0.8324 and a minimum RMSE score of 10.8747. Hence, this study demonstrated that utilizing advanced technologies such as machine learning (ML), deep learning (DL), and novel datasets obtained from satellites can accurately estimate PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels. This approach can significantly aid in monitoring and controlling air pollution by providing precise and timely information on air quality. These findings have significant implications for stakeholders such as policymakers and urban planners, as integrating noble technologies and datasets like machine learning with satellite and meteorological data can lead to more effective air quality management strategies. By availing low-cost solutions for accurate and timely air pollution estimates, this approach can support informed decision-making, reduce public exposure to pollutants, and improve general public health.
AbstractList Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health risks and environmental challenges worldwide. Therefore, it is essential to monitor air pollution to effectively act against it. In this study, PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels were estimated using meteorological data and Sentinel-5P air pollution data through machine learning algorithms. The meteorological data utilized included air temperature, relative humidity (RH), wind speed (WS), and Sentinel-5P data. Three Air Quality Monitoring (AQM) stations in Kathmandu, Nepal, were selected as the study area. The effectiveness of several machine learning methods, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), ensemble methods, and hybrid methods, were evaluated. Both RF and XGBoost consistently outperformed SVM and KNN regarding PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> estimation accuracy. Among all the methods studied, XGBoost achieved the highest R 2 ; value of 0.8284 and the lowest RMSE value of 11.0024 using only the Sentinel-5P dataset. The addition of meteorological data further improved the model's performance. After including meteorological data with the Sentinel-5P data, the stacking ensemble demonstrated a maximum R 2 ; score of 0.8324 and a minimum RMSE score of 10.8747. Hence, this study demonstrated that utilizing advanced technologies such as machine learning (ML), deep learning (DL), and novel datasets obtained from satellites can accurately estimate PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula> levels. This approach can significantly aid in monitoring and controlling air pollution by providing precise and timely information on air quality. These findings have significant implications for stakeholders such as policymakers and urban planners, as integrating noble technologies and datasets like machine learning with satellite and meteorological data can lead to more effective air quality management strategies. By availing low-cost solutions for accurate and timely air pollution estimates, this approach can support informed decision-making, reduce public exposure to pollutants, and improve general public health.
Author Devkota, Bidur
Devkota, Bhawana Poudel
Horanont, Teerayut
Lamichhane, Badri Raj
Thapa, Ishwor
Dhakal, Raju
Author_xml – sequence: 1
  givenname: Ishwor
  surname: Thapa
  fullname: Thapa, Ishwor
  email: ishwort92@gmail.com
– sequence: 2
  givenname: Bidur
  orcidid: 0000-0001-5901-3971
  surname: Devkota
  fullname: Devkota, Bidur
  email: bidur@gces.edu.np
– sequence: 3
  givenname: Badri Raj
  orcidid: 0000-0001-5873-6254
  surname: Lamichhane
  fullname: Lamichhane, Badri Raj
  email: d6622300231@g.siit.tu.ac.th
– sequence: 4
  givenname: Bhawana Poudel
  surname: Devkota
  fullname: Devkota, Bhawana Poudel
  email: poudelb2@my.erau.edu
– sequence: 5
  givenname: Raju
  orcidid: 0009-0008-0492-2658
  surname: Dhakal
  fullname: Dhakal, Raju
  email: dhakalr@my.erau.edu
– sequence: 6
  givenname: Teerayut
  orcidid: 0000-0002-3452-8845
  surname: Horanont
  fullname: Horanont, Teerayut
  email: teerayut@siit.tu.ac.th
BookMark eNpFkMtuwjAQRa2KSgXaL2gX_oFQP2InWUZAXwK1KrCOHGcCroKNHG_Y9dObNEisRjNz79XMmaCRdRYQeqRkRinJnj822_x7M2OEiRmXjMQkvUFjRgWNqOBihMY041lEYxLfoUnb_hAiWZLxMfrNT6fmbOweLwBOeAXK275TtsJrpQ_GwnWYN3vnTTgcWxwcXrbBHFUA_LXGc2c12OBVMM7iXdurN92uaUwnWKighkQI4Lxr3N5o1fzP79FtrZoWHi51inYvy-38LVp9vr7P81Wkuw_TqIqlSDXXogRCE1HxMk0ymaZlwkqtJacgoCaxzmqpNAhdpYzLWjLNFS-BSj5FfMjV3rWth7o4-e58fy4oKXqIxQCx6CEWF4id62lwGQC4Omgn4ozwP9o3chA
CODEN IJSTHZ
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSTARS.2025.3620408
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 18
ExternalDocumentID 10_1109_JSTARS_2025_3620408
11202320
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
M43
ID FETCH-LOGICAL-c1108-d4658c3c5be0175d3b879688b72bcc631e5ef04c9f6ace5cd8236f62c3a3be163
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Sat Nov 29 07:12:43 EST 2025
Sat Oct 25 03:10:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1108-d4658c3c5be0175d3b879688b72bcc631e5ef04c9f6ace5cd8236f62c3a3be163
ORCID 0000-0002-3452-8845
0000-0001-5873-6254
0009-0008-0492-2658
0000-0001-5901-3971
OpenAccessLink https://ieeexplore.ieee.org/document/11202320
PageCount 18
ParticipantIDs ieee_primary_11202320
crossref_primary_10_1109_JSTARS_2025_3620408
PublicationCentury 2000
PublicationDate 20251011
PublicationDateYYYYMMDD 2025-10-11
PublicationDate_xml – month: 10
  year: 2025
  text: 20251011
  day: 11
PublicationDecade 2020
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0062793
Score 2.3998663
SecondaryResourceType online_first
Snippet Air pollution, particularly fine particulate matter (PM<inline-formula><tex-math notation="LaTeX">_{2.5}</tex-math></inline-formula>), poses significant health...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Air pollution
Atmospheric modeling
Deep Learning
Google Earth Engine
Machine Learning
MODIS
Monitoring
PM<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> _{2.5}</tex-math> </inline-formula>
Predictive models
Public healthcare
Remote sensing
Satellites
Sentinel-5P
Support vector machines
Title Applying Deep Learning and Machine Learning Algorithms to Estimate PM Concentration Using Satellite Data and Meteorological Data
URI https://ieeexplore.ieee.org/document/11202320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagAomFZxHlUXlgJG0TJ3Y8Vm2BpVVFQeoWxc6lVIKkalMkNn46ZydVuzCwRSfHiu5s33fx3XeE3HP0A4qpwFFaaMdHD-nESkqHKQwWQnRh0k9tswkxGoXTqRxXxeq2FgYAbPIZtMyjvctPcr02v8raiA1wag8j9H0heFmstTl2uScswy4CEukYzpiKYsjtyDau8e7LBINBL2gxQ8BumknuuKGdvirWrTye_PODTslxhR9ptzT4GdmD7JwcPtn-vN8X5MegSlO5RPsAC1qxp85onCV0aPMmYSvsfszy5bx4_1zRIqcD3OwIX4GOh7RnihmzilGX2rQCOokteScO6MdFXM6IiDtfbo5PK6-Tt8fBa-_ZqZosONpUADiJjxhEMx0owM0ZJEyFQvIwVMJTWnPmQgBpx9cy5bEGQyXgMZ5yT7OYKUA0d0lqWZ7BFaFKMFe7CCgZJL7AuM_jKgGWcu11YgDZIA8bnUeLkksjsjFIR0aliSJjoqgyUYPUjca3QytlX_8hvyFH5nXjWFz3ltSK5RruyIH-KuarZdMG2027ZH4BHpS-CA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QD8GF5xDjmQNHurVJmzbHaQ-GYBNiQ-JWNakLSNCi0SFx46fjpJ3gwoFbZUVWZSfx59b-TMi5wDiguAocpUPt-BghnURJ6XCFyUKEIUz6mR02EY7H0cODvK2b1W0vDADY4jNomUf7Lz8t9Nx8KmsjNkDVDDP0lcD3mVu1ay0uXsFCy7GLkEQ6hjWmJhnyXNnGXd65m2A6yIIWNxTsZpzkr0D0a7KKDSyDrX--0jbZrBEk7VQu3yFLkO-StUs7ofdzj3wZXGl6l2gP4I3W_KmPNMlTOrKVk_Aj7Lw8FrPn8un1nZYF7eNxRwAL9HZEu6adMa85daktLKCTxNJ34oJeUiaVRsTcxWxxgVp5g9wP-tPu0KnHLDja9AA4qY8oRHMdKMDjGaRcRaEUUaRCprQW3IMAMtfXMhOJBkMmwLjIBNM84QoQz-2T5bzI4YBQFXJPewgpOaR-iJkfEyoFngnN3ARANsnFwubxW8WmEdssxJVx5aLYuCiuXdQkDWPxn6W1sQ__kJ-R9eF0dBPfXI2vj8iGUWXCjOcdk-VyNocTsqo_yuf32andON-u98Ba
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+Deep+Learning+and+Machine+Learning+Algorithms+to+Estimate+PM%24_%7B2.5%7D%24+Concentration+Using+Satellite+Data+and+Meteorological+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Thapa%2C+Ishwor&rft.au=Devkota%2C+Bidur&rft.au=Lamichhane%2C+Badri+Raj&rft.au=Devkota%2C+Bhawana+Poudel&rft.date=2025-10-11&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FJSTARS.2025.3620408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3620408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon