Thermal modeling of automated fiber placement (AFP) of thermoplastic composites using plug flow simulation
Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature f...
Gespeichert in:
| Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Jg. 201; S. 109385 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.02.2026
|
| Schlagworte: | |
| ISSN: | 1359-835X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature field during AFP laydown and its dependence on various process parameters. This study presents an experimentally-validated heat transfer simulation model of AFP manufacturing of a thermoplastic composite tow. The precise tow geometry and trajectory, as well as its thermal interactions with the roller and substrate are modeled. In order to simulate tow motion past the heat source, the tow and substrate are treated as moving media with distinct plug flow velocities passing through a stationary experimentally measured irradiance field. The governing equations are derived from steady-state advection–diffusion principles, incorporating temperature-dependent anisotropic thermophysical properties. Model predictions are shown to agree well with experimental measurements carried out under simplified process conditions. Lamp power and laydown speed are both shown to impact the temperature history of the tow. Thermal diffusion into the roller is found to significantly influence tow temperature history. Heating of the roller is proposed as a mechanism for controlling how the tow temperature evolves over time. This novel simulation technique captures several realistic considerations in AFP manufacturing that were not fully accounted for by previously reported simulation models. By predicting the temperature field in realistic settings, this work offers a robust framework for predicting thermal performance, and, hence, material properties of parts printed by AFP and other advanced manufacturing techniques. |
|---|---|
| AbstractList | Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature field during AFP laydown and its dependence on various process parameters. This study presents an experimentally-validated heat transfer simulation model of AFP manufacturing of a thermoplastic composite tow. The precise tow geometry and trajectory, as well as its thermal interactions with the roller and substrate are modeled. In order to simulate tow motion past the heat source, the tow and substrate are treated as moving media with distinct plug flow velocities passing through a stationary experimentally measured irradiance field. The governing equations are derived from steady-state advection–diffusion principles, incorporating temperature-dependent anisotropic thermophysical properties. Model predictions are shown to agree well with experimental measurements carried out under simplified process conditions. Lamp power and laydown speed are both shown to impact the temperature history of the tow. Thermal diffusion into the roller is found to significantly influence tow temperature history. Heating of the roller is proposed as a mechanism for controlling how the tow temperature evolves over time. This novel simulation technique captures several realistic considerations in AFP manufacturing that were not fully accounted for by previously reported simulation models. By predicting the temperature field in realistic settings, this work offers a robust framework for predicting thermal performance, and, hence, material properties of parts printed by AFP and other advanced manufacturing techniques. |
| ArticleNumber | 109385 |
| Author | Davidson, Paul Smeets, Mark Amgai, Sandesh Jain, Ankur Ganesan, Vishnu V. |
| Author_xml | – sequence: 1 givenname: Vishnu V. orcidid: 0009-0003-0597-5798 surname: Ganesan fullname: Ganesan, Vishnu V. – sequence: 2 givenname: Mark surname: Smeets fullname: Smeets, Mark – sequence: 3 givenname: Sandesh orcidid: 0009-0003-2221-6582 surname: Amgai fullname: Amgai, Sandesh – sequence: 4 givenname: Paul orcidid: 0000-0001-7104-4252 surname: Davidson fullname: Davidson, Paul – sequence: 5 givenname: Ankur surname: Jain fullname: Jain, Ankur email: jaina@uta.edu |
| BookMark | eNqNkDFPwzAQhT0UibbwH8wGQ4odx6kzVhUFpEowdGCzHPtcHCVxZTsg_j2JigQj00l39969-xZo1vseELqhZEUJLe-blfbdyUeXIKpVTnI-9ism-AzNKeNVJhh_u0SLGBtCCGMVnaPm8A6hUy3uvIHW9UfsLVZD8p1KYLB1NQR8apWGDvqEbze717tpJU0yPw5ichr_3sVDnExO7XDEtvWfOLpuaFVyvr9CF1a1Ea5_6hIddg-H7VO2f3l83m72maaU8KwkRhSFgcKa2lhe09pAKXLO15RrzawRwrJqXeZUqHKtOaec5OM7peBFrSxboupsq4OPMYCVp-A6Fb4kJXLiJBv5h5OcOMkzp1G7PWthzPfhIMioHfQajAugkzTe_cPlGzXJfVc |
| Cites_doi | 10.1016/j.compositesa.2016.05.034 10.1007/s00170-015-7576-2 10.1016/j.compositesa.2014.10.004 10.1007/s00170-020-05876-9 10.1016/j.compositesa.2025.109280 10.1016/j.compositesa.2021.106381 10.1016/j.compositesa.2023.107577 10.1016/j.compstruct.2021.114223 10.21741/9781644903599-67 10.3390/app11167743 10.1016/j.compositesa.2024.108010 10.1016/j.compositesb.2021.109002 10.1016/j.procir.2017.03.220 10.1177/0892705720982363 10.1177/08927057231158537 10.21741/9781644903131-256 10.1016/j.compositesa.2022.107179 10.1002/pc.28941 10.1016/B978-0-12-818411-0.00009-4 10.1007/s10845-021-01774-3 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compositesa.2025.109385 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compositesa_2025_109385 S1359835X25006797 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9DU AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ADBBV ADEZE ADIYS ADMUD ADNMO AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K TN5 ZMT ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c1105-60d844de4fdbdf5b1bde68255715cc3fd88f3976218a67c5515020036854baf3 |
| ISSN | 1359-835X |
| IngestDate | Thu Nov 27 01:08:54 EST 2025 Sat Nov 29 17:10:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Automated fiber placement Numerical simulations Temperature field Advanced manufacturing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1105-60d844de4fdbdf5b1bde68255715cc3fd88f3976218a67c5515020036854baf3 |
| ORCID | 0009-0003-2221-6582 0000-0001-7104-4252 0009-0003-0597-5798 |
| ParticipantIDs | crossref_primary_10_1016_j_compositesa_2025_109385 elsevier_sciencedirect_doi_10_1016_j_compositesa_2025_109385 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites. Part A, Applied science and manufacturing |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gibson, Rosen, Stucker (b0010) 2016; 83 107179, 2022, DOI: 10.1016/j.compositesa.2022.107179. Ingrassia, Nigrelli, Ricotta, Tartamella (b0020) 2016 Brasington, Sacco, Halbritter, Wehbe, Harik (b0015) 2021; 6 Lichtinger, Hörmann, Stelzl, Hinterhölzl (b0060) 2015; 68 Danezis, Williams, Edwards, Skordos (b0085) 2021; 145 ANSYS Fluent User Manual, available at https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2024/01/2058672.pdf, accessed Aug 18, 2025. Danezis, Williams, Skordos (b0080) 2023; 36 Oromiehie, Gain, Prusty (b0040) 2021; 272 Suemasu, Aoki, Hoshi, Tateishi, Sugimoto, Nakamura (b0070) 2023; 172 Meister, Wermes, Stüve, Groves (b0030) 2021; 32 Zacherl, Shadmehri, Rother (b0095) 2021; 36 pp.618-627, 2025 Tavkari, Ganesan, Amgai, Jain, Davidson (b0050) 2024; 183 Storti, Le Reun, Le Corre (b0110) 2024; 41 Smeets, Ganesan, Tashakori, Amgai, Jain, Davidson (b0115) 2026; 200 Storti, B., Reun, A., Corre, S., ‘3D multi-scale thermal modeling of AFP in-situ consolidation processes for thermoplastic composites using an Eulerian FEM approach,’ pp. 1-31, 2021. DOI: 10.1016/B978-0-12-818411-0.00009-4. Juarez, Gregory (b0055) 2021; 220 Stavropoulos, Foteinopoulos, Papapacharalampopoulos (b0025) 2021; 11 . Le Reun, Le Louët, Le Corre, Sobotka (b0105) 2024; 179 Zhang, Li, Li (b0075) 2024; 45 Stokes-Griffin, Compston (b0090) 2016; 88 Hajiloo, Xie, Hoa, Khan (b0100) 2014; 21 Donough, M.J., Shafaq, St John, N.A., Philips, A.W., Prusty, B.G., ‘Process modelling of In-situ consolidated thermoplastic composite by automated fibre placement – A review,’ Schmidt, Denkena, Hocke, Völtzer (b0065) 2017; 66 Zhang, X., Liou, F., ‘Introduction to Additive Manufacturing,’ in Baho, Ausias, Grohens, Férec (b0035) 2020; 110 Meister (10.1016/j.compositesa.2025.109385_b0030) 2021; 32 Stokes-Griffin (10.1016/j.compositesa.2025.109385_b0090) 2016; 88 10.1016/j.compositesa.2025.109385_b0045 10.1016/j.compositesa.2025.109385_b0120 Schmidt (10.1016/j.compositesa.2025.109385_b0065) 2017; 66 Le Reun (10.1016/j.compositesa.2025.109385_b0105) 2024; 179 Tavkari (10.1016/j.compositesa.2025.109385_b0050) 2024; 183 Baho (10.1016/j.compositesa.2025.109385_b0035) 2020; 110 Suemasu (10.1016/j.compositesa.2025.109385_b0070) 2023; 172 Oromiehie (10.1016/j.compositesa.2025.109385_b0040) 2021; 272 Juarez (10.1016/j.compositesa.2025.109385_b0055) 2021; 220 Gibson (10.1016/j.compositesa.2025.109385_b0010) 2016; 83 10.1016/j.compositesa.2025.109385_b0005 Stavropoulos (10.1016/j.compositesa.2025.109385_b0025) 2021; 11 10.1016/j.compositesa.2025.109385_b0125 Zhang (10.1016/j.compositesa.2025.109385_b0075) 2024; 45 Ingrassia (10.1016/j.compositesa.2025.109385_b0020) 2016 Brasington (10.1016/j.compositesa.2025.109385_b0015) 2021; 6 Storti (10.1016/j.compositesa.2025.109385_b0110) 2024; 41 Danezis (10.1016/j.compositesa.2025.109385_b0080) 2023; 36 Danezis (10.1016/j.compositesa.2025.109385_b0085) 2021; 145 Hajiloo (10.1016/j.compositesa.2025.109385_b0100) 2014; 21 Smeets (10.1016/j.compositesa.2025.109385_b0115) 2026; 200 Zacherl (10.1016/j.compositesa.2025.109385_b0095) 2021; 36 Lichtinger (10.1016/j.compositesa.2025.109385_b0060) 2015; 68 |
| References_xml | – volume: 36 start-page: 73 year: 2021 end-page: 95 ident: b0095 article-title: Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites publication-title: J Thermoplastic Composite Mater – volume: 200 year: 2026 ident: b0115 article-title: Irradiance mapping and thermal evolution in Xenon-arc flash heated thermoplastic composites: Experimental and numerical study publication-title: Composites Part A: Appl. Sci. Manufact. – reference: , 107179, 2022, DOI: 10.1016/j.compositesa.2022.107179. – volume: 66 start-page: 68 year: 2017 end-page: 73 ident: b0065 article-title: Influence of AFP process parameters on the temperature distribution used for thermal in-process monitoring publication-title: Procedia CIRP – volume: 6 year: 2021 ident: b0015 article-title: Automated fiber placement: A review of history, current technologies, and future paths forward publication-title: Composites Part C: Open Access – volume: 36 start-page: 4457 year: 2023 end-page: 4481 ident: b0080 article-title: One-dimensional approximation of heat transfer in flashlamp-assisted automated tape placement publication-title: J Thermoplastic Composite Mater – reference: ANSYS Fluent User Manual, available at https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2024/01/2058672.pdf, accessed Aug 18, 2025. – volume: 145 year: 2021 ident: b0085 article-title: Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites publication-title: Composites Part A: Appl Sci Manufact – volume: 110 start-page: 2105 year: 2020 end-page: 2117 ident: b0035 article-title: Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters publication-title: Int J Adv Manufac Technol – volume: 68 start-page: 387 year: 2015 end-page: 397 ident: b0060 article-title: The effects of heat input on adjacent paths during automated fibre placement publication-title: Composites Part A: Appl Sci Manufact – reference: , pp.618-627, 2025, – volume: 220 year: 2021 ident: b0055 article-title: In situ thermal inspection of automated fiber placement for manufacturing induced defects publication-title: Compos B Eng – reference: Storti, B., Reun, A., Corre, S., ‘3D multi-scale thermal modeling of AFP in-situ consolidation processes for thermoplastic composites using an Eulerian FEM approach,’ – volume: 88 start-page: 190 year: 2016 end-page: 197 ident: b0090 article-title: An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK publication-title: Composites Part A: Appl Sci Manufact – volume: 11 start-page: 7743 year: 2021 ident: b0025 article-title: On the impact of additive manufacturing processes complexity on modelling publication-title: Appl Sci – volume: 21 start-page: 427 year: 2014 end-page: 434 ident: b0100 article-title: Thermal control design for an automated fiber placement machine publication-title: Sci Eng Composite Mater – volume: 172 year: 2023 ident: b0070 article-title: Thermal analysis for in-situ consolidation in the AFP process publication-title: Composites Part A: Appl Sci Manufact – volume: 179 year: 2024 ident: b0105 article-title: Numerical simulation at the micro-scale for the heat transfer modelling in the thermoplastic composites laser-assisted AFP process publication-title: Composites Part A: Appl Sci Manufact – start-page: 261 year: 2016 end-page: 270 ident: b0020 article-title: Process parameters influence in additive manufacturing publication-title: Adv Mech Des Eng Manufac – volume: 45 start-page: 16929 year: 2024 end-page: 16944 ident: b0075 article-title: Efficient 3D temperature field prediction and visualization for AFP process analysis in composite structures publication-title: Polym Compos – reference: Donough, M.J., Shafaq, St John, N.A., Philips, A.W., Prusty, B.G., ‘Process modelling of In-situ consolidated thermoplastic composite by automated fibre placement – A review,’ – volume: 83 start-page: 389 year: 2016 end-page: 405 ident: b0010 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int J Adv Manuf Technol – reference: . – reference: , pp. 1-31, 2021. DOI: 10.1016/B978-0-12-818411-0.00009-4. – volume: 272 year: 2021 ident: b0040 article-title: Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites publication-title: Composite Struct – volume: 32 start-page: 2099 year: 2021 end-page: 2119 ident: b0030 article-title: Review of image segmentation techniques for layup defect detection in the automated fiber placement process: a comprehensive study to improve AFP inspection publication-title: J Intelligent Manufact – reference: Zhang, X., Liou, F., ‘Introduction to Additive Manufacturing,’ in: – volume: 183 year: 2024 ident: b0050 article-title: Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites publication-title: Composites Part A: Appl Sci Manufact – volume: 41 start-page: 2329 year: 2024 end-page: 2338 ident: b0110 article-title: Accurate 3D modeling of laser-matter interaction in the AFP process by a conductive-radiative FEM approach publication-title: Mater Res Proc – volume: 88 start-page: 190 year: 2016 ident: 10.1016/j.compositesa.2025.109385_b0090 article-title: An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK publication-title: Composites Part A: Appl Sci Manufact doi: 10.1016/j.compositesa.2016.05.034 – volume: 21 start-page: 427 year: 2014 ident: 10.1016/j.compositesa.2025.109385_b0100 article-title: Thermal control design for an automated fiber placement machine publication-title: Sci Eng Composite Mater – ident: 10.1016/j.compositesa.2025.109385_b0125 – volume: 83 start-page: 389 year: 2016 ident: 10.1016/j.compositesa.2025.109385_b0010 article-title: Additive manufacturing methods and modelling approaches: a critical review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-015-7576-2 – volume: 68 start-page: 387 year: 2015 ident: 10.1016/j.compositesa.2025.109385_b0060 article-title: The effects of heat input on adjacent paths during automated fibre placement publication-title: Composites Part A: Appl Sci Manufact doi: 10.1016/j.compositesa.2014.10.004 – volume: 110 start-page: 2105 year: 2020 ident: 10.1016/j.compositesa.2025.109385_b0035 article-title: Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters publication-title: Int J Adv Manufac Technol doi: 10.1007/s00170-020-05876-9 – volume: 200 year: 2026 ident: 10.1016/j.compositesa.2025.109385_b0115 article-title: Irradiance mapping and thermal evolution in Xenon-arc flash heated thermoplastic composites: Experimental and numerical study publication-title: Composites Part A: Appl. Sci. Manufact. doi: 10.1016/j.compositesa.2025.109280 – volume: 183 year: 2024 ident: 10.1016/j.compositesa.2025.109385_b0050 article-title: Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites publication-title: Composites Part A: Appl Sci Manufact – volume: 145 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0085 article-title: Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites publication-title: Composites Part A: Appl Sci Manufact doi: 10.1016/j.compositesa.2021.106381 – volume: 172 year: 2023 ident: 10.1016/j.compositesa.2025.109385_b0070 article-title: Thermal analysis for in-situ consolidation in the AFP process publication-title: Composites Part A: Appl Sci Manufact doi: 10.1016/j.compositesa.2023.107577 – volume: 272 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0040 article-title: Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites publication-title: Composite Struct doi: 10.1016/j.compstruct.2021.114223 – ident: 10.1016/j.compositesa.2025.109385_b0120 doi: 10.21741/9781644903599-67 – volume: 11 start-page: 7743 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0025 article-title: On the impact of additive manufacturing processes complexity on modelling publication-title: Appl Sci doi: 10.3390/app11167743 – volume: 179 year: 2024 ident: 10.1016/j.compositesa.2025.109385_b0105 article-title: Numerical simulation at the micro-scale for the heat transfer modelling in the thermoplastic composites laser-assisted AFP process publication-title: Composites Part A: Appl Sci Manufact doi: 10.1016/j.compositesa.2024.108010 – volume: 6 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0015 article-title: Automated fiber placement: A review of history, current technologies, and future paths forward publication-title: Composites Part C: Open Access – volume: 220 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0055 article-title: In situ thermal inspection of automated fiber placement for manufacturing induced defects publication-title: Compos B Eng doi: 10.1016/j.compositesb.2021.109002 – volume: 66 start-page: 68 year: 2017 ident: 10.1016/j.compositesa.2025.109385_b0065 article-title: Influence of AFP process parameters on the temperature distribution used for thermal in-process monitoring publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.220 – volume: 36 start-page: 73 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0095 article-title: Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites publication-title: J Thermoplastic Composite Mater doi: 10.1177/0892705720982363 – volume: 36 start-page: 4457 year: 2023 ident: 10.1016/j.compositesa.2025.109385_b0080 article-title: One-dimensional approximation of heat transfer in flashlamp-assisted automated tape placement publication-title: J Thermoplastic Composite Mater doi: 10.1177/08927057231158537 – volume: 41 start-page: 2329 year: 2024 ident: 10.1016/j.compositesa.2025.109385_b0110 article-title: Accurate 3D modeling of laser-matter interaction in the AFP process by a conductive-radiative FEM approach publication-title: Mater Res Proc doi: 10.21741/9781644903131-256 – ident: 10.1016/j.compositesa.2025.109385_b0045 doi: 10.1016/j.compositesa.2022.107179 – volume: 45 start-page: 16929 year: 2024 ident: 10.1016/j.compositesa.2025.109385_b0075 article-title: Efficient 3D temperature field prediction and visualization for AFP process analysis in composite structures publication-title: Polym Compos doi: 10.1002/pc.28941 – ident: 10.1016/j.compositesa.2025.109385_b0005 doi: 10.1016/B978-0-12-818411-0.00009-4 – volume: 32 start-page: 2099 year: 2021 ident: 10.1016/j.compositesa.2025.109385_b0030 article-title: Review of image segmentation techniques for layup defect detection in the automated fiber placement process: a comprehensive study to improve AFP inspection publication-title: J Intelligent Manufact doi: 10.1007/s10845-021-01774-3 – start-page: 261 year: 2016 ident: 10.1016/j.compositesa.2025.109385_b0020 article-title: Process parameters influence in additive manufacturing publication-title: Adv Mech Des Eng Manufac |
| SSID | ssj0003391 |
| Score | 2.4816773 |
| Snippet | Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109385 |
| SubjectTerms | Advanced manufacturing Automated fiber placement Numerical simulations Temperature field |
| Title | Thermal modeling of automated fiber placement (AFP) of thermoplastic composites using plug flow simulation |
| URI | https://dx.doi.org/10.1016/j.compositesa.2025.109385 |
| Volume | 201 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-835X databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003391 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa5xAEF6uSSntQ-hPmrYpW-hDi3h46roKfZGQ0PYhBHqEe5NVd9M7Tj1OTfPP9X_rrLuuJk1IW-iLiKd73s53s98O38wg9J44InVTL7KZG2S2z-Asyngomwj4NE9ThxPRNZugJyfhYhGdTiY_-1yYizUty_DyMtr8V1PDNTC2TJ39C3ObQeECnIPR4Qhmh-OfGh6c7Vr1uNGaZtY2FVBTIJdCKkSsTolV6Gqj8fGpjA0oscC2qOBDWby5U5tLSRevrbaLKGzW7bkl1tUPq14Wuu3XmNwemgemwEy3jRV3nkfz3D6BSEbqC1a2MqWiy5E0EiAGblfFY8-W9feytc6mQwCI86a-nlwUF-eqm_Y3GQqvTWS7E-rrVDIjfdShDdeooY039mSM0iOLsbt29R3K4cpqWKrnz29rgQpLrKbDbMk6Uy6ZDs9crb99bV00asVeCLdKRkMlcqhEDXUP7bqUROBUd-MvR4uvhgp4XqR2_Pp3PEDvBoHhLe91M0EakZ75Y7Sndys4Vih7gia8fIoejWpYPkMrjTfc4w1XAhu84Q5v2OANfwC0fZS3XMEaHt4Sd1jDEmtYYg0PWHuO5sdH88PPtm7gYWfAKokdOHno-zn3RZ7mgqSzNOdBCJtYOiNZ5ok8DIXkw0AzWUAzIO_EkWLJICR-yoT3Au2UVclfIhykPJeLjRCc-5QylhPKAzpzgzBiTuTvI7eftGSjyrQkd5ptH33qpzfR_wHFIxOA0N2Pv_qX73yNHg5If4N2mm3LD9D97KJZ1tu3Gj-_AKMbrS8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+modeling+of+automated+fiber+placement+%28AFP%29+of+thermoplastic+composites+using+plug+flow+simulation&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Ganesan%2C+Vishnu+V.&rft.au=Smeets%2C+Mark&rft.au=Amgai%2C+Sandesh&rft.au=Davidson%2C+Paul&rft.date=2026-02-01&rft.issn=1359-835X&rft.volume=201&rft.spage=109385&rft_id=info:doi/10.1016%2Fj.compositesa.2025.109385&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2025_109385 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon |