Thermal modeling of automated fiber placement (AFP) of thermoplastic composites using plug flow simulation

Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Jg. 201; S. 109385
Hauptverfasser: Ganesan, Vishnu V., Smeets, Mark, Amgai, Sandesh, Davidson, Paul, Jain, Ankur
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2026
Schlagworte:
ISSN:1359-835X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature field during AFP laydown and its dependence on various process parameters. This study presents an experimentally-validated heat transfer simulation model of AFP manufacturing of a thermoplastic composite tow. The precise tow geometry and trajectory, as well as its thermal interactions with the roller and substrate are modeled. In order to simulate tow motion past the heat source, the tow and substrate are treated as moving media with distinct plug flow velocities passing through a stationary experimentally measured irradiance field. The governing equations are derived from steady-state advection–diffusion principles, incorporating temperature-dependent anisotropic thermophysical properties. Model predictions are shown to agree well with experimental measurements carried out under simplified process conditions. Lamp power and laydown speed are both shown to impact the temperature history of the tow. Thermal diffusion into the roller is found to significantly influence tow temperature history. Heating of the roller is proposed as a mechanism for controlling how the tow temperature evolves over time. This novel simulation technique captures several realistic considerations in AFP manufacturing that were not fully accounted for by previously reported simulation models. By predicting the temperature field in realistic settings, this work offers a robust framework for predicting thermal performance, and, hence, material properties of parts printed by AFP and other advanced manufacturing techniques.
AbstractList Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface bonding and, consequently, the mechanical properties of the built structure. Thermal modeling offers an important tool to predict the temperature field during AFP laydown and its dependence on various process parameters. This study presents an experimentally-validated heat transfer simulation model of AFP manufacturing of a thermoplastic composite tow. The precise tow geometry and trajectory, as well as its thermal interactions with the roller and substrate are modeled. In order to simulate tow motion past the heat source, the tow and substrate are treated as moving media with distinct plug flow velocities passing through a stationary experimentally measured irradiance field. The governing equations are derived from steady-state advection–diffusion principles, incorporating temperature-dependent anisotropic thermophysical properties. Model predictions are shown to agree well with experimental measurements carried out under simplified process conditions. Lamp power and laydown speed are both shown to impact the temperature history of the tow. Thermal diffusion into the roller is found to significantly influence tow temperature history. Heating of the roller is proposed as a mechanism for controlling how the tow temperature evolves over time. This novel simulation technique captures several realistic considerations in AFP manufacturing that were not fully accounted for by previously reported simulation models. By predicting the temperature field in realistic settings, this work offers a robust framework for predicting thermal performance, and, hence, material properties of parts printed by AFP and other advanced manufacturing techniques.
ArticleNumber 109385
Author Davidson, Paul
Smeets, Mark
Amgai, Sandesh
Jain, Ankur
Ganesan, Vishnu V.
Author_xml – sequence: 1
  givenname: Vishnu V.
  orcidid: 0009-0003-0597-5798
  surname: Ganesan
  fullname: Ganesan, Vishnu V.
– sequence: 2
  givenname: Mark
  surname: Smeets
  fullname: Smeets, Mark
– sequence: 3
  givenname: Sandesh
  orcidid: 0009-0003-2221-6582
  surname: Amgai
  fullname: Amgai, Sandesh
– sequence: 4
  givenname: Paul
  orcidid: 0000-0001-7104-4252
  surname: Davidson
  fullname: Davidson, Paul
– sequence: 5
  givenname: Ankur
  surname: Jain
  fullname: Jain, Ankur
  email: jaina@uta.edu
BookMark eNqNkDFPwzAQhT0UibbwH8wGQ4odx6kzVhUFpEowdGCzHPtcHCVxZTsg_j2JigQj00l39969-xZo1vseELqhZEUJLe-blfbdyUeXIKpVTnI-9ism-AzNKeNVJhh_u0SLGBtCCGMVnaPm8A6hUy3uvIHW9UfsLVZD8p1KYLB1NQR8apWGDvqEbze717tpJU0yPw5ichr_3sVDnExO7XDEtvWfOLpuaFVyvr9CF1a1Ea5_6hIddg-H7VO2f3l83m72maaU8KwkRhSFgcKa2lhe09pAKXLO15RrzawRwrJqXeZUqHKtOaec5OM7peBFrSxboupsq4OPMYCVp-A6Fb4kJXLiJBv5h5OcOMkzp1G7PWthzPfhIMioHfQajAugkzTe_cPlGzXJfVc
Cites_doi 10.1016/j.compositesa.2016.05.034
10.1007/s00170-015-7576-2
10.1016/j.compositesa.2014.10.004
10.1007/s00170-020-05876-9
10.1016/j.compositesa.2025.109280
10.1016/j.compositesa.2021.106381
10.1016/j.compositesa.2023.107577
10.1016/j.compstruct.2021.114223
10.21741/9781644903599-67
10.3390/app11167743
10.1016/j.compositesa.2024.108010
10.1016/j.compositesb.2021.109002
10.1016/j.procir.2017.03.220
10.1177/0892705720982363
10.1177/08927057231158537
10.21741/9781644903131-256
10.1016/j.compositesa.2022.107179
10.1002/pc.28941
10.1016/B978-0-12-818411-0.00009-4
10.1007/s10845-021-01774-3
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesa.2025.109385
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compositesa_2025_109385
S1359835X25006797
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSZ
T5K
TN5
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c1105-60d844de4fdbdf5b1bde68255715cc3fd88f3976218a67c5515020036854baf3
ISSN 1359-835X
IngestDate Thu Nov 27 01:08:54 EST 2025
Sat Nov 29 17:10:24 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Automated fiber placement
Numerical simulations
Temperature field
Advanced manufacturing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1105-60d844de4fdbdf5b1bde68255715cc3fd88f3976218a67c5515020036854baf3
ORCID 0009-0003-2221-6582
0000-0001-7104-4252
0009-0003-0597-5798
ParticipantIDs crossref_primary_10_1016_j_compositesa_2025_109385
elsevier_sciencedirect_doi_10_1016_j_compositesa_2025_109385
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Composites. Part A, Applied science and manufacturing
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gibson, Rosen, Stucker (b0010) 2016; 83
107179, 2022, DOI: 10.1016/j.compositesa.2022.107179.
Ingrassia, Nigrelli, Ricotta, Tartamella (b0020) 2016
Brasington, Sacco, Halbritter, Wehbe, Harik (b0015) 2021; 6
Lichtinger, Hörmann, Stelzl, Hinterhölzl (b0060) 2015; 68
Danezis, Williams, Edwards, Skordos (b0085) 2021; 145
ANSYS Fluent User Manual, available at https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2024/01/2058672.pdf, accessed Aug 18, 2025.
Danezis, Williams, Skordos (b0080) 2023; 36
Oromiehie, Gain, Prusty (b0040) 2021; 272
Suemasu, Aoki, Hoshi, Tateishi, Sugimoto, Nakamura (b0070) 2023; 172
Meister, Wermes, Stüve, Groves (b0030) 2021; 32
Zacherl, Shadmehri, Rother (b0095) 2021; 36
pp.618-627, 2025
Tavkari, Ganesan, Amgai, Jain, Davidson (b0050) 2024; 183
Storti, Le Reun, Le Corre (b0110) 2024; 41
Smeets, Ganesan, Tashakori, Amgai, Jain, Davidson (b0115) 2026; 200
Storti, B., Reun, A., Corre, S., ‘3D multi-scale thermal modeling of AFP in-situ consolidation processes for thermoplastic composites using an Eulerian FEM approach,’
pp. 1-31, 2021. DOI: 10.1016/B978-0-12-818411-0.00009-4.
Juarez, Gregory (b0055) 2021; 220
Stavropoulos, Foteinopoulos, Papapacharalampopoulos (b0025) 2021; 11
.
Le Reun, Le Louët, Le Corre, Sobotka (b0105) 2024; 179
Zhang, Li, Li (b0075) 2024; 45
Stokes-Griffin, Compston (b0090) 2016; 88
Hajiloo, Xie, Hoa, Khan (b0100) 2014; 21
Donough, M.J., Shafaq, St John, N.A., Philips, A.W., Prusty, B.G., ‘Process modelling of In-situ consolidated thermoplastic composite by automated fibre placement – A review,’
Schmidt, Denkena, Hocke, Völtzer (b0065) 2017; 66
Zhang, X., Liou, F., ‘Introduction to Additive Manufacturing,’ in
Baho, Ausias, Grohens, Férec (b0035) 2020; 110
Meister (10.1016/j.compositesa.2025.109385_b0030) 2021; 32
Stokes-Griffin (10.1016/j.compositesa.2025.109385_b0090) 2016; 88
10.1016/j.compositesa.2025.109385_b0045
10.1016/j.compositesa.2025.109385_b0120
Schmidt (10.1016/j.compositesa.2025.109385_b0065) 2017; 66
Le Reun (10.1016/j.compositesa.2025.109385_b0105) 2024; 179
Tavkari (10.1016/j.compositesa.2025.109385_b0050) 2024; 183
Baho (10.1016/j.compositesa.2025.109385_b0035) 2020; 110
Suemasu (10.1016/j.compositesa.2025.109385_b0070) 2023; 172
Oromiehie (10.1016/j.compositesa.2025.109385_b0040) 2021; 272
Juarez (10.1016/j.compositesa.2025.109385_b0055) 2021; 220
Gibson (10.1016/j.compositesa.2025.109385_b0010) 2016; 83
10.1016/j.compositesa.2025.109385_b0005
Stavropoulos (10.1016/j.compositesa.2025.109385_b0025) 2021; 11
10.1016/j.compositesa.2025.109385_b0125
Zhang (10.1016/j.compositesa.2025.109385_b0075) 2024; 45
Ingrassia (10.1016/j.compositesa.2025.109385_b0020) 2016
Brasington (10.1016/j.compositesa.2025.109385_b0015) 2021; 6
Storti (10.1016/j.compositesa.2025.109385_b0110) 2024; 41
Danezis (10.1016/j.compositesa.2025.109385_b0080) 2023; 36
Danezis (10.1016/j.compositesa.2025.109385_b0085) 2021; 145
Hajiloo (10.1016/j.compositesa.2025.109385_b0100) 2014; 21
Smeets (10.1016/j.compositesa.2025.109385_b0115) 2026; 200
Zacherl (10.1016/j.compositesa.2025.109385_b0095) 2021; 36
Lichtinger (10.1016/j.compositesa.2025.109385_b0060) 2015; 68
References_xml – volume: 36
  start-page: 73
  year: 2021
  end-page: 95
  ident: b0095
  article-title: Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites
  publication-title: J Thermoplastic Composite Mater
– volume: 200
  year: 2026
  ident: b0115
  article-title: Irradiance mapping and thermal evolution in Xenon-arc flash heated thermoplastic composites: Experimental and numerical study
  publication-title: Composites Part A: Appl. Sci. Manufact.
– reference: , 107179, 2022, DOI: 10.1016/j.compositesa.2022.107179.
– volume: 66
  start-page: 68
  year: 2017
  end-page: 73
  ident: b0065
  article-title: Influence of AFP process parameters on the temperature distribution used for thermal in-process monitoring
  publication-title: Procedia CIRP
– volume: 6
  year: 2021
  ident: b0015
  article-title: Automated fiber placement: A review of history, current technologies, and future paths forward
  publication-title: Composites Part C: Open Access
– volume: 36
  start-page: 4457
  year: 2023
  end-page: 4481
  ident: b0080
  article-title: One-dimensional approximation of heat transfer in flashlamp-assisted automated tape placement
  publication-title: J Thermoplastic Composite Mater
– reference: ANSYS Fluent User Manual, available at https://innovationspace.ansys.com/courses/wp-content/uploads/sites/5/2024/01/2058672.pdf, accessed Aug 18, 2025.
– volume: 145
  year: 2021
  ident: b0085
  article-title: Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites
  publication-title: Composites Part A: Appl Sci Manufact
– volume: 110
  start-page: 2105
  year: 2020
  end-page: 2117
  ident: b0035
  article-title: Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters
  publication-title: Int J Adv Manufac Technol
– volume: 68
  start-page: 387
  year: 2015
  end-page: 397
  ident: b0060
  article-title: The effects of heat input on adjacent paths during automated fibre placement
  publication-title: Composites Part A: Appl Sci Manufact
– reference: , pp.618-627, 2025,
– volume: 220
  year: 2021
  ident: b0055
  article-title: In situ thermal inspection of automated fiber placement for manufacturing induced defects
  publication-title: Compos B Eng
– reference: Storti, B., Reun, A., Corre, S., ‘3D multi-scale thermal modeling of AFP in-situ consolidation processes for thermoplastic composites using an Eulerian FEM approach,’
– volume: 88
  start-page: 190
  year: 2016
  end-page: 197
  ident: b0090
  article-title: An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK
  publication-title: Composites Part A: Appl Sci Manufact
– volume: 11
  start-page: 7743
  year: 2021
  ident: b0025
  article-title: On the impact of additive manufacturing processes complexity on modelling
  publication-title: Appl Sci
– volume: 21
  start-page: 427
  year: 2014
  end-page: 434
  ident: b0100
  article-title: Thermal control design for an automated fiber placement machine
  publication-title: Sci Eng Composite Mater
– volume: 172
  year: 2023
  ident: b0070
  article-title: Thermal analysis for in-situ consolidation in the AFP process
  publication-title: Composites Part A: Appl Sci Manufact
– volume: 179
  year: 2024
  ident: b0105
  article-title: Numerical simulation at the micro-scale for the heat transfer modelling in the thermoplastic composites laser-assisted AFP process
  publication-title: Composites Part A: Appl Sci Manufact
– start-page: 261
  year: 2016
  end-page: 270
  ident: b0020
  article-title: Process parameters influence in additive manufacturing
  publication-title: Adv Mech Des Eng Manufac
– volume: 45
  start-page: 16929
  year: 2024
  end-page: 16944
  ident: b0075
  article-title: Efficient 3D temperature field prediction and visualization for AFP process analysis in composite structures
  publication-title: Polym Compos
– reference: Donough, M.J., Shafaq, St John, N.A., Philips, A.W., Prusty, B.G., ‘Process modelling of In-situ consolidated thermoplastic composite by automated fibre placement – A review,’
– volume: 83
  start-page: 389
  year: 2016
  end-page: 405
  ident: b0010
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int J Adv Manuf Technol
– reference: .
– reference: , pp. 1-31, 2021. DOI: 10.1016/B978-0-12-818411-0.00009-4.
– volume: 272
  year: 2021
  ident: b0040
  article-title: Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites
  publication-title: Composite Struct
– volume: 32
  start-page: 2099
  year: 2021
  end-page: 2119
  ident: b0030
  article-title: Review of image segmentation techniques for layup defect detection in the automated fiber placement process: a comprehensive study to improve AFP inspection
  publication-title: J Intelligent Manufact
– reference: Zhang, X., Liou, F., ‘Introduction to Additive Manufacturing,’ in:
– volume: 183
  year: 2024
  ident: b0050
  article-title: Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites
  publication-title: Composites Part A: Appl Sci Manufact
– volume: 41
  start-page: 2329
  year: 2024
  end-page: 2338
  ident: b0110
  article-title: Accurate 3D modeling of laser-matter interaction in the AFP process by a conductive-radiative FEM approach
  publication-title: Mater Res Proc
– volume: 88
  start-page: 190
  year: 2016
  ident: 10.1016/j.compositesa.2025.109385_b0090
  article-title: An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK
  publication-title: Composites Part A: Appl Sci Manufact
  doi: 10.1016/j.compositesa.2016.05.034
– volume: 21
  start-page: 427
  year: 2014
  ident: 10.1016/j.compositesa.2025.109385_b0100
  article-title: Thermal control design for an automated fiber placement machine
  publication-title: Sci Eng Composite Mater
– ident: 10.1016/j.compositesa.2025.109385_b0125
– volume: 83
  start-page: 389
  year: 2016
  ident: 10.1016/j.compositesa.2025.109385_b0010
  article-title: Additive manufacturing methods and modelling approaches: a critical review
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7576-2
– volume: 68
  start-page: 387
  year: 2015
  ident: 10.1016/j.compositesa.2025.109385_b0060
  article-title: The effects of heat input on adjacent paths during automated fibre placement
  publication-title: Composites Part A: Appl Sci Manufact
  doi: 10.1016/j.compositesa.2014.10.004
– volume: 110
  start-page: 2105
  year: 2020
  ident: 10.1016/j.compositesa.2025.109385_b0035
  article-title: Simulation of laser heating distribution for a thermoplastic composite: effects of AFP head parameters
  publication-title: Int J Adv Manufac Technol
  doi: 10.1007/s00170-020-05876-9
– volume: 200
  year: 2026
  ident: 10.1016/j.compositesa.2025.109385_b0115
  article-title: Irradiance mapping and thermal evolution in Xenon-arc flash heated thermoplastic composites: Experimental and numerical study
  publication-title: Composites Part A: Appl. Sci. Manufact.
  doi: 10.1016/j.compositesa.2025.109280
– volume: 183
  year: 2024
  ident: 10.1016/j.compositesa.2025.109385_b0050
  article-title: Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites
  publication-title: Composites Part A: Appl Sci Manufact
– volume: 145
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0085
  article-title: Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites
  publication-title: Composites Part A: Appl Sci Manufact
  doi: 10.1016/j.compositesa.2021.106381
– volume: 172
  year: 2023
  ident: 10.1016/j.compositesa.2025.109385_b0070
  article-title: Thermal analysis for in-situ consolidation in the AFP process
  publication-title: Composites Part A: Appl Sci Manufact
  doi: 10.1016/j.compositesa.2023.107577
– volume: 272
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0040
  article-title: Processing parameter optimisation for automated fibre placement (AFP) manufactured thermoplastic composites
  publication-title: Composite Struct
  doi: 10.1016/j.compstruct.2021.114223
– ident: 10.1016/j.compositesa.2025.109385_b0120
  doi: 10.21741/9781644903599-67
– volume: 11
  start-page: 7743
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0025
  article-title: On the impact of additive manufacturing processes complexity on modelling
  publication-title: Appl Sci
  doi: 10.3390/app11167743
– volume: 179
  year: 2024
  ident: 10.1016/j.compositesa.2025.109385_b0105
  article-title: Numerical simulation at the micro-scale for the heat transfer modelling in the thermoplastic composites laser-assisted AFP process
  publication-title: Composites Part A: Appl Sci Manufact
  doi: 10.1016/j.compositesa.2024.108010
– volume: 6
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0015
  article-title: Automated fiber placement: A review of history, current technologies, and future paths forward
  publication-title: Composites Part C: Open Access
– volume: 220
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0055
  article-title: In situ thermal inspection of automated fiber placement for manufacturing induced defects
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2021.109002
– volume: 66
  start-page: 68
  year: 2017
  ident: 10.1016/j.compositesa.2025.109385_b0065
  article-title: Influence of AFP process parameters on the temperature distribution used for thermal in-process monitoring
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.220
– volume: 36
  start-page: 73
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0095
  article-title: Determination of convective heat transfer coefficient for hot gas torch (HGT)-assisted automated fiber placement (AFP) for thermoplastic composites
  publication-title: J Thermoplastic Composite Mater
  doi: 10.1177/0892705720982363
– volume: 36
  start-page: 4457
  year: 2023
  ident: 10.1016/j.compositesa.2025.109385_b0080
  article-title: One-dimensional approximation of heat transfer in flashlamp-assisted automated tape placement
  publication-title: J Thermoplastic Composite Mater
  doi: 10.1177/08927057231158537
– volume: 41
  start-page: 2329
  year: 2024
  ident: 10.1016/j.compositesa.2025.109385_b0110
  article-title: Accurate 3D modeling of laser-matter interaction in the AFP process by a conductive-radiative FEM approach
  publication-title: Mater Res Proc
  doi: 10.21741/9781644903131-256
– ident: 10.1016/j.compositesa.2025.109385_b0045
  doi: 10.1016/j.compositesa.2022.107179
– volume: 45
  start-page: 16929
  year: 2024
  ident: 10.1016/j.compositesa.2025.109385_b0075
  article-title: Efficient 3D temperature field prediction and visualization for AFP process analysis in composite structures
  publication-title: Polym Compos
  doi: 10.1002/pc.28941
– ident: 10.1016/j.compositesa.2025.109385_b0005
  doi: 10.1016/B978-0-12-818411-0.00009-4
– volume: 32
  start-page: 2099
  year: 2021
  ident: 10.1016/j.compositesa.2025.109385_b0030
  article-title: Review of image segmentation techniques for layup defect detection in the automated fiber placement process: a comprehensive study to improve AFP inspection
  publication-title: J Intelligent Manufact
  doi: 10.1007/s10845-021-01774-3
– start-page: 261
  year: 2016
  ident: 10.1016/j.compositesa.2025.109385_b0020
  article-title: Process parameters influence in additive manufacturing
  publication-title: Adv Mech Des Eng Manufac
SSID ssj0003391
Score 2.4816773
Snippet Thermal evolution in material under Automated Fiber Placement (AFP) processing conditions is critical in determining the final microstructure, interface...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109385
SubjectTerms Advanced manufacturing
Automated fiber placement
Numerical simulations
Temperature field
Title Thermal modeling of automated fiber placement (AFP) of thermoplastic composites using plug flow simulation
URI https://dx.doi.org/10.1016/j.compositesa.2025.109385
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-835X
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003391
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa5xAEF6uSSntQ-hPmrYpW-hDi3h46roKfZGQ0PYhBHqEe5NVd9M7Tj1OTfPP9X_rrLuuJk1IW-iLiKd73s53s98O38wg9J44InVTL7KZG2S2z-Asyngomwj4NE9ThxPRNZugJyfhYhGdTiY_-1yYizUty_DyMtr8V1PDNTC2TJ39C3ObQeECnIPR4Qhmh-OfGh6c7Vr1uNGaZtY2FVBTIJdCKkSsTolV6Gqj8fGpjA0oscC2qOBDWby5U5tLSRevrbaLKGzW7bkl1tUPq14Wuu3XmNwemgemwEy3jRV3nkfz3D6BSEbqC1a2MqWiy5E0EiAGblfFY8-W9feytc6mQwCI86a-nlwUF-eqm_Y3GQqvTWS7E-rrVDIjfdShDdeooY039mSM0iOLsbt29R3K4cpqWKrnz29rgQpLrKbDbMk6Uy6ZDs9crb99bV00asVeCLdKRkMlcqhEDXUP7bqUROBUd-MvR4uvhgp4XqR2_Pp3PEDvBoHhLe91M0EakZ75Y7Sndys4Vih7gia8fIoejWpYPkMrjTfc4w1XAhu84Q5v2OANfwC0fZS3XMEaHt4Sd1jDEmtYYg0PWHuO5sdH88PPtm7gYWfAKokdOHno-zn3RZ7mgqSzNOdBCJtYOiNZ5ok8DIXkw0AzWUAzIO_EkWLJICR-yoT3Au2UVclfIhykPJeLjRCc-5QylhPKAzpzgzBiTuTvI7eftGSjyrQkd5ptH33qpzfR_wHFIxOA0N2Pv_qX73yNHg5If4N2mm3LD9D97KJZ1tu3Gj-_AKMbrS8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+modeling+of+automated+fiber+placement+%28AFP%29+of+thermoplastic+composites+using+plug+flow+simulation&rft.jtitle=Composites.+Part+A%2C+Applied+science+and+manufacturing&rft.au=Ganesan%2C+Vishnu+V.&rft.au=Smeets%2C+Mark&rft.au=Amgai%2C+Sandesh&rft.au=Davidson%2C+Paul&rft.date=2026-02-01&rft.issn=1359-835X&rft.volume=201&rft.spage=109385&rft_id=info:doi/10.1016%2Fj.compositesa.2025.109385&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesa_2025_109385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-835X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-835X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-835X&client=summon