A Generalized Palais-Smale Condition in the Fr\'{e}chet space setting

The Palais-Smale condition was introduced by Palais and Smale in the mid-sixties and applied to an extension of Morse theory to infinite dimensional Hilbert spaces. Later this condition was extended by Palais for the more general case of real functions over Banach-Finsler manifolds in order to obtai...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Trudy Meždunarodnogo geometričeskogo centra Ročník 11; číslo 1
Hlavný autor: Eftekharinasab, Kaveh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Odesa National University of Technology 10.06.2018
Predmet:
ISSN:2072-9812, 2409-8906
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Palais-Smale condition was introduced by Palais and Smale in the mid-sixties and applied to an extension of Morse theory to infinite dimensional Hilbert spaces. Later this condition was extended by Palais for the more general case of real functions over Banach-Finsler manifolds in order to obtain Lusternik-Schnirelman theory in this setting.   Despite the importance of Fr\'{e}chet spaces, critical point theories have not been developed yet in these spaces.Our aim in this paper is to extend the Palais-Smale condition to the cases of $C^1$-functionals on Fr\'{e}chet spaces and Fr\'{e}chet-Finsler manifolds of class  $C^1$.    The difficulty in the Fr\'{e}chet  setting is the  lack of a general solvability theory for differential equations. This restricts us to adapt the deformation results (which are essential tools to locate critical points) as they appear as solutions of Cauchy problems. However,  Ekeland proved the result, today is known as Ekleand’s variational principle, concerning the existence of almost-minimums for a wide class of real functions on complete metric spaces. This principle can be used to obtain minimizing Palais-Smale sequences.  We use this principle along with the introduced conditions to obtain some customary results concerning the existence of minima in the Fr\'{e}chet setting.Recently it has been developed the projective limit techniques to overcome problems (such as  solvability theory for differential equations) with Fr\'{e}chet spaces. The idea of this approach is to represent a Fr\'{e}chet space as the projective limit of Banach spaces. This approach provides solutions for a wide class of differential equations and every Fr\'{e}chet space and therefore can be used to obtain deformation results.  This method would  be the proper framework for further development of critical point theory in the Fr\'{e}chet setting.
AbstractList The Palais-Smale condition was introduced by Palais and Smale in the mid-sixties and applied to an extension of Morse theory to infinite dimensional Hilbert spaces. Later this condition was extended by Palais for the more general case of real functions over Banach-Finsler manifolds in order to obtain Lusternik-Schnirelman theory in this setting.   Despite the importance of Fr\'{e}chet spaces, critical point theories have not been developed yet in these spaces. Our aim in this paper is to extend the Palais-Smale condition to the cases of $C^1$-functionals on Fr\'{e}chet spaces and Fr\'{e}chet-Finsler manifolds of class  $C^1$.     The difficulty in the Fr\'{e}chet  setting is the  lack of a general solvability theory for differential equations. This restricts us to adapt the deformation results (which are essential tools to locate critical points) as they appear as solutions of Cauchy problems. However,  Ekeland proved the result, today is known as Ekleand’s variational principle, concerning the existence of almost-minimums for a wide class of real functions on complete metric spaces. This principle can be used to obtain minimizing Palais-Smale sequences.  We use this principle along with the introduced conditions to obtain some customary results concerning the existence of minima in the Fr\'{e}chet setting. Recently it has been developed the projective limit techniques to overcome problems (such as  solvability theory for differential equations) with Fr\'{e}chet spaces. The idea of this approach is to represent a Fr\'{e}chet space as the projective limit of Banach spaces. This approach provides solutions for a wide class of differential equations and every Fr\'{e}chet space and therefore can be used to obtain deformation results.  This method would  be the proper framework for further development of critical point theory in the Fr\'{e}chet setting.
Author Eftekharinasab, Kaveh
Author_xml – sequence: 1
  givenname: Kaveh
  surname: Eftekharinasab
  fullname: Eftekharinasab, Kaveh
BookMark eNo9kEFLwzAYhoNMcM6dvebmqVu-pkuT4xjbHAwU1JsQviZft4yuHWkRVPzv1ime3pfn8Byeazaom5oYuwUxgZnK5bQ77tzkDSDAxMDsgg3TTJhEG6EG_Rd5mhgN6RUbt-1BCAG51KDMkC3nfE01RazCB3n-iBWGNnk6YkV80dQ-dKGpeah5tye-iq93n_Tl9tTx9oSOeEtdF-rdDbsssWpp_Lcj9rJaPi_uk-3DerOYbxMHQlGSlkBZlmJBxoAR3iuXp65Qnma-ANkzLL0vhVGF8yAom0nplHQovdIpoRyxza_XN3iwpxiOGN9tg8GeQRN3FmMXXEWWJJFMy1x7ggwyjT5HrUELh4XPNfWu6a_LxaZtI5X_PhD2HNX-RLXnqLaPKr8BGHhtvg
Cites_doi 10.1090/S0002-9904-1964-11062-4
10.1007/s11784-010-0019-7
10.4064/sm168-1-6
10.1090/S0273-0979-1982-15004-2
10.1007/BFb0070564
10.1016/0022-247X(74)90025-0
10.1007/978-3-0348-8227-9_6
10.1007/s11537-006-0606-y
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.15673/tmgc.v11i1.915
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2409-8906
ExternalDocumentID oai_doaj_org_article_e3ee32f78de14148ad7a88180cabd78e
10_15673_tmgc_v11i1_915
GroupedDBID 9MQ
AAYXX
ABDBF
ACUHS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EAP
EAS
EOJEC
ESX
GROUPED_DOAJ
KQ8
OBODZ
TUS
ID FETCH-LOGICAL-c106e-2f1e442abe99190dd6c72cb6de5db13919afddf096bcd10e4533c63ca3d682ea3
IEDL.DBID DOA
ISSN 2072-9812
IngestDate Fri Oct 03 12:30:55 EDT 2025
Sat Nov 29 04:00:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c106e-2f1e442abe99190dd6c72cb6de5db13919afddf096bcd10e4533c63ca3d682ea3
OpenAccessLink https://doaj.org/article/e3ee32f78de14148ad7a88180cabd78e
ParticipantIDs doaj_primary_oai_doaj_org_article_e3ee32f78de14148ad7a88180cabd78e
crossref_primary_10_15673_tmgc_v11i1_915
PublicationCentury 2000
PublicationDate 2018-06-10
PublicationDateYYYYMMDD 2018-06-10
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-10
  day: 10
PublicationDecade 2010
PublicationTitle Trudy Meždunarodnogo geometričeskogo centra
PublicationYear 2018
Publisher Odesa National University of Technology
Publisher_xml – name: Odesa National University of Technology
References ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref0
ref2
ref1
References_xml – ident: ref7
  doi: 10.1090/S0002-9904-1964-11062-4
– ident: ref3
– ident: ref5
  doi: 10.1007/s11784-010-0019-7
– ident: ref8
  doi: 10.4064/sm168-1-6
– ident: ref2
  doi: 10.1090/S0273-0979-1982-15004-2
– ident: ref4
  doi: 10.1007/BFb0070564
– ident: ref1
  doi: 10.1016/0022-247X(74)90025-0
– ident: ref0
– ident: ref9
  doi: 10.1007/978-3-0348-8227-9_6
– ident: ref6
  doi: 10.1007/s11537-006-0606-y
SSID ssj0001738169
ssib046622751
ssib050739512
ssib005608035
Score 2.0295222
Snippet The Palais-Smale condition was introduced by Palais and Smale in the mid-sixties and applied to an extension of Morse theory to infinite dimensional Hilbert...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms Ekelend's variational principle
Fr\’{e}chet-Finsler manifold
The Palais-Smale condition
Title A Generalized Palais-Smale Condition in the Fr\'{e}chet space setting
URI https://doaj.org/article/e3ee32f78de14148ad7a88180cabd78e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2409-8906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738169
  issn: 2072-9812
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2409-8906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050739512
  issn: 2072-9812
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPvFNDoJeoptkm2yOVSwetBR84EFY8piVBVulrR4U_7uTdK29efG6bAL7TZL5ZmfyDSGHQbVcFbhkzoJkuBMNc5obFoBbLZ0xVcqe31_pbrd4eDC9mVZfsSZsIg88Ae4UJIAUlS5wdI7c3QZti3hB2VsXdAHx9M20mQmm0spSyIR-iUCulBD6N__VSvmpxrGnvzE6JtAiV8bJBDPo9hodoJbS8nTcf_In75zX_MTEBrozLmxG6T-5pM4KWW64JG1PvmGVzMFgjSxdT4VYR-vkok0bYen6AwLt2Wdbj9hNH90CPX-J6Wq0C60HFMfQzvDx6BO-0IxjigeNBzqCVBa9Qe46F7fnl6zpnMA8hnjARMUhz4V1gPTPZCEor4V3KkArOOR83NgqhArDF-cDzyBH0ueV9FYGVQiwcpPMD14GsEWoz6x1uUWWZnxukIqDLJBkCJ0Fj_tfbpPjHzDK14lARhkDi4hbGXErE24l4rZNziJY09eisnV6gPYuG3uXf9l75z8m2SWLSHyKWPLFsz0yPx6-wT5Z8O_jejQ8SEvpG_B6yL8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalized+Palais-Smale+Condition+in+the+Fr%5C%27%7Be%7Dchet+space+setting&rft.jtitle=Trudy+Me%C5%BEdunarodnogo+geometri%C4%8Deskogo+centra&rft.au=Kaveh+Eftekharinasab&rft.date=2018-06-10&rft.pub=Odesa+National+University+of+Technology&rft.issn=2072-9812&rft.eissn=2409-8906&rft.volume=11&rft.issue=1&rft_id=info:doi/10.15673%2Ftmgc.v11i1.915&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3ee32f78de14148ad7a88180cabd78e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-9812&client=summon