On the classification of simple amenable $\mathrm{C}^{}$-algebras with finite decomposition rank, II
We prove that every unital simple separable \mathrm{C}^{*} -algebra A with finite decomposition rank which satisfies the UCT has the property that A\otimes Q has generalized tracial rank at most one, where Q is the universal UHF-algebra. Consequently, A is classifiable in the sense of Elliott.
Uloženo v:
| Vydáno v: | Journal of noncommutative geometry Ročník 19; číslo 1; s. 73 - 104 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
14.06.2024
|
| ISSN: | 1661-6952, 1661-6960 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that every unital simple separable \mathrm{C}^{*} -algebra A with finite decomposition rank which satisfies the UCT has the property that A\otimes Q has generalized tracial rank at most one, where Q is the universal UHF-algebra. Consequently, A is classifiable in the sense of Elliott. |
|---|---|
| ISSN: | 1661-6952 1661-6960 |
| DOI: | 10.4171/jncg/560 |