Optimizing Intrusion Detection for DoS, DDoS, and Mirai Attacks Subtypes Using Hierarchical Feature Selection and CatBoost on the CICIoT2023 Dataset
Introduction: Modern networks suffer until unheard of vulnerabilities that need for advanced intrusion detection systems (IDS) given the growing danger presented by DoS, DDoS, and Mirai attacks. Research on the identification of certain attack subtypes is still lacking even with the CICIoT2023 datas...
Uloženo v:
| Vydáno v: | Data & metadata Ročník 3; s. 577 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
17.12.2024
|
| ISSN: | 2953-4917, 2953-4917 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Introduction: Modern networks suffer until unheard of vulnerabilities that need for advanced intrusion detection systems (IDS) given the growing danger presented by DoS, DDoS, and Mirai attacks. Research on the identification of certain attack subtypes is still lacking even with the CICIoT2023 dataset, which offers a complete basis for evaluating these cyber hazards. Usually, aggregating attacks into more general categories, existing research neglects the complex characteristics of specific subtypes, therefore reducing the detection effectiveness.Methods: This work presents a novel IDS model aiming at high accuracy detection of DoS, DDoS, and Mirai attack subtypes. Using hierarchical feature selection and the CatBoost algorithm on the CICIoT2023 dataset, our model addresses the problems of high-dimensional data and emphasizes on keeping the most important features by means of advanced preprocessing methods including Spearman correlation and hierarchical clustering. Furthermore, used is stratified sampling to guarantee in the training and testing stages fair representation of attack types, both common and uncommon.Results: With an amazing Prediction Time per Network Flow of 7.16e-07 seconds, our model shows a breakthrough in intrusion detection performance by means of rigorous stratified cross-valuation, thereby attaining outstanding outcomes in accuracy, recall, and precision.Conclusions: Our method not only closes a significant gap in current knowledge but also establishes a new benchmark in cybersecurity by providing very detailed protection mechanisms against advanced threats. This study marks major progress in network security as it gives companies a more efficient instrument to recognize and minimize certain cyber risks with better precision and effectiveness |
|---|---|
| AbstractList | Introduction: Modern networks suffer until unheard of vulnerabilities that need for advanced intrusion detection systems (IDS) given the growing danger presented by DoS, DDoS, and Mirai attacks. Research on the identification of certain attack subtypes is still lacking even with the CICIoT2023 dataset, which offers a complete basis for evaluating these cyber hazards. Usually, aggregating attacks into more general categories, existing research neglects the complex characteristics of specific subtypes, therefore reducing the detection effectiveness.Methods: This work presents a novel IDS model aiming at high accuracy detection of DoS, DDoS, and Mirai attack subtypes. Using hierarchical feature selection and the CatBoost algorithm on the CICIoT2023 dataset, our model addresses the problems of high-dimensional data and emphasizes on keeping the most important features by means of advanced preprocessing methods including Spearman correlation and hierarchical clustering. Furthermore, used is stratified sampling to guarantee in the training and testing stages fair representation of attack types, both common and uncommon.Results: With an amazing Prediction Time per Network Flow of 7.16e-07 seconds, our model shows a breakthrough in intrusion detection performance by means of rigorous stratified cross-valuation, thereby attaining outstanding outcomes in accuracy, recall, and precision.Conclusions: Our method not only closes a significant gap in current knowledge but also establishes a new benchmark in cybersecurity by providing very detailed protection mechanisms against advanced threats. This study marks major progress in network security as it gives companies a more efficient instrument to recognize and minimize certain cyber risks with better precision and effectiveness |
| Author | Hajjouz, Abdulkader Avksentieva, Elena |
| Author_xml | – sequence: 1 givenname: Abdulkader orcidid: 0000-0002-8256-6790 surname: Hajjouz fullname: Hajjouz, Abdulkader – sequence: 2 givenname: Elena orcidid: 0000-0001-5000-4868 surname: Avksentieva fullname: Avksentieva, Elena |
| BookMark | eNpNkM9OAjEYxBujiYhcfIKejav9y7ZH3BXZBMMBOG-63VaqsCVtOeBz-MACEuPlm5nD_PJlbsBl5zsDwB1Gj3xIJHtqNwQRxvP8AvSI5DRjEueX__w1GMT4gRCiFFNGeQ98z7bJbdyX695h1aWwi853sDTJ6HR01gdY-vkDLE9XdS18c0E5OEpJ6c8I57sm7bcmwmU8MibOBBX0ymm1hmOj0i4YODfrM-7YL1R69j4meMhpZWBRFZVfHD6nsFRJRZNuwZVV62gGZ-2D5fhlUUyy6ey1KkbTTGPEUybanKtGECJbhoi0QmorGo2xpVY3cthyYaSinNAci2HOiGWaUMKZzEWLFaJ9cP_L1cHHGIytt8FtVNjXGNWnSeu_SekPG1pqYg |
| Cites_doi | 10.1186/s42400-019-0038-7 10.1016/j.iot.2024.101336 10.1016/j.isatra.2021.01.036 10.1093/cybsec/tyy006 10.1177/0890334420906850 10.3390/electronics11193079 10.1007/s13369-019-04319-2 10.7717/peerj-cs.1569 10.3390/electronics12061333 10.1109/INCET61516.2024.10593167 10.1007/s42979-022-01031-1 10.1109/JSTARS.2021.3063507 10.1016/j.cose.2023.103597 10.17762/ijcnis.v13i2.4943 10.1109/TCYB.2022.3151880 10.1109/DICCT61038.2024.10533028 10.3390/s23135941 10.1002/itl2.305 10.1007/s12046-020-1308-5 10.1186/s40537-020-00369-8 10.1007/s10115-023-02010-5 10.1016/j.prime.2024.100673 10.1186/s42400-021-00077-7 10.3390/electronics11193133 10.3389/fnano.2022.972421 10.1016/j.cose.2023.103096 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.56294/dm2024577 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2953-4917 |
| ExternalDocumentID | 10_56294_dm2024577 |
| GroupedDBID | AAFWJ AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS CITATION EAP ESX FAEIB M~E |
| ID | FETCH-LOGICAL-c105t-8d75ab8229d4029f89cf8bc11f3fcb96d58e9a35237186742f4c23254978d1a03 |
| ISSN | 2953-4917 |
| IngestDate | Sat Nov 29 05:10:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c105t-8d75ab8229d4029f89cf8bc11f3fcb96d58e9a35237186742f4c23254978d1a03 |
| ORCID | 0000-0001-5000-4868 0000-0002-8256-6790 |
| ParticipantIDs | crossref_primary_10_56294_dm2024577 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-17 |
| PublicationDateYYYYMMDD | 2024-12-17 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | Data & metadata |
| PublicationYear | 2024 |
| References | 12639 12659 12652 12653 12650 12651 12657 12654 12655 cr-split#-12658.2 cr-split#-12658.1 cr-split#-12656.2 cr-split#-12656.1 12660 12649 12647 12648 12641 12663 12642 12664 12661 12640 12662 12645 12667 12646 12668 12643 12665 12644 12666 |
| References_xml | – ident: 12652 doi: 10.1186/s42400-019-0038-7 – ident: 12655 doi: 10.1016/j.iot.2024.101336 – ident: #cr-split#-12656.2 – ident: 12639 doi: 10.1016/j.isatra.2021.01.036 – ident: 12668 – ident: 12646 doi: 10.1093/cybsec/tyy006 – ident: 12664 doi: 10.1177/0890334420906850 – ident: 12650 doi: 10.3390/electronics11193079 – ident: 12663 – ident: 12651 doi: 10.1007/s13369-019-04319-2 – ident: #cr-split#-12658.2 – ident: 12660 doi: 10.7717/peerj-cs.1569 – ident: 12645 doi: 10.3390/electronics12061333 – ident: #cr-split#-12656.1 doi: 10.1109/INCET61516.2024.10593167 – ident: 12661 – ident: 12649 doi: 10.1007/s42979-022-01031-1 – ident: 12666 doi: 10.1109/JSTARS.2021.3063507 – ident: 12643 doi: 10.1016/j.cose.2023.103597 – ident: 12641 doi: 10.17762/ijcnis.v13i2.4943 – ident: 12640 doi: 10.1109/TCYB.2022.3151880 – ident: #cr-split#-12658.1 doi: 10.1109/DICCT61038.2024.10533028 – ident: 12654 doi: 10.3390/s23135941 – ident: 12642 doi: 10.1002/itl2.305 – ident: 12648 doi: 10.1007/s12046-020-1308-5 – ident: 12665 doi: 10.1186/s40537-020-00369-8 – ident: 12662 doi: 10.1007/s10115-023-02010-5 – ident: 12659 doi: 10.1016/j.prime.2024.100673 – ident: 12653 doi: 10.1186/s42400-021-00077-7 – ident: 12644 doi: 10.3390/electronics11193133 – ident: 12657 – ident: 12667 doi: 10.3389/fnano.2022.972421 – ident: 12647 doi: 10.1016/j.cose.2023.103096 |
| SSID | ssj0003313435 |
| Score | 2.2843444 |
| Snippet | Introduction: Modern networks suffer until unheard of vulnerabilities that need for advanced intrusion detection systems (IDS) given the growing danger... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 577 |
| Title | Optimizing Intrusion Detection for DoS, DDoS, and Mirai Attacks Subtypes Using Hierarchical Feature Selection and CatBoost on the CICIoT2023 Dataset |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2953-4917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003313435 issn: 2953-4917 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4MAFDQHia5MluJWIJrYb-9i1oO3AQKJIu1VxbEthbTKtppo4cOfOH8zzR9xucBgHLm77lJe2-f30_Gy_D4RewxRLNOUmo5KNMmqEzITRLJPgaijDS5Er7ptNlKen_OxMfBoMfva5MJtl2bb86kpc_FeoQQZgu9TZf4A73RQE8B5AhxFgh_FWwH8EI7BqvodIAJdS4QCeaavrFFY463zA3iy--liL5rJqhhNrXc69Mydub3Y9DBEFx41LU_ZdU5ZD5zS6U4fPvoNOH808rexR161tPHwYTk-mJ93cdU0HYlmYKq-dATiRJ91K2yqmx0VD-BX-pN_Unkj1bXnuAq0TKTfnLlWq0ZsqRKTp0Pq737UofG3EkKQZjFshGMmoiCL9F1m0zmTHurLQ8eWm1QcXTlCARa3cN8WLrpfWvjHlpUBEWAJ57UXSvYPuFiUTLjrww4_tdh0hOaG-XWv6laHYrVd_m9R33JsdP2W-jx7EBQaeBGI8RAPdPkK_tqTAiRQ4kQIDKTCQ4Q2e-REAxZ4QOBIC94TAnhB4lxA4EgInQnj9nhAYPgMh8JYQOBLiMfry_t18epzFfhxZDV64zbgqWSVdhwBFR4UwXNSGyzrPDTG1FGPFuBYVePSkdGUSaWFoDQ47c00MVV6NyBO013atfoowYxpWDpJSJce0NkRQRcejUlScaclk-Qy96h_j4iKUXVn8idXzW131At3fMvAl2oOHrA_QvXpjm_XloYf5N2HKdk8 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Intrusion+Detection+for+DoS%2C+DDoS%2C+and+Mirai+Attacks+Subtypes+Using+Hierarchical+Feature+Selection+and+CatBoost+on+the+CICIoT2023+Dataset&rft.jtitle=Data+%26+metadata&rft.au=Hajjouz%2C+Abdulkader&rft.au=Avksentieva%2C+Elena&rft.date=2024-12-17&rft.issn=2953-4917&rft.eissn=2953-4917&rft.volume=3&rft.spage=577&rft_id=info:doi/10.56294%2Fdm2024577&rft.externalDBID=n%2Fa&rft.externalDocID=10_56294_dm2024577 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2953-4917&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2953-4917&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2953-4917&client=summon |