P‐61: Distinguished Poster: Research on Parameter Extraction of Thin‐Film Transistors Based on Swarm Intelligence

Automatic parameter extraction of RPI Model for Polysilicon Thin‐Film Transistors is achieved by genetic algorithm(GA) and Particle swarm optimization(PSO) algorithm, and the solution of two algorithms are compared. Furthermore, mutual learning particle swarm optimization (MLPSO) algorithm is propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers Jg. 54; H. 1; S. 1856 - 1859
Hauptverfasser: Liu, Peng, Liu, Bailing, Feng, Jing, Wang, Zhichong, Chang, Chuanchuan, Zhang, Qian, Zhang, Han, Liu, Dong, Guo, Xu, Zhang, Xin, Liu, Xingyao, Yuan, Guangcai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Campbell Wiley Subscription Services, Inc 01.06.2023
Schlagworte:
ISSN:0097-966X, 2168-0159
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic parameter extraction of RPI Model for Polysilicon Thin‐Film Transistors is achieved by genetic algorithm(GA) and Particle swarm optimization(PSO) algorithm, and the solution of two algorithms are compared. Furthermore, mutual learning particle swarm optimization (MLPSO) algorithm is proposed, which simplifies the complex manual processes and the empirical calibration, and achieves accurate parameters extraction.
Bibliographie:https://doi.org/10.1002/jsid.1224
Authors that wish to refer to this work are advised to cite the full‐length version by referring to its DOI
https://sid.onlinelibrary.wiley.com/doi/full/10.1002/jsid.1224
Poster P‐61 has been designated as a Distinguished Poster at Display Week 2023. The full‐length version of this poster appears in a Special Section of the Journal of the Society for Information Display (JSID) devoted to Display Week 2023 Distinguished Papers. This Special Section will be freely accessible until December 31, 2023 via
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0097-966X
2168-0159
DOI:10.1002/sdtp.16970