Unsupervised learning-based damage detection of mooring lines in floating bridges

Floating bridges offer a practical alternative to sea-crossing bridges in regions with deep water and poor seabed conditions. It consists of a superstructure and substructure that includes piers, pontoons, and mooring lines. Damage to individual mooring lines can trigger progressive failures in othe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ocean engineering Ročník 343; s. 123604
Hlavní autori: Min, Seongi, Song, Jihun, Kim, Seungjun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.01.2026
Predmet:
ISSN:0029-8018
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Floating bridges offer a practical alternative to sea-crossing bridges in regions with deep water and poor seabed conditions. It consists of a superstructure and substructure that includes piers, pontoons, and mooring lines. Damage to individual mooring lines can trigger progressive failures in other lines, potentially leading to catastrophic accidents. However, direct inspection and monitoring are extremely challenging because mooring lines are located beneath the water surface. To address this problem, this study proposes a deep-learning-based damage-detection methodology that leverages the measurable structural responses of a floating body. Given the difficulty of acquiring damage condition data, the approach is grounded in unsupervised learning trained exclusively on intact condition data. The proposed model adopts an encoder–decoder architecture with long short-term memory (LSTM) networks and integrates multi-head self-attention (MHSA) to extract representative features and reconstruct input time-series data. To verify its effectiveness, the model was compared with a conventional long short-term memory autoencoder (LSTM-AE) that is widely used for unsupervised time-series damage detection. Under untrained irregular wave conditions, the MHSA-LSTM-AE extracted temporal–spatial features more effectively than the standard LSTM-AE. As a result, the proposed model not only distinguishes between intact and damaged conditions, but also correctly identifies the pontoon where mooring line damage occurs. This capability enables rapid localization of failures, which is critical for a timely response. The model achieved high accuracy under single-mooring line failure scenarios; however, its performance was relatively lower in cases of partial top damage compared to complete failure. •An unsupervised deep learning method is proposed for detecting mooring line failures in floating bridges.•The model employs an encoder–decoder LSTM architecture enhanced with multi-head self-attention (MHSA).•Validation datasets are generated from time-domain hydrodynamic simulations of a reference floating bridge.•The method detects single-line failures and localizes damaged pontoons, though partial damage cases remain challenging.
AbstractList Floating bridges offer a practical alternative to sea-crossing bridges in regions with deep water and poor seabed conditions. It consists of a superstructure and substructure that includes piers, pontoons, and mooring lines. Damage to individual mooring lines can trigger progressive failures in other lines, potentially leading to catastrophic accidents. However, direct inspection and monitoring are extremely challenging because mooring lines are located beneath the water surface. To address this problem, this study proposes a deep-learning-based damage-detection methodology that leverages the measurable structural responses of a floating body. Given the difficulty of acquiring damage condition data, the approach is grounded in unsupervised learning trained exclusively on intact condition data. The proposed model adopts an encoder–decoder architecture with long short-term memory (LSTM) networks and integrates multi-head self-attention (MHSA) to extract representative features and reconstruct input time-series data. To verify its effectiveness, the model was compared with a conventional long short-term memory autoencoder (LSTM-AE) that is widely used for unsupervised time-series damage detection. Under untrained irregular wave conditions, the MHSA-LSTM-AE extracted temporal–spatial features more effectively than the standard LSTM-AE. As a result, the proposed model not only distinguishes between intact and damaged conditions, but also correctly identifies the pontoon where mooring line damage occurs. This capability enables rapid localization of failures, which is critical for a timely response. The model achieved high accuracy under single-mooring line failure scenarios; however, its performance was relatively lower in cases of partial top damage compared to complete failure. •An unsupervised deep learning method is proposed for detecting mooring line failures in floating bridges.•The model employs an encoder–decoder LSTM architecture enhanced with multi-head self-attention (MHSA).•Validation datasets are generated from time-domain hydrodynamic simulations of a reference floating bridge.•The method detects single-line failures and localizes damaged pontoons, though partial damage cases remain challenging.
ArticleNumber 123604
Author Min, Seongi
Song, Jihun
Kim, Seungjun
Author_xml – sequence: 1
  givenname: Seongi
  surname: Min
  fullname: Min, Seongi
  email: rocksmell@korea.ac.kr
  organization: Future and Fusion Laboratory of Architectural, Civil and Environmental Engineering, Korea University, Seoul, 02841, South Korea
– sequence: 2
  givenname: Jihun
  surname: Song
  fullname: Song, Jihun
  organization: School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
– sequence: 3
  givenname: Seungjun
  orcidid: 0000-0001-8247-8451
  surname: Kim
  fullname: Kim, Seungjun
  organization: School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, 02841, South Korea
BookMark eNqFkN1KAzEQhXNRwVZ9BckL7DrJxjS9U4p_UBDBXof8TJaUbVKSWvDt3aV67dUww5wzZ74FmaWckJBbBi0DJu92bXZoEqa-5cDvW8Y7CWJG5gB81Shg6pIsat0BgJTQzcnHNtWvA5ZTrOjpgKakmPrGmqn1Zm96pB6P6I4xJ5oD3edcxg06xISVxkTDkM1xmtgSfY_1mlwEM1S8-a1XZPv89Ll-bTbvL2_rx03jGAjReCEcM4F1TnlkFpauE9YBt8BVMA69DEuulLJGKL5ySvjOBwbIuQzCKt9dEXn2dSXXWjDoQ4l7U741Az3B0Dv9B0NPMPQZxih8OAtxTHeKWHR1EdN4MpbxT-1z_M_iB9wqcP4
Cites_doi 10.1016/j.proeng.2010.08.020
10.1016/j.oceaneng.2022.111048
10.1016/j.renene.2021.04.025
10.3390/s21103333
10.1016/j.proeng.2010.08.009
10.1162/neco.1997.9.8.1735
10.1016/j.apacoust.2018.04.034
10.2749/101686603777964810
10.3390/jmse8100816
10.1016/j.apor.2023.103588
10.3390/s19071633
10.1016/j.marstruc.2018.01.007
10.1016/j.measurement.2024.114410
10.1016/j.oceaneng.2024.118065
10.1007/978-981-96-4569-5_59
10.1016/j.oceaneng.2021.108898
10.1016/j.apor.2019.05.028
10.1061/JSENDH.STENG-12095
10.1016/j.oceaneng.2025.120758
10.1061/(ASCE)WW.1943-5460.0000481
10.1016/j.oceaneng.2024.119105
10.1108/IR-04-2018-0074
10.3390/app10186591
10.1016/j.marstruc.2016.12.004
10.1016/j.oceaneng.2023.114284
10.1201/9781003322641-141
10.1007/s13344-022-0061-4
10.1016/j.compstruc.2015.12.009
10.1016/S0951-8339(97)00012-9
10.1016/S1001-6058(11)60284-9
10.1115/1.4040561
10.1016/j.ymssp.2024.111446
10.3390/app9245494
10.1016/j.oceaneng.2020.107522
10.1016/j.ymssp.2024.112092
10.1016/j.marstruc.2020.102763
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2025.123604
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2025_123604
S002980182503286X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
~HD
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
M41
R2-
SAC
SET
WUQ
ID FETCH-LOGICAL-c1044-d44c1af13c8de1b07c34bc02b028faced6f72888ba4829c84d3df10e226f4b8d3
ISSN 0029-8018
IngestDate Thu Nov 27 00:21:53 EST 2025
Wed Dec 10 14:33:13 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-head self-attention
Floating bridge
Measured motion response data
Damage detection and localization
LSTM autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1044-d44c1af13c8de1b07c34bc02b028faced6f72888ba4829c84d3df10e226f4b8d3
ORCID 0000-0001-8247-8451
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2025_123604
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_123604
PublicationCentury 2000
PublicationDate 2026-01-15
PublicationDateYYYYMMDD 2026-01-15
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Svangstu, Gao, Moan (bib2) 2019; 145
Xiang, Viuff, Leira, Øiseth (bib46) 2018; 51265
Song, Noh, Cho, Zi, Kim (bib54) 2024; 53
Mao, Duan, Men, Zheng (bib27) 2025; 224
Song, Shin, Jin, Kim (bib36) 2025; 324
Hochreiter, Schmidhuber (bib14) 1997; 9
Kwon, Jin, Kim, Koo (bib22) 2020; 10
Larssen, Jakobsen (bib23) 2010; 4
Lee, I., Kim, M., Song, J., Kim, S., 2025. The effect of a mooring line failure on the dynamic response of a floating bridge under seismic excitation. In: The 35th International Ocean and Polar Engineering Conference, ISOPE-I-25-129.
Maruyama, Kawamura (bib28) 2000; 39
Min, Jeong, Noh, Won, Kim (bib29) 2022; 250
Min, Jeong, Kim (bib30) 2024; 312
Rivera, Edwards, Eren, Soua (bib32) 2018; 139
Choe, Kim, Kim (bib4) 2021; 174
Kim, S., Song, J., Lee, J., 2025. Structural behavioral characteristics of curved floating bridges under waves. In: The 35th International Ocean and Polar Engineering Conference, ISOPE-I-25-127.
Won, Seo, Kim, Park (bib44) 2019; 9
Sidarta, O'Sullivan, Lim (bib35) 2018; 51203
Lee, Chung, Kim, Shin (bib25) 2021; 227
Won, Lee, Kang, Kim (bib45) 2020; 28
Dai, Leira, Moan, Kvittem (bib8) 2020; 72
Kvåle, Øiseth (bib19) 2017; 52
Wang, Cui, Cheng, Moan (bib42) 2024; 306
Coraddu, Oneto, Walker, Patryniak, Prothero, Collu (bib6) 2024; 216
Jang, Lee, Kim, Kang (bib16) 2020; 28
Cheng, Gao, Moan (bib3) 2019; 141
Min, S., Jeong, K., Noh, Y., Won, D., Kim, S., 2023c. Convolutional neural network-based damage detection of the tethers of submerged floating tunnels using structural response data under various incident waves. In: Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability, 2022. CRC Press, 1170–1177.
Lee, Jeong, Sim, Shin (bib24) 2019; 19
Seif, Inoue (bib34) 1998; 11
Jakobsen (bib15) 2010; 4
Lee, Kim, Song, Kim (bib26) 2024; 14
Cheng, Gao, Moan (bib1) 2018; 59
Kimball, Amit, Gmerek, Collins, Wheateley, Shah (bib18) 2018
Ryu, Min, Kang, Kim (bib33) 2024
Xiang, Cheng, Zhang, Tang (bib47) 2022; 36
Viuff, Leira, Øiseth, Xiang (bib38) 2016
Watanabe (bib43) 2003; 13
Dong, Miao, Yong, Niu, Pang, Hou (bib10) 2012; 24
Kvåle, Sigbjörnsson, Øiseth (bib20) 2016; 165
Min, Jeong, Lee, Jung, Kim (bib53) 2023; 31
Wang, Cha (bib41) 2025; 7
Min, Jeong, Lee, Kim (bib52) 2023; 277
Viuff, Leira, Xiang, Øiseth (bib39) 2019; 90
Song, Noh, Kim (bib55) 2025
Ghazimoghadam, Hosseinzadeh (bib12) 2024; 229
Song, Jin, Kim (bib49) 2025
Dissanayake, Sattar, Lowe, Pinson, Gan (bib9) 2018; 45
Chung, Kim, Lee, Shin (bib5) 2020; 209
Jang, Lee, Won, Kang, Kim (bib17) 2020; 8
Viuff, Ravinthrakumar, Økland, Grytå, Xiang (bib40) 2023; 138
Hall, Trower (bib13) 2011
(bib31) 2017
Kvåle, Fenerci, Petersen, Rønnquist, Øiseth (bib21) 2023; 149
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez (bib37) 2017; 30
D'Souza, Majhi (bib7) 2013
Feijóo, Zambrano, Vidal, Tutivén (bib11) 2021; 21
10.1016/j.oceaneng.2025.123604_bib51
10.1016/j.oceaneng.2025.123604_bib50
Kvåle (10.1016/j.oceaneng.2025.123604_bib19) 2017; 52
Viuff (10.1016/j.oceaneng.2025.123604_bib40) 2023; 138
Wang (10.1016/j.oceaneng.2025.123604_bib41) 2025; 7
Coraddu (10.1016/j.oceaneng.2025.123604_bib6) 2024; 216
Lee (10.1016/j.oceaneng.2025.123604_bib25) 2021; 227
Song (10.1016/j.oceaneng.2025.123604_bib54) 2024; 53
Hochreiter (10.1016/j.oceaneng.2025.123604_bib14) 1997; 9
Xiang (10.1016/j.oceaneng.2025.123604_bib47) 2022; 36
Rivera (10.1016/j.oceaneng.2025.123604_bib32) 2018; 139
Song (10.1016/j.oceaneng.2025.123604_bib36) 2025; 324
Maruyama (10.1016/j.oceaneng.2025.123604_bib28) 2000; 39
Jang (10.1016/j.oceaneng.2025.123604_bib17) 2020; 8
Dissanayake (10.1016/j.oceaneng.2025.123604_bib9) 2018; 45
Song (10.1016/j.oceaneng.2025.123604_bib49) 2025
Lee (10.1016/j.oceaneng.2025.123604_bib24) 2019; 19
Ryu (10.1016/j.oceaneng.2025.123604_bib33) 2024
Min (10.1016/j.oceaneng.2025.123604_bib29) 2022; 250
Viuff (10.1016/j.oceaneng.2025.123604_bib39) 2019; 90
Won (10.1016/j.oceaneng.2025.123604_bib44) 2019; 9
Jang (10.1016/j.oceaneng.2025.123604_bib16) 2020; 28
Min (10.1016/j.oceaneng.2025.123604_bib53) 2023; 31
Sidarta (10.1016/j.oceaneng.2025.123604_bib35) 2018; 51203
Wang (10.1016/j.oceaneng.2025.123604_bib42) 2024; 306
Vaswani (10.1016/j.oceaneng.2025.123604_bib37) 2017; 30
Xiang (10.1016/j.oceaneng.2025.123604_bib46) 2018; 51265
Mao (10.1016/j.oceaneng.2025.123604_bib27) 2025; 224
Kvåle (10.1016/j.oceaneng.2025.123604_bib20) 2016; 165
Ghazimoghadam (10.1016/j.oceaneng.2025.123604_bib12) 2024; 229
Cheng (10.1016/j.oceaneng.2025.123604_bib2) 2019; 145
Watanabe (10.1016/j.oceaneng.2025.123604_bib43) 2003; 13
Kvåle (10.1016/j.oceaneng.2025.123604_bib21) 2023; 149
Kimball (10.1016/j.oceaneng.2025.123604_bib18) 2018
Min (10.1016/j.oceaneng.2025.123604_bib52) 2023; 277
Won (10.1016/j.oceaneng.2025.123604_bib45) 2020; 28
Larssen (10.1016/j.oceaneng.2025.123604_bib23) 2010; 4
Jakobsen (10.1016/j.oceaneng.2025.123604_bib15) 2010; 4
(10.1016/j.oceaneng.2025.123604_bib31) 2017
Cheng (10.1016/j.oceaneng.2025.123604_bib3) 2019; 141
D'Souza (10.1016/j.oceaneng.2025.123604_bib7) 2013
Feijóo (10.1016/j.oceaneng.2025.123604_bib11) 2021; 21
Kwon (10.1016/j.oceaneng.2025.123604_bib22) 2020; 10
Dai (10.1016/j.oceaneng.2025.123604_bib8) 2020; 72
Min (10.1016/j.oceaneng.2025.123604_bib30) 2024; 312
Seif (10.1016/j.oceaneng.2025.123604_bib34) 1998; 11
Dong (10.1016/j.oceaneng.2025.123604_bib10) 2012; 24
Lee (10.1016/j.oceaneng.2025.123604_bib26) 2024; 14
Chung (10.1016/j.oceaneng.2025.123604_bib5) 2020; 209
10.1016/j.oceaneng.2025.123604_bib56
Song (10.1016/j.oceaneng.2025.123604_bib55) 2025
Viuff (10.1016/j.oceaneng.2025.123604_bib38) 2016
Cheng (10.1016/j.oceaneng.2025.123604_bib1) 2018; 59
Choe (10.1016/j.oceaneng.2025.123604_bib4) 2021; 174
Hall (10.1016/j.oceaneng.2025.123604_bib13) 2011
References_xml – volume: 165
  start-page: 123
  year: 2016
  end-page: 135
  ident: bib20
  article-title: Modelling the stochastic dynamic behaviour of a pontoon bridge: a case study
  publication-title: Comput. Struct.
– volume: 52
  start-page: 188
  year: 2017
  end-page: 207
  ident: bib19
  article-title: Structural monitoring of an end-supported pontoon bridge
  publication-title: Mar. Struct.
– volume: 224
  year: 2025
  ident: bib27
  article-title: Local damage identification and nowcasting of mooring system using a noise-robust ConvMamba architecture
  publication-title: Mech. Syst. Signal Process.
– volume: 139
  start-page: 156
  year: 2018
  end-page: 164
  ident: bib32
  article-title: Acoustic emission technique to monitor crack growth in a mooring chain
  publication-title: Appl. Acoust.
– year: 2018
  ident: bib18
  article-title: Mooring chain climbing robot for NDT inspection applications
  publication-title: Climbing and Walking Robots and Support Technologies for Mobile Machines CLAWAR 2018
– volume: 277
  start-page: 114284
  year: 2023
  ident: bib52
  article-title: Estimation of unmeasured structural responses of submerged floating tunnels using pattern model trained via long short-term memory
  publication-title: Ocean Eng
– volume: 7
  year: 2025
  ident: bib41
  article-title: Unsupervised machine and deep learning methods for structural damage detection: a comparative study
  publication-title: Eng. Rep.
– volume: 149
  year: 2023
  ident: bib21
  article-title: Data set from long-term wave, wind, and response monitoring of the Bergsøysund bridge
  publication-title: J. Struct. Eng.
– volume: 216
  year: 2024
  ident: bib6
  article-title: Floating offshore wind turbine mooring line sections health status nowcasting: from supervised shallow to weakly supervised deep learning
  publication-title: Mech. Syst. Signal Process.
– volume: 51265
  year: 2018
  ident: bib46
  article-title: Impact of hydrodynamic interaction between pontoons on global responses of a long floating bridge under wind waves
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– start-page: 563
  year: 2025
  end-page: 572
  ident: bib49
  article-title: Numerical investigation of hydrodynamic responses of straight floating bridge with pontoons
  publication-title: Lecture Notes in Civil Engineering.
– volume: 36
  start-page: 682
  year: 2022
  end-page: 696
  ident: bib47
  article-title: An improved time domain approach for analysis of floating bridges based on dynamic finite element method and state-space model
  publication-title: China Ocean Eng.
– volume: 8
  start-page: 816
  year: 2020
  ident: bib17
  article-title: Static behaviors of a long-span cable-stayed bridge with a floating tower under dead loads
  publication-title: J. Mar. Sci. Eng.
– volume: 39
  start-page: 28
  year: 2000
  end-page: 43
  ident: bib28
  article-title: Construction of a floating swing Bridge—Yumemai bridge.”
  publication-title: Osaka Technol.
– year: 2017
  ident: bib31
  article-title: Multiconsult AS
– volume: 312
  year: 2024
  ident: bib30
  article-title: Detecting failed tethers in submerged floating tunnels using an LSTM autoencoder and DNN algorithms
  publication-title: Ocean Eng.
– volume: 24
  start-page: 609
  year: 2012
  end-page: 616
  ident: bib10
  article-title: Effect of escape device for submerged floating tunnel (SFT) on hydrodynamic loads applied to SFT
  publication-title: J. Hydrodyn.
– volume: 10
  start-page: 6591
  year: 2020
  ident: bib22
  article-title: Mooring-failure monitoring of submerged floating tunnel using deep neural network
  publication-title: Appl. Sci.
– volume: 51203
  year: 2018
  ident: bib35
  article-title: Damage detection of offshore platform mooring line using artificial neural network
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– volume: 30
  year: 2017
  ident: bib37
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 250
  year: 2022
  ident: bib29
  article-title: Damage detection for tethers of submerged floating tunnels based on convolutional neural networks
  publication-title: Ocean Eng.
– volume: 21
  start-page: 3333
  year: 2021
  ident: bib11
  article-title: Unsupervised damage detection for offshore jacket wind turbine foundations based on an autoencoder neural network
  publication-title: Sensors
– volume: 90
  year: 2019
  ident: bib39
  article-title: Effects of wave directionality on extreme response for a long end-anchored floating bridge
  publication-title: Appl. Ocean Res.
– volume: 72
  year: 2020
  ident: bib8
  article-title: Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge
  publication-title: Mar. Struct.
– volume: 53
  start-page: 599
  year: 2024
  end-page: 612
  ident: bib54
  article-title: Data-driven detection of mooring failures in offshore floating photovoltaics using artificial neural networks
  publication-title: Steel Compos. Struct.
– volume: 28
  start-page: 15
  year: 2020
  ident: bib45
  article-title: Short-term fatigue damage of tethers of long-span floating cable supported bridges under harsh waves
  publication-title: J. Mar. Sci. Technol.
– volume: 31
  start-page: 405
  year: 2023
  end-page: 417
  ident: bib53
  article-title: Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition
  publication-title: Comp. Concr.
– volume: 9
  start-page: 5494
  year: 2019
  ident: bib44
  article-title: Hydrodynamic behavior of submerged floating tunnels with suspension cables and towers under irregular waves
  publication-title: Appl. Sci.
– start-page: OTC
  year: 2011
  end-page: 22615
  ident: bib13
  article-title: Mooring system integrity: deteriorative mechanisms on mooring systems and appropriate inspection techniques
  publication-title: Offshore Technology Conference Brasil
– volume: 174
  start-page: 218
  year: 2021
  end-page: 235
  ident: bib4
  article-title: Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades
  publication-title: Renew. Energy
– start-page: 3150
  year: 2025
  end-page: 3157
  ident: bib55
  article-title: Enhanced structural health monitoring for large-scale offshore photovoltaic systems based on response pattern recognition
  publication-title: IABSE Symposium Tokyo 2025: Environmentally Friendly Technologies and Structures: Focusing on Sustainable Approaches
– volume: 14
  start-page: 115
  year: 2024
  end-page: 139
  ident: bib26
  article-title: Dynamic analysis of floating bridges under combined earthquakes and waves
  publication-title: Ocean Sys. Eng.
– year: 2016
  ident: bib38
  article-title: Dynamic response of a floating bridge structure
  publication-title: 19th Congress of IABSE, Challenges in Design and Construction of an Innovative and Sustainable Built Environment. the International Association for Bridge and Structural Engineering
– volume: 11
  start-page: 29
  year: 1998
  end-page: 46
  ident: bib34
  article-title: Dynamic analysis of floating bridges
  publication-title: Mar. Struct.
– reference: Lee, I., Kim, M., Song, J., Kim, S., 2025. The effect of a mooring line failure on the dynamic response of a floating bridge under seismic excitation. In: The 35th International Ocean and Polar Engineering Conference, ISOPE-I-25-129.
– volume: 59
  start-page: 122
  year: 2018
  end-page: 141
  ident: bib1
  article-title: Hydrodynamic load modeling and analysis of a floating bridge in homogeneous wave conditions
  publication-title: Mar. Struct.
– volume: 229
  year: 2024
  ident: bib12
  article-title: A novel unsupervised deep learning approach for vibration-based damage diagnosis using a multi-head self-attention LSTM autoencoder
  publication-title: Measurement
– year: 2013
  ident: bib7
  article-title: Application of lessons learned from field experience to design, installation and maintenance of FPS moorings
  publication-title: Offshore Technology Conference
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib14
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: Kim, S., Song, J., Lee, J., 2025. Structural behavioral characteristics of curved floating bridges under waves. In: The 35th International Ocean and Polar Engineering Conference, ISOPE-I-25-127.
– reference: Min, S., Jeong, K., Noh, Y., Won, D., Kim, S., 2023c. Convolutional neural network-based damage detection of the tethers of submerged floating tunnels using structural response data under various incident waves. In: Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability, 2022. CRC Press, 1170–1177.
– volume: 28
  start-page: 14
  year: 2020
  ident: bib16
  article-title: Dynamic behavior of a long-span cable-stayed bridge with floating towers after the sudden failure of tethers and cables under irregular waves
  publication-title: J. Mar. Sci. Technol.
– volume: 141
  year: 2019
  ident: bib3
  article-title: Numerical modeling and dynamic analysis of a floating bridge subjected to wind, wave, and current loads
  publication-title: J. Offshore Mech. Arctic Eng.
– volume: 209
  year: 2020
  ident: bib5
  article-title: Detection of damaged mooring line based on deep neural networks
  publication-title: Ocean Eng.
– start-page: 726
  year: 2024
  end-page: 734
  ident: bib33
  article-title: LSTM-based structural pattern recognition for floating bridges
  publication-title: Bridge Maintenance, Safety, Management, Digitalization and Sustainability
– volume: 324
  year: 2025
  ident: bib36
  article-title: Simplified analysis method for pontoon-supported floating bridges under waves
  publication-title: Ocean Eng.
– volume: 19
  start-page: 1633
  year: 2019
  ident: bib24
  article-title: A novelty detection approach for tendons of prestressed concrete bridges based on a convolutional autoencoder and acceleration data
  publication-title: Sensors
– volume: 13
  start-page: 128
  year: 2003
  end-page: 132
  ident: bib43
  article-title: Floating bridges: past and present
  publication-title: Struct. Eng. Int.
– volume: 138
  year: 2023
  ident: bib40
  article-title: Experimental study of floating bridge global response when subjected to waves and current
  publication-title: Appl. Ocean Res.
– volume: 4
  start-page: 71
  year: 2010
  end-page: 79
  ident: bib15
  article-title: Design of the submerged floating tunnel operating under various conditions
  publication-title: Procedia Eng.
– volume: 306
  year: 2024
  ident: bib42
  article-title: A review on design and analysis of floating bridges: numerical simulations, model tests and field measurements
  publication-title: Ocean Eng.
– volume: 45
  start-page: 634
  year: 2018
  end-page: 646
  ident: bib9
  article-title: Adaptable legged-magnetic adhesion tracked wheel robotic platform for misaligned mooring chain climbing and inspection
  publication-title: Ind. Robot: Int. J.
– volume: 4
  start-page: 171
  year: 2010
  end-page: 178
  ident: bib23
  article-title: Submerged floating tunnels for crossing of wide and deep fjords
  publication-title: Procedia Eng.
– volume: 227
  year: 2021
  ident: bib25
  article-title: Damage detection of catenary mooring line based on recurrent neural networks
  publication-title: Ocean Eng.
– volume: 145
  year: 2019
  ident: bib2
  article-title: Field measurements of inhomogeneous wave conditions in Bjørnafjorden
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
– year: 2016
  ident: 10.1016/j.oceaneng.2025.123604_bib38
  article-title: Dynamic response of a floating bridge structure
– volume: 28
  start-page: 14
  issue: 6
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib16
  article-title: Dynamic behavior of a long-span cable-stayed bridge with floating towers after the sudden failure of tethers and cables under irregular waves
  publication-title: J. Mar. Sci. Technol.
– volume: 7
  issue: 1
  year: 2025
  ident: 10.1016/j.oceaneng.2025.123604_bib41
  article-title: Unsupervised machine and deep learning methods for structural damage detection: a comparative study
  publication-title: Eng. Rep.
– volume: 4
  start-page: 171
  year: 2010
  ident: 10.1016/j.oceaneng.2025.123604_bib23
  article-title: Submerged floating tunnels for crossing of wide and deep fjords
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.08.020
– volume: 250
  year: 2022
  ident: 10.1016/j.oceaneng.2025.123604_bib29
  article-title: Damage detection for tethers of submerged floating tunnels based on convolutional neural networks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111048
– volume: 39
  start-page: 28
  year: 2000
  ident: 10.1016/j.oceaneng.2025.123604_bib28
  article-title: Construction of a floating swing Bridge—Yumemai bridge.”
  publication-title: Osaka Technol.
– ident: 10.1016/j.oceaneng.2025.123604_bib50
– volume: 174
  start-page: 218
  year: 2021
  ident: 10.1016/j.oceaneng.2025.123604_bib4
  article-title: Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.04.025
– volume: 21
  start-page: 3333
  issue: 10
  year: 2021
  ident: 10.1016/j.oceaneng.2025.123604_bib11
  article-title: Unsupervised damage detection for offshore jacket wind turbine foundations based on an autoencoder neural network
  publication-title: Sensors
  doi: 10.3390/s21103333
– volume: 51203
  year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib35
  article-title: Damage detection of offshore platform mooring line using artificial neural network
– volume: 4
  start-page: 71
  year: 2010
  ident: 10.1016/j.oceaneng.2025.123604_bib15
  article-title: Design of the submerged floating tunnel operating under various conditions
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.08.009
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.oceaneng.2025.123604_bib14
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 139
  start-page: 156
  year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib32
  article-title: Acoustic emission technique to monitor crack growth in a mooring chain
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2018.04.034
– volume: 28
  start-page: 15
  issue: 6
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib45
  article-title: Short-term fatigue damage of tethers of long-span floating cable supported bridges under harsh waves
  publication-title: J. Mar. Sci. Technol.
– volume: 13
  start-page: 128
  issue: 2
  year: 2003
  ident: 10.1016/j.oceaneng.2025.123604_bib43
  article-title: Floating bridges: past and present
  publication-title: Struct. Eng. Int.
  doi: 10.2749/101686603777964810
– volume: 8
  start-page: 816
  issue: 10
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib17
  article-title: Static behaviors of a long-span cable-stayed bridge with a floating tower under dead loads
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse8100816
– volume: 138
  year: 2023
  ident: 10.1016/j.oceaneng.2025.123604_bib40
  article-title: Experimental study of floating bridge global response when subjected to waves and current
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2023.103588
– start-page: OTC
  year: 2011
  ident: 10.1016/j.oceaneng.2025.123604_bib13
  article-title: Mooring system integrity: deteriorative mechanisms on mooring systems and appropriate inspection techniques
– volume: 19
  start-page: 1633
  issue: 7
  year: 2019
  ident: 10.1016/j.oceaneng.2025.123604_bib24
  article-title: A novelty detection approach for tendons of prestressed concrete bridges based on a convolutional autoencoder and acceleration data
  publication-title: Sensors
  doi: 10.3390/s19071633
– volume: 59
  start-page: 122
  year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib1
  article-title: Hydrodynamic load modeling and analysis of a floating bridge in homogeneous wave conditions
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2018.01.007
– volume: 229
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib12
  article-title: A novel unsupervised deep learning approach for vibration-based damage diagnosis using a multi-head self-attention LSTM autoencoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114410
– volume: 51265
  year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib46
  article-title: Impact of hydrodynamic interaction between pontoons on global responses of a long floating bridge under wind waves
– volume: 306
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib42
  article-title: A review on design and analysis of floating bridges: numerical simulations, model tests and field measurements
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118065
– start-page: 563
  year: 2025
  ident: 10.1016/j.oceaneng.2025.123604_bib49
  article-title: Numerical investigation of hydrodynamic responses of straight floating bridge with pontoons
  publication-title: Lecture Notes in Civil Engineering.
  doi: 10.1007/978-981-96-4569-5_59
– volume: 227
  year: 2021
  ident: 10.1016/j.oceaneng.2025.123604_bib25
  article-title: Damage detection of catenary mooring line based on recurrent neural networks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108898
– volume: 90
  year: 2019
  ident: 10.1016/j.oceaneng.2025.123604_bib39
  article-title: Effects of wave directionality on extreme response for a long end-anchored floating bridge
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2019.05.028
– volume: 149
  issue: 9
  year: 2023
  ident: 10.1016/j.oceaneng.2025.123604_bib21
  article-title: Data set from long-term wave, wind, and response monitoring of the Bergsøysund bridge
  publication-title: J. Struct. Eng.
  doi: 10.1061/JSENDH.STENG-12095
– volume: 30
  year: 2017
  ident: 10.1016/j.oceaneng.2025.123604_bib37
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 324
  year: 2025
  ident: 10.1016/j.oceaneng.2025.123604_bib36
  article-title: Simplified analysis method for pontoon-supported floating bridges under waves
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2025.120758
– volume: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2025.123604_bib2
  article-title: Field measurements of inhomogeneous wave conditions in Bjørnafjorden
  publication-title: J. Waterw. Port, Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000481
– volume: 312
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib30
  article-title: Detecting failed tethers in submerged floating tunnels using an LSTM autoencoder and DNN algorithms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.119105
– start-page: 726
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib33
  article-title: LSTM-based structural pattern recognition for floating bridges
– volume: 45
  start-page: 634
  issue: 5
  year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib9
  article-title: Adaptable legged-magnetic adhesion tracked wheel robotic platform for misaligned mooring chain climbing and inspection
  publication-title: Ind. Robot: Int. J.
  doi: 10.1108/IR-04-2018-0074
– volume: 10
  start-page: 6591
  issue: 18
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib22
  article-title: Mooring-failure monitoring of submerged floating tunnel using deep neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app10186591
– volume: 52
  start-page: 188
  year: 2017
  ident: 10.1016/j.oceaneng.2025.123604_bib19
  article-title: Structural monitoring of an end-supported pontoon bridge
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2016.12.004
– ident: 10.1016/j.oceaneng.2025.123604_bib56
– volume: 53
  start-page: 599
  issue: 5
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib54
  article-title: Data-driven detection of mooring failures in offshore floating photovoltaics using artificial neural networks
  publication-title: Steel Compos. Struct.
– start-page: 3150
  year: 2025
  ident: 10.1016/j.oceaneng.2025.123604_bib55
  article-title: Enhanced structural health monitoring for large-scale offshore photovoltaic systems based on response pattern recognition
– volume: 277
  start-page: 114284
  year: 2023
  ident: 10.1016/j.oceaneng.2025.123604_bib52
  article-title: Estimation of unmeasured structural responses of submerged floating tunnels using pattern model trained via long short-term memory
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.114284
– ident: 10.1016/j.oceaneng.2025.123604_bib51
  doi: 10.1201/9781003322641-141
– volume: 36
  start-page: 682
  issue: 5
  year: 2022
  ident: 10.1016/j.oceaneng.2025.123604_bib47
  article-title: An improved time domain approach for analysis of floating bridges based on dynamic finite element method and state-space model
  publication-title: China Ocean Eng.
  doi: 10.1007/s13344-022-0061-4
– volume: 31
  start-page: 405
  issue: 5
  year: 2023
  ident: 10.1016/j.oceaneng.2025.123604_bib53
  article-title: Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition
  publication-title: Comp. Concr.
– volume: 165
  start-page: 123
  year: 2016
  ident: 10.1016/j.oceaneng.2025.123604_bib20
  article-title: Modelling the stochastic dynamic behaviour of a pontoon bridge: a case study
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2015.12.009
– volume: 11
  start-page: 29
  issue: 1–2
  year: 1998
  ident: 10.1016/j.oceaneng.2025.123604_bib34
  article-title: Dynamic analysis of floating bridges
  publication-title: Mar. Struct.
  doi: 10.1016/S0951-8339(97)00012-9
– year: 2018
  ident: 10.1016/j.oceaneng.2025.123604_bib18
  article-title: Mooring chain climbing robot for NDT inspection applications
– volume: 24
  start-page: 609
  issue: 4
  year: 2012
  ident: 10.1016/j.oceaneng.2025.123604_bib10
  article-title: Effect of escape device for submerged floating tunnel (SFT) on hydrodynamic loads applied to SFT
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(11)60284-9
– volume: 141
  issue: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2025.123604_bib3
  article-title: Numerical modeling and dynamic analysis of a floating bridge subjected to wind, wave, and current loads
  publication-title: J. Offshore Mech. Arctic Eng.
  doi: 10.1115/1.4040561
– volume: 216
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib6
  article-title: Floating offshore wind turbine mooring line sections health status nowcasting: from supervised shallow to weakly supervised deep learning
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111446
– year: 2017
  ident: 10.1016/j.oceaneng.2025.123604_bib31
– volume: 14
  start-page: 115
  issue: 2
  year: 2024
  ident: 10.1016/j.oceaneng.2025.123604_bib26
  article-title: Dynamic analysis of floating bridges under combined earthquakes and waves
  publication-title: Ocean Sys. Eng.
– volume: 9
  start-page: 5494
  issue: 24
  year: 2019
  ident: 10.1016/j.oceaneng.2025.123604_bib44
  article-title: Hydrodynamic behavior of submerged floating tunnels with suspension cables and towers under irregular waves
  publication-title: Appl. Sci.
  doi: 10.3390/app9245494
– volume: 209
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib5
  article-title: Detection of damaged mooring line based on deep neural networks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107522
– year: 2013
  ident: 10.1016/j.oceaneng.2025.123604_bib7
  article-title: Application of lessons learned from field experience to design, installation and maintenance of FPS moorings
– volume: 224
  year: 2025
  ident: 10.1016/j.oceaneng.2025.123604_bib27
  article-title: Local damage identification and nowcasting of mooring system using a noise-robust ConvMamba architecture
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.112092
– volume: 72
  year: 2020
  ident: 10.1016/j.oceaneng.2025.123604_bib8
  article-title: Inhomogeneous wave load effects on a long, straight and side-anchored floating pontoon bridge
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2020.102763
SSID ssj0006603
Score 2.4373095
Snippet Floating bridges offer a practical alternative to sea-crossing bridges in regions with deep water and poor seabed conditions. It consists of a superstructure...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 123604
SubjectTerms Damage detection and localization
Floating bridge
LSTM autoencoder
Measured motion response data
Multi-head self-attention
Title Unsupervised learning-based damage detection of mooring lines in floating bridges
URI https://dx.doi.org/10.1016/j.oceaneng.2025.123604
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6loYe2Eiq0qFCo9tAbMvVjsXePqKJqewAqQMrN2pfbRMSOSIL4-cx6dx3TohYOvVjRxl6vPV9mvpnMzAJ8lFTFqdJFJAzSN8pFHnEqZBRLtAdG5IkUot1sojg5YaMRPxsMzkMtzM1VUdfs9pbP_quocQyFbUtnnyDublIcwM8odDyi2PH4KMFf1vPlzGqAOXJJvynEz8haK72vxdTm6GizMCpQxWnjcvAs32yTY6urRrTJ0L4FRJ-_niobuTerJoadwFwvgnPT4Hdd2Cbk-45_LXv_9k_dmahmJn7Yhx3SNuzgCi-7MgBuzRvrq9KMZj1laBu7uL2F_9DTLmQwOWjsqnHR6KinhwerC-43xv7NYHVphCFDbVKGeUo7T-nmeQZraXHI2RDWjr4dj753BjrP4yxk_tgn6BWOP7yihzlLj4dcvIZ170CQIyf4DRiYehNe9tpKbsKrVkq-F_kb-NFHBLmPCOIQQTpEkKYiHhGkRQQZ1yQggnhEvIXLL8cXn79GfieNSKG7TSNNqUpElWSKaZPIuFAZlfgjlcguK6GMzqsiZYxJQVnKFaM601USG-TmFZVMZ1swrJvavANCU2VyVsU5OrpIPqU0iVG2vpoLdO0N24ZP4V2VM9cwpfy7nLaBh1daetrn6FyJaPnHtTtPvtt7eLGC8y4MF9dLswfP1c1iPL_-4KFyB1fwfik
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+learning-based+damage+detection+of+mooring+lines+in+floating+bridges&rft.jtitle=Ocean+engineering&rft.au=Min%2C+Seongi&rft.au=Song%2C+Jihun&rft.au=Kim%2C+Seungjun&rft.date=2026-01-15&rft.issn=0029-8018&rft.volume=343&rft.spage=123604&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.123604&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_123604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon