Applying cluster analysis to identify target buildings for energy retrofit: An alternative to change-point model
Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a...
Saved in:
| Published in: | Energy and buildings Vol. 351; p. 116742 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.01.2026
|
| Subjects: | |
| ISSN: | 0378-7788 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a method for applying cluster analysis to determine energy-inefficient buildings, addressing CPM limitations. Considering the scarcity of high-frequency energy data for existing buildings, monthly gas consumption data from 344 apartment buildings in Ulsan, South Korea, were used. The study was conducted in two phases. In Phase I, CPM and k-means algorithm were used to identify energy inefficient buildings from 114 buildings meeting CPM requirements. Phase II expanded the method to all 344 buildings, and the identified energy retrofit target buildings were analyzed. Results from Phase I indicated consistency in the buildings identified as energy inefficient by the k-means and CPM methods. When applied to the entire dataset, including buildings excluded by CPM requirements, k-means algorithm effectively identified buildings in need of energy retrofit regardless of consistency in energy use. With a silhouette score of 0.72, the clustering algorithm identified 21 buildings with monthly gas consumption 2.6 kWh/m2 above average, indicating well-structured clusters and effective identification of energy-inefficient buildings. These findings establish a basis for the use of cluster analysis to overcome the limitation of CPM application for large-scale building energy assessment. The proposed method presents a potential application in facilitating the implementation of energy upgrade of existing building stock by prioritizing the best targets for energy retrofit. |
|---|---|
| AbstractList | Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a method for applying cluster analysis to determine energy-inefficient buildings, addressing CPM limitations. Considering the scarcity of high-frequency energy data for existing buildings, monthly gas consumption data from 344 apartment buildings in Ulsan, South Korea, were used. The study was conducted in two phases. In Phase I, CPM and k-means algorithm were used to identify energy inefficient buildings from 114 buildings meeting CPM requirements. Phase II expanded the method to all 344 buildings, and the identified energy retrofit target buildings were analyzed. Results from Phase I indicated consistency in the buildings identified as energy inefficient by the k-means and CPM methods. When applied to the entire dataset, including buildings excluded by CPM requirements, k-means algorithm effectively identified buildings in need of energy retrofit regardless of consistency in energy use. With a silhouette score of 0.72, the clustering algorithm identified 21 buildings with monthly gas consumption 2.6 kWh/m2 above average, indicating well-structured clusters and effective identification of energy-inefficient buildings. These findings establish a basis for the use of cluster analysis to overcome the limitation of CPM application for large-scale building energy assessment. The proposed method presents a potential application in facilitating the implementation of energy upgrade of existing building stock by prioritizing the best targets for energy retrofit. |
| ArticleNumber | 116742 |
| Author | Irakoze, Amina So-I, Seok Kim, Kee Han |
| Author_xml | – sequence: 1 givenname: Amina surname: Irakoze fullname: Irakoze, Amina organization: Department of Architectural Engineering, University of Ulsan, Ulsan 44610, South Korea – sequence: 2 givenname: Seok surname: So-I fullname: So-I, Seok organization: Green Building Certification Division, EnertecUnited, Busan, South Korea – sequence: 3 givenname: Kee Han surname: Kim fullname: Kim, Kee Han email: keehankim@ulsan.ac.kr organization: Department of Architectural Engineering, University of Ulsan, Ulsan 44610, South Korea |
| BookMark | eNqFkMtqwzAQRbVIoUnaTyjoB-xKfrubEkJfEOimXQs9Rq6CIhlJCfjv6zTZFwZmYOYehrNCC-cdIPRASU4JbR73OThxNFblBSnqnNKmrYoFWpKy7bK27bpbtIpxTwhp6pYu0bgZRzsZN2BpjzFBwNxxO0UTcfLYKHDJ6AknHgZI-I88H0esfcDgIAwTDpCC1yY94Y3D3M4Mx5M5wRkgf7gbIBu9cQkfvAJ7h240txHur32Nvl9fvrbv2e7z7WO72WWSkqLISi36XlBRztVUXaVEVchaN20tKtXReaa866gqaU8lbUQv5LzhZa-01kqLco3qC1cGH2MAzcZgDjxMjBJ2VsX27KqKnVWxi6o593zJwfzcyUBgURpwEpQJIBNT3vxD-AUGtXuu |
| Cites_doi | 10.1080/23744731.2016.1215199 10.1016/j.enbuild.2015.04.032 10.1016/j.scs.2023.104471 10.1088/1742-6596/1361/1/012015 10.1016/j.buildenv.2018.04.039 10.1007/978-981-19-1280-1_14 10.1016/j.egypro.2017.09.545 10.1016/j.buildenv.2014.12.023 10.1109/TPWRS.2006.873122 10.1016/j.rser.2021.110714 10.3390/buildings12101717 10.3390/en11030649 10.1080/23744731.2019.1565550 10.1016/j.enbuild.2019.109603 10.1016/j.rser.2021.111284 10.1016/j.buildenv.2018.05.035 10.1016/j.enbuild.2015.02.017 10.3390/su13094889 10.33096/ilkom.v16i3.2325.330-342 10.1016/j.enbuild.2015.08.032 10.1177/0143624416681382 10.1007/978-3-031-60318-1_3 10.1016/j.apenergy.2009.12.007 10.1109/ISSNIP.2014.6827661 10.1016/j.enbuild.2017.11.007 10.3390/en17164186 10.1007/s12273-017-0377-9 10.3390/app9122475 10.1109/ACCESS.2023.3327640 10.1109/ICMLA.2015.18 10.3130/jaabe.15.41 10.1016/j.enbuild.2015.03.036 10.3390/su15065211 10.1109/ICNIT.2010.5508461 10.1016/j.enbuild.2021.111054 10.1016/0306-2619(87)90012-2 10.1007/s12273-019-0540-6 10.1016/j.enbuild.2020.110639 10.1016/j.rser.2017.09.108 10.1016/j.apenergy.2018.12.025 10.1016/j.enbuild.2018.06.035 10.1016/j.apenergy.2015.12.088 10.12813/kieae.2017.17.6.025 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.enbuild.2025.116742 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enbuild_2025_116742 S0378778825014720 |
| GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL SDF SDG SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- ~HD --K 29G 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 M41 R2- RPZ SAC SET WUQ ZMT ZY4 |
| ID | FETCH-LOGICAL-c1022-3fb99b1b31b36484db42c5f675b4d812c51a881d3191c16b9bc5b4a39dfffdfb3 |
| ISSN | 0378-7788 |
| IngestDate | Thu Nov 27 00:48:28 EST 2025 Sat Nov 29 17:14:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster analysis K-means algorithm Change-point model Energy retrofit |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1022-3fb99b1b31b36484db42c5f675b4d812c51a881d3191c16b9bc5b4a39dfffdfb3 |
| ParticipantIDs | crossref_primary_10_1016_j_enbuild_2025_116742 elsevier_sciencedirect_doi_10_1016_j_enbuild_2025_116742 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-15 |
| PublicationDateYYYYMMDD | 2026-01-15 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy and buildings |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Amasyali, El-Gohary (b0055) 2021; 142 Do, Cetin (b0100) 2018; 138 Lukianchenko, P. and D. Kopylov. Comparative Analysis of Traditional Machine Learning Approaches for Time Series Clustering Under Colored Noise. in International Scientific and Practical Conference on Information Technologies and Intelligent Decision Making Systems. 2023. Springer. https://doi.org/10.1007/978-3-031-60318-1_3. Marrone (b0270) 2018; 11 International Energy Agency (IEA). Available online: https://www.iea.org/reports/transition-to-sustainable-buildings (accessed on 20 December 2024). Kissock, Haberl, Claridge (b0025) 2003; 109 Bu (b0140) 2014 Science and Technology for the Built Environment, 20 Kaur, A., P. Kumar, and P. Kumar. Effect of noise on the performance of clustering techniques. in 2010 International Conference on Networking and Information Technology. 2010. IEEE.10.1109/ICNIT.2010.5508461. 2014. IEEE. 10.1109/ISSNIP.2014.6827661. Jeong (b0010) 2021; 37 Mononen, M., et al. Han (b0205) 2019; 9 Yulisasih (b0265) 2024; 16 Singh, V., P. T Agami Reddy PhD, and P. Bass Abushakra PhD Wei (b0235) 2018; 82 Abushakra, B. and M.T. Paulus Jin (b0200) 2020; 207 Miraftabzadeh (b0240) 2023; 11 Amoruso (b0020) 2021; 13 Hammarsten (b0065) 1987; 26 in Kim (b0245) 2022; 12 Afroz (b0035) 2021; 244 Science and Technology for the Built Environment, 2019. Park (b0190) 2019; 236 Burak Gunay, H., et al. Milić, Rohdin, Moshfegh (b0095) 2021; 231 Kim, Haberl (b0085) 2015; 99 Chicco, Napoli, Piglione (b0145) 2006; 21 Uhn Ahn (b0175) 2017 2015. IEEE. doi: 10.1109/ICMLA.2015.18. 2014. Bak, Yoon (b0260) 2021; 148 Jafari-Marandi, Hu, Omitaomu (b0150) 2016; 165 Korea City Gas Association. Available online: www.citygas.or.kr (accessed on 6 August 2023). Kissock, J.K., J.S. Haberl, and D.E. Claridge (4): p. 488-503.https://doi.org/10.1080/23744731.2019.1565550. 2002, The American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA. p. 41-63. Rivallain (b0170) 2019 2019. IOP Publishing.10.1088/1742-6596/1361/1/012015. Zhang (b0030) 2015; 86 İşeri, O.K. and İ.G. Dino. Building archetype characterization using K-means clustering in urban building energy models. in International Conference on Computer-Aided Architectural Design Futures. 2021. Springer.https://doi.org/10.1007/978-981-19-1280-1_14. p. 397. Gaitani (b0125) 2010; 87 Gassar, Yun, Kim (b0060) 2019; 187 An, Yan, Hong (b0105) 2018; 174 Do, Cetin (b0215) 2019 Melzi, F.N., et al. ASHRAE Transactions, 2014. Arambula Lara, R., et al. Pieri, Santamouris (b0115) 2015; 94 Capozzoli, Piscitelli, Brandi (b0165) 2017; 134 MOLIT. Ministry of land, infrastructure and transport. Building life history management system. Available on https://blcm.go.kr/cmm/main/mainPage.do. Accessed on 24 October 2022. Wu (b0180) 2023; 15 2002, Energy Systems Laboratory, Texas A&M University. Byun, Choi (b0195) 2018; 15 Nainggolan, R., et al. Pan (b0110) 2017 Marrone (b0230) 2018; 11 Deb, Lee (b0225) 2018; 159 Irakoze, Choi, Kim (b0250) 2024; 17 Yan (b0185) 2015; 107 Tardioli (b0135) 2018; 140 Hitchin (b0070) 2017; 38 ASHRAE (7): p. 984-995.https://doi.org/10.1080/23744731.2016.1215199. Lara (b0130) 2015; 95 Choi, Jeon, Do (b0275) 2017; 17 Choi, Yoon (b0280) 2023; 92 Hammarsten (10.1016/j.enbuild.2025.116742_b0065) 1987; 26 Gaitani (10.1016/j.enbuild.2025.116742_b0125) 2010; 87 10.1016/j.enbuild.2025.116742_b0090 Milić (10.1016/j.enbuild.2025.116742_b0095) 2021; 231 Kim (10.1016/j.enbuild.2025.116742_b0245) 2022; 12 Do (10.1016/j.enbuild.2025.116742_b0215) 2019 Bak (10.1016/j.enbuild.2025.116742_b0260) 2021; 148 Amasyali (10.1016/j.enbuild.2025.116742_b0055) 2021; 142 10.1016/j.enbuild.2025.116742_b0120 Miraftabzadeh (10.1016/j.enbuild.2025.116742_b0240) 2023; 11 10.1016/j.enbuild.2025.116742_b0285 Zhang (10.1016/j.enbuild.2025.116742_b0030) 2015; 86 10.1016/j.enbuild.2025.116742_b0045 Do (10.1016/j.enbuild.2025.116742_b0100) 2018; 138 10.1016/j.enbuild.2025.116742_b0160 Tardioli (10.1016/j.enbuild.2025.116742_b0135) 2018; 140 10.1016/j.enbuild.2025.116742_b0040 Jeong (10.1016/j.enbuild.2025.116742_b0010) 2021; 37 10.1016/j.enbuild.2025.116742_b0005 Byun (10.1016/j.enbuild.2025.116742_b0195) 2018; 15 Irakoze (10.1016/j.enbuild.2025.116742_b0250) 2024; 17 Bu (10.1016/j.enbuild.2025.116742_b0140) 2014 Afroz (10.1016/j.enbuild.2025.116742_b0035) 2021; 244 10.1016/j.enbuild.2025.116742_b0080 Marrone (10.1016/j.enbuild.2025.116742_b0230) 2018; 11 10.1016/j.enbuild.2025.116742_b0075 Jin (10.1016/j.enbuild.2025.116742_b0200) 2020; 207 10.1016/j.enbuild.2025.116742_b0155 Kissock (10.1016/j.enbuild.2025.116742_b0025) 2003; 109 An (10.1016/j.enbuild.2025.116742_b0105) 2018; 174 Gassar (10.1016/j.enbuild.2025.116742_b0060) 2019; 187 Capozzoli (10.1016/j.enbuild.2025.116742_b0165) 2017; 134 Yan (10.1016/j.enbuild.2025.116742_b0185) 2015; 107 Marrone (10.1016/j.enbuild.2025.116742_b0270) 2018; 11 Wu (10.1016/j.enbuild.2025.116742_b0180) 2023; 15 Hitchin (10.1016/j.enbuild.2025.116742_b0070) 2017; 38 Pieri (10.1016/j.enbuild.2025.116742_b0115) 2015; 94 Kim (10.1016/j.enbuild.2025.116742_b0085) 2015; 99 10.1016/j.enbuild.2025.116742_b0220 Lara (10.1016/j.enbuild.2025.116742_b0130) 2015; 95 Rivallain (10.1016/j.enbuild.2025.116742_b0170) 2019 Park (10.1016/j.enbuild.2025.116742_b0190) 2019; 236 Han (10.1016/j.enbuild.2025.116742_b0205) 2019; 9 Choi (10.1016/j.enbuild.2025.116742_b0280) 2023; 92 Chicco (10.1016/j.enbuild.2025.116742_b0145) 2006; 21 Amoruso (10.1016/j.enbuild.2025.116742_b0020) 2021; 13 Uhn Ahn (10.1016/j.enbuild.2025.116742_b0175) 2017 Jafari-Marandi (10.1016/j.enbuild.2025.116742_b0150) 2016; 165 Deb (10.1016/j.enbuild.2025.116742_b0225) 2018; 159 10.1016/j.enbuild.2025.116742_b0210 10.1016/j.enbuild.2025.116742_b0050 Wei (10.1016/j.enbuild.2025.116742_b0235) 2018; 82 Yulisasih (10.1016/j.enbuild.2025.116742_b0265) 2024; 16 Pan (10.1016/j.enbuild.2025.116742_b0110) 2017 10.1016/j.enbuild.2025.116742_b0255 Choi (10.1016/j.enbuild.2025.116742_b0275) 2017; 17 10.1016/j.enbuild.2025.116742_b0015 |
| References_xml | – reference: Science and Technology for the Built Environment, 2019. – reference: . in – volume: 38 start-page: 318 year: 2017 end-page: 326 ident: b0070 publication-title: Build. Serv. Eng. Res. Technol. – volume: 94 start-page: 252 year: 2015 end-page: 262 ident: b0115 publication-title: Energ. Buildings – volume: 82 start-page: 1027 year: 2018 end-page: 1047 ident: b0235 publication-title: Renew. Sustain. Energy Rev. – volume: 21 start-page: 933 year: 2006 end-page: 940 ident: b0145 publication-title: IEEE Trans. Power Syst. – volume: 159 start-page: 228 year: 2018 end-page: 245 ident: b0225 publication-title: Energ. Buildings – reference: . 2019. IOP Publishing.10.1088/1742-6596/1361/1/012015. – volume: 109 start-page: 425 year: 2003 ident: b0025 publication-title: ASHRAE Trans. – volume: 15 year: 2023 ident: b0180 publication-title: Sustainability – reference: (7): p. 984-995.https://doi.org/10.1080/23744731.2016.1215199. – volume: 86 start-page: 177 year: 2015 end-page: 190 ident: b0030 publication-title: Build. Environ. – volume: 17 start-page: 25 year: 2017 end-page: 31 ident: b0275 publication-title: KIEAE Journal – year: 2019 ident: b0170 publication-title: Build. Simul. – reference: Lukianchenko, P. and D. Kopylov. Comparative Analysis of Traditional Machine Learning Approaches for Time Series Clustering Under Colored Noise. in International Scientific and Practical Conference on Information Technologies and Intelligent Decision Making Systems. 2023. Springer. https://doi.org/10.1007/978-3-031-60318-1_3. – volume: 107 start-page: 264 year: 2015 end-page: 278 ident: b0185 publication-title: Energ. Buildings – volume: 9 year: 2019 ident: b0205 publication-title: Appl. Sci. – volume: 244 year: 2021 ident: b0035 publication-title: Energ. Buildings – reference: ASHRAE, – volume: 138 start-page: 194 year: 2018 end-page: 206 ident: b0100 publication-title: Build. Environ. – reference: Burak Gunay, H., et al., – year: 2017 ident: b0175 publication-title: Build. Simul. – volume: 16 start-page: 330 year: 2024 end-page: 342 ident: b0265 publication-title: ILKOM Jurnal Ilmiah – volume: 187 year: 2019 ident: b0060 publication-title: Energy – volume: 99 start-page: 140 year: 2015 end-page: 152 ident: b0085 publication-title: Energ. Buildings – reference: Science and Technology for the Built Environment, 20 – volume: 207 year: 2020 ident: b0200 publication-title: Energ. Buildings – volume: 26 start-page: 97 year: 1987 end-page: 110 ident: b0065 publication-title: Appl. Energy – reference: International Energy Agency (IEA). Available online: https://www.iea.org/reports/transition-to-sustainable-buildings (accessed on 20 December 2024). – volume: 13 year: 2021 ident: b0020 publication-title: Sustainability – volume: 140 start-page: 90 year: 2018 end-page: 106 ident: b0135 publication-title: Build. Environ. – reference: Singh, V., P. T Agami Reddy PhD, and P. Bass Abushakra PhD, – reference: Mononen, M., et al. – volume: 17 year: 2024 ident: b0250 publication-title: Energies – reference: Arambula Lara, R., et al., – reference: : p. 397. – reference: Kaur, A., P. Kumar, and P. Kumar. Effect of noise on the performance of clustering techniques. in 2010 International Conference on Networking and Information Technology. 2010. IEEE.10.1109/ICNIT.2010.5508461. – volume: 12 start-page: 1717 year: 2022 ident: b0245 publication-title: Buildings – volume: 165 start-page: 393 year: 2016 end-page: 404 ident: b0150 publication-title: Appl. Energy – reference: MOLIT. Ministry of land, infrastructure and transport. Building life history management system. Available on https://blcm.go.kr/cmm/main/mainPage.do. Accessed on 24 October 2022. – volume: 148 year: 2021 ident: b0260 publication-title: Renew. Sustain. Energy Rev. – volume: 231 year: 2021 ident: b0095 publication-title: Energ. Buildings – reference: Melzi, F.N., et al. – reference: . 2014. IEEE. 10.1109/ISSNIP.2014.6827661. – volume: 236 start-page: 1280 year: 2019 end-page: 1295 ident: b0190 publication-title: Appl. Energy – volume: 11 year: 2018 ident: b0270 publication-title: Energies – reference: Kissock, J.K., J.S. Haberl, and D.E. Claridge, – volume: 11 year: 2018 ident: b0230 publication-title: Energies – volume: 174 start-page: 214 year: 2018 end-page: 227 ident: b0105 publication-title: Energ. Buildings – year: 2014 ident: b0140 publication-title: In – reference: . 2015. IEEE. doi: 10.1109/ICMLA.2015.18. – volume: 15 start-page: 41 year: 2018 end-page: 48 ident: b0195 publication-title: Journal of Asian Architecture and Building Engineering – reference: . 2002, Energy Systems Laboratory, Texas A&M University. – reference: . 2002, The American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA. p. 41-63. – volume: 142 year: 2021 ident: b0055 publication-title: Renew. Sustain. Energy Rev. – reference: Korea City Gas Association. Available online: www.citygas.or.kr (accessed on 6 August 2023). – volume: 95 start-page: 160 year: 2015 end-page: 171 ident: b0130 publication-title: Energ. Buildings – reference: (4): p. 488-503.https://doi.org/10.1080/23744731.2019.1565550. – reference: ASHRAE Transactions, 2014. – reference: 2014. – reference: Abushakra, B. and M.T. Paulus, – volume: 92 year: 2023 ident: b0280 publication-title: Sustain. Cities Soc. – year: 2017 ident: b0110 publication-title: Build. Simul. – volume: 134 start-page: 865 year: 2017 end-page: 874 ident: b0165 publication-title: Energy Procedia – reference: İşeri, O.K. and İ.G. Dino. Building archetype characterization using K-means clustering in urban building energy models. in International Conference on Computer-Aided Architectural Design Futures. 2021. Springer.https://doi.org/10.1007/978-981-19-1280-1_14. – volume: 37 start-page: 189 year: 2021 end-page: 197 ident: b0010 publication-title: Journal of the Architectural Institute of Korea – volume: 11 start-page: 119596 year: 2023 end-page: 119633 ident: b0240 publication-title: IEEE Access – reference: Nainggolan, R., et al. – volume: 87 start-page: 2079 year: 2010 end-page: 2086 ident: b0125 publication-title: Appl. Energy – year: 2019 ident: b0215 publication-title: Build. Simul. – ident: 10.1016/j.enbuild.2025.116742_b0220 – ident: 10.1016/j.enbuild.2025.116742_b0080 doi: 10.1080/23744731.2016.1215199 – volume: 99 start-page: 140 year: 2015 ident: 10.1016/j.enbuild.2025.116742_b0085 article-title: Development of methodology for calibrated simulation in single-family residential buildings using three-parameter change-point regression model publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.04.032 – year: 2017 ident: 10.1016/j.enbuild.2025.116742_b0175 article-title: Big-data analysis on energy consumption of office buildings in Seoul, Korea publication-title: Build. Simul. – volume: 92 year: 2023 ident: 10.1016/j.enbuild.2025.116742_b0280 article-title: Energy signature-based clustering using open data for urban building energy analysis toward carbon neutrality: a case study on electricity change under COVID-19 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2023.104471 – ident: 10.1016/j.enbuild.2025.116742_b0255 doi: 10.1088/1742-6596/1361/1/012015 – volume: 138 start-page: 194 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0100 article-title: Evaluation of the causes and impact of outliers on residential building energy use prediction using inverse modeling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.04.039 – ident: 10.1016/j.enbuild.2025.116742_b0210 – ident: 10.1016/j.enbuild.2025.116742_b0285 doi: 10.1007/978-981-19-1280-1_14 – ident: 10.1016/j.enbuild.2025.116742_b0040 – volume: 134 start-page: 865 year: 2017 ident: 10.1016/j.enbuild.2025.116742_b0165 article-title: Mining typical load profiles in buildings to support energy management in the smart city context publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.545 – volume: 86 start-page: 177 year: 2015 ident: 10.1016/j.enbuild.2025.116742_b0030 article-title: Comparisons of inverse modeling approaches for predicting building energy performance publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.12.023 – volume: 21 start-page: 933 issue: 2 year: 2006 ident: 10.1016/j.enbuild.2025.116742_b0145 article-title: Comparisons among clustering techniques for electricity customer classification publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.873122 – volume: 142 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0055 article-title: Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110714 – volume: 12 start-page: 1717 issue: 10 year: 2022 ident: 10.1016/j.enbuild.2025.116742_b0245 article-title: Simplified weather-related building energy disaggregation and change-point regression: heating and cooling energy use perspective publication-title: Buildings doi: 10.3390/buildings12101717 – volume: 11 issue: 3 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0230 article-title: Energy benchmarking in educational buildings through cluster analysis of energy retrofitting publication-title: Energies doi: 10.3390/en11030649 – ident: 10.1016/j.enbuild.2025.116742_b0090 doi: 10.1080/23744731.2019.1565550 – ident: 10.1016/j.enbuild.2025.116742_b0005 – volume: 207 year: 2020 ident: 10.1016/j.enbuild.2025.116742_b0200 article-title: Estimation of energy use and CO2 emission intensities by end use in south Korean apartment units based on in situ measurements publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2019.109603 – ident: 10.1016/j.enbuild.2025.116742_b0120 – volume: 148 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0260 article-title: Dwelling infiltration and heating energy demand in multifamily high-rise and low-energy buildings in Korea publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111284 – volume: 140 start-page: 90 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0135 article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.05.035 – ident: 10.1016/j.enbuild.2025.116742_b0015 – volume: 94 start-page: 252 year: 2015 ident: 10.1016/j.enbuild.2025.116742_b0115 article-title: Identifying energy consumption patterns in the Attica hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.02.017 – volume: 13 issue: 9 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0020 article-title: Sustainable building legislation and incentives in korea: a case-study-based comparison of building new and renovation publication-title: Sustainability doi: 10.3390/su13094889 – volume: 109 start-page: 425 year: 2003 ident: 10.1016/j.enbuild.2025.116742_b0025 article-title: Inverse modeling toolkit: Numerical algorithms publication-title: ASHRAE Trans. – volume: 16 start-page: 330 issue: 3 year: 2024 ident: 10.1016/j.enbuild.2025.116742_b0265 article-title: Evaluation of K-Means Clustering using Silhouette score Method on Customer Segmentation publication-title: ILKOM Jurnal Ilmiah doi: 10.33096/ilkom.v16i3.2325.330-342 – volume: 187 year: 2019 ident: 10.1016/j.enbuild.2025.116742_b0060 article-title: Data-driven approach to prediction of residential energy consumption at urban scales in London publication-title: Energy – volume: 107 start-page: 264 year: 2015 ident: 10.1016/j.enbuild.2025.116742_b0185 article-title: Occupant behavior modeling for building performance simulation: current state and future challenges publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.08.032 – volume: 38 start-page: 318 issue: 3 year: 2017 ident: 10.1016/j.enbuild.2025.116742_b0070 article-title: Monthly utilisation factors for building energy calculations publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/0143624416681382 – ident: 10.1016/j.enbuild.2025.116742_b0045 doi: 10.1007/978-3-031-60318-1_3 – volume: 87 start-page: 2079 issue: 6 year: 2010 ident: 10.1016/j.enbuild.2025.116742_b0125 article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.007 – volume: 37 start-page: 189 issue: 10 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0010 article-title: Scenario to reduce greenhouse gas emissions in building sector towards the goal of carbon neutrality by 2050 publication-title: Journal of the Architectural Institute of Korea – ident: 10.1016/j.enbuild.2025.116742_b0160 doi: 10.1109/ISSNIP.2014.6827661 – volume: 159 start-page: 228 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0225 article-title: Determining key variables influencing energy consumption in office buildings through cluster analysis of pre-and post-retrofit building data publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2017.11.007 – volume: 17 issue: 16 year: 2024 ident: 10.1016/j.enbuild.2025.116742_b0250 article-title: Doing more with less: applying Low-Frequency Energy Data to Define thermal Performance of House units and Energy-Saving Opportunities publication-title: Energies doi: 10.3390/en17164186 – year: 2017 ident: 10.1016/j.enbuild.2025.116742_b0110 article-title: Cluster analysis for occupant-behavior based electricity load patterns in buildings: a case study in Shanghai residences publication-title: Build. Simul. doi: 10.1007/s12273-017-0377-9 – year: 2019 ident: 10.1016/j.enbuild.2025.116742_b0170 article-title: Clustering as a simplification tool for the decision-making process on building stock renovation publication-title: Build. Simul. – volume: 9 issue: 12 year: 2019 ident: 10.1016/j.enbuild.2025.116742_b0205 article-title: An indirect Measurement Method for Gas Consumption of a Diaphragm Gas Meter based on Gas pressure Signal Detection publication-title: Appl. Sci. doi: 10.3390/app9122475 – volume: 11 start-page: 119596 year: 2023 ident: 10.1016/j.enbuild.2025.116742_b0240 article-title: K-means and alternative clustering methods in modern power systems publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3327640 – ident: 10.1016/j.enbuild.2025.116742_b0155 doi: 10.1109/ICMLA.2015.18 – volume: 15 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0195 article-title: A Typology of Korean Housing units: In Search of Spatial Configuration publication-title: Journal of Asian Architecture and Building Engineering doi: 10.3130/jaabe.15.41 – volume: 95 start-page: 160 year: 2015 ident: 10.1016/j.enbuild.2025.116742_b0130 article-title: Energy audit of schools by means of cluster analysis publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2015.03.036 – ident: 10.1016/j.enbuild.2025.116742_b0075 – volume: 15 issue: 6 year: 2023 ident: 10.1016/j.enbuild.2025.116742_b0180 article-title: Benchmarking evaluation of building energy consumption based on data mining publication-title: Sustainability doi: 10.3390/su15065211 – ident: 10.1016/j.enbuild.2025.116742_b0050 doi: 10.1109/ICNIT.2010.5508461 – volume: 244 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0035 article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2021.111054 – volume: 26 start-page: 97 issue: 2 year: 1987 ident: 10.1016/j.enbuild.2025.116742_b0065 article-title: A critical appraisal of energy-signature models publication-title: Appl. Energy doi: 10.1016/0306-2619(87)90012-2 – year: 2019 ident: 10.1016/j.enbuild.2025.116742_b0215 article-title: Improvement of inverse change-point modeling of electricity consumption in residential buildings across multiple climate zones publication-title: Build. Simul. doi: 10.1007/s12273-019-0540-6 – volume: 11 issue: 3 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0270 article-title: Energy Benchmarking in Educational buildings through Cluster Analysis of Energy Retrofitting publication-title: Energies doi: 10.3390/en11030649 – volume: 231 year: 2021 ident: 10.1016/j.enbuild.2025.116742_b0095 article-title: Further development of the change-point model–Differentiating thermal power characteristics for a residential district in a cold climate publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2020.110639 – volume: 82 start-page: 1027 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0235 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.108 – volume: 236 start-page: 1280 year: 2019 ident: 10.1016/j.enbuild.2025.116742_b0190 article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.025 – volume: 174 start-page: 214 year: 2018 ident: 10.1016/j.enbuild.2025.116742_b0105 article-title: Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2018.06.035 – volume: 165 start-page: 393 year: 2016 ident: 10.1016/j.enbuild.2025.116742_b0150 article-title: A distributed decision framework for building clusters with different heterogeneity settings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.088 – volume: 17 start-page: 25 issue: 6 year: 2017 ident: 10.1016/j.enbuild.2025.116742_b0275 article-title: Establishment of Gas Energy Consumption basic unit by Building using Cluster Analysis publication-title: KIEAE Journal doi: 10.12813/kieae.2017.17.6.025 – year: 2014 ident: 10.1016/j.enbuild.2025.116742_b0140 article-title: A hierarchical classification algorithm for evaluating energy consumption behaviors |
| SSID | ssj0006571 |
| Score | 2.4785366 |
| Snippet | Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 116742 |
| SubjectTerms | Change-point model Cluster analysis Energy retrofit K-means algorithm |
| Title | Applying cluster analysis to identify target buildings for energy retrofit: An alternative to change-point model |
| URI | https://dx.doi.org/10.1016/j.enbuild.2025.116742 |
| Volume | 351 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7788 databaseCode: AIEXJ dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006571 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF58HfQgPrG-2IO3kppnk3grolgFEazQW8huslAfSWmjiL_e2Z3dWG0RFYQSSspOws7Xzcxsvm8IOYJnutOOOfy_Uzu0fNfPLQhiuSW4HWUsYsLn2GwivL6O-v34RssTjFU7gbAootfXePivroZz4GxJnf2Fu2ujcAK-g9PhCG6H448cL-NKxV3ij89SBaGZGt0RCDMHipcrIORUb4A3me6KPUbpbyQCjvJKdvI2RUO1oV6gQDiYQKqwNSwHRYWNdD5V99GELMfXtmv4jdKH8g0rqE-6bbeq7pRWV1Vh87LmDekuz1d53rzQANa1CVfVJpCdiQWzKdIMErUgcQ1D7OZnFmEPZWenFnSsLdy3pBAE3DQk9G7QkntHqMn1RSv7VtqWpl25XRq69jxZdMMghuVusdM961_WD-l2oHLx-l4-yF3HMy82O2yZCEV6a2RV5xC0g75fJ3N5sUFWJpQlN8nQoIBqFFCDAlqV1KCAIgpo7SkKKKCIAmpQcEI7BZ3AgDQwiQGqMLBF7s7PeqcXlm6uYXFHMTgEi2PmMA8-bT_yM-a7PBCQPzI_g6iPB04aQTIDS7TDnTaLGYdfUi_OhBCZYN42WSjKIt8h1EtFKriMFG3mhzaTgkQ2PDaj1IHxAW-Qlpm7ZIgaKol5ufA-0ZOdyMlOcLIbJDIznOhAEAO8BGDx_dDdvw_dI8sfGN4nC9XoOT8gS_ylGoxHhxpA75khiSs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+cluster+analysis+to+identify+target+buildings+for+energy+retrofit%3A+An+alternative+to+change-point+model&rft.jtitle=Energy+and+buildings&rft.au=Irakoze%2C+Amina&rft.au=So-I%2C+Seok&rft.au=Kim%2C+Kee+Han&rft.date=2026-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=351&rft_id=info:doi/10.1016%2Fj.enbuild.2025.116742&rft.externalDocID=S0378778825014720 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |