Applying cluster analysis to identify target buildings for energy retrofit: An alternative to change-point model

Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a...

Full description

Saved in:
Bibliographic Details
Published in:Energy and buildings Vol. 351; p. 116742
Main Authors: Irakoze, Amina, So-I, Seok, Kim, Kee Han
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2026
Subjects:
ISSN:0378-7788
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a method for applying cluster analysis to determine energy-inefficient buildings, addressing CPM limitations. Considering the scarcity of high-frequency energy data for existing buildings, monthly gas consumption data from 344 apartment buildings in Ulsan, South Korea, were used. The study was conducted in two phases. In Phase I, CPM and k-means algorithm were used to identify energy inefficient buildings from 114 buildings meeting CPM requirements. Phase II expanded the method to all 344 buildings, and the identified energy retrofit target buildings were analyzed. Results from Phase I indicated consistency in the buildings identified as energy inefficient by the k-means and CPM methods. When applied to the entire dataset, including buildings excluded by CPM requirements, k-means algorithm effectively identified buildings in need of energy retrofit regardless of consistency in energy use. With a silhouette score of 0.72, the clustering algorithm identified 21 buildings with monthly gas consumption 2.6 kWh/m2 above average, indicating well-structured clusters and effective identification of energy-inefficient buildings. These findings establish a basis for the use of cluster analysis to overcome the limitation of CPM application for large-scale building energy assessment. The proposed method presents a potential application in facilitating the implementation of energy upgrade of existing building stock by prioritizing the best targets for energy retrofit.
AbstractList Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to characterize energy performance of buildings; however, its application is limited to buildings with consistent energy use. This study proposes a method for applying cluster analysis to determine energy-inefficient buildings, addressing CPM limitations. Considering the scarcity of high-frequency energy data for existing buildings, monthly gas consumption data from 344 apartment buildings in Ulsan, South Korea, were used. The study was conducted in two phases. In Phase I, CPM and k-means algorithm were used to identify energy inefficient buildings from 114 buildings meeting CPM requirements. Phase II expanded the method to all 344 buildings, and the identified energy retrofit target buildings were analyzed. Results from Phase I indicated consistency in the buildings identified as energy inefficient by the k-means and CPM methods. When applied to the entire dataset, including buildings excluded by CPM requirements, k-means algorithm effectively identified buildings in need of energy retrofit regardless of consistency in energy use. With a silhouette score of 0.72, the clustering algorithm identified 21 buildings with monthly gas consumption 2.6 kWh/m2 above average, indicating well-structured clusters and effective identification of energy-inefficient buildings. These findings establish a basis for the use of cluster analysis to overcome the limitation of CPM application for large-scale building energy assessment. The proposed method presents a potential application in facilitating the implementation of energy upgrade of existing building stock by prioritizing the best targets for energy retrofit.
ArticleNumber 116742
Author Irakoze, Amina
So-I, Seok
Kim, Kee Han
Author_xml – sequence: 1
  givenname: Amina
  surname: Irakoze
  fullname: Irakoze, Amina
  organization: Department of Architectural Engineering, University of Ulsan, Ulsan 44610, South Korea
– sequence: 2
  givenname: Seok
  surname: So-I
  fullname: So-I, Seok
  organization: Green Building Certification Division, EnertecUnited, Busan, South Korea
– sequence: 3
  givenname: Kee Han
  surname: Kim
  fullname: Kim, Kee Han
  email: keehankim@ulsan.ac.kr
  organization: Department of Architectural Engineering, University of Ulsan, Ulsan 44610, South Korea
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB-xKfrubEkJfEOimXQs9Rq6CIhlJCfjv6zTZFwZmYOYehrNCC-cdIPRASU4JbR73OThxNFblBSnqnNKmrYoFWpKy7bK27bpbtIpxTwhp6pYu0bgZRzsZN2BpjzFBwNxxO0UTcfLYKHDJ6AknHgZI-I88H0esfcDgIAwTDpCC1yY94Y3D3M4Mx5M5wRkgf7gbIBu9cQkfvAJ7h240txHur32Nvl9fvrbv2e7z7WO72WWSkqLISi36XlBRztVUXaVEVchaN20tKtXReaa866gqaU8lbUQv5LzhZa-01kqLco3qC1cGH2MAzcZgDjxMjBJ2VsX27KqKnVWxi6o593zJwfzcyUBgURpwEpQJIBNT3vxD-AUGtXuu
Cites_doi 10.1080/23744731.2016.1215199
10.1016/j.enbuild.2015.04.032
10.1016/j.scs.2023.104471
10.1088/1742-6596/1361/1/012015
10.1016/j.buildenv.2018.04.039
10.1007/978-981-19-1280-1_14
10.1016/j.egypro.2017.09.545
10.1016/j.buildenv.2014.12.023
10.1109/TPWRS.2006.873122
10.1016/j.rser.2021.110714
10.3390/buildings12101717
10.3390/en11030649
10.1080/23744731.2019.1565550
10.1016/j.enbuild.2019.109603
10.1016/j.rser.2021.111284
10.1016/j.buildenv.2018.05.035
10.1016/j.enbuild.2015.02.017
10.3390/su13094889
10.33096/ilkom.v16i3.2325.330-342
10.1016/j.enbuild.2015.08.032
10.1177/0143624416681382
10.1007/978-3-031-60318-1_3
10.1016/j.apenergy.2009.12.007
10.1109/ISSNIP.2014.6827661
10.1016/j.enbuild.2017.11.007
10.3390/en17164186
10.1007/s12273-017-0377-9
10.3390/app9122475
10.1109/ACCESS.2023.3327640
10.1109/ICMLA.2015.18
10.3130/jaabe.15.41
10.1016/j.enbuild.2015.03.036
10.3390/su15065211
10.1109/ICNIT.2010.5508461
10.1016/j.enbuild.2021.111054
10.1016/0306-2619(87)90012-2
10.1007/s12273-019-0540-6
10.1016/j.enbuild.2020.110639
10.1016/j.rser.2017.09.108
10.1016/j.apenergy.2018.12.025
10.1016/j.enbuild.2018.06.035
10.1016/j.apenergy.2015.12.088
10.12813/kieae.2017.17.6.025
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2025.116742
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2025_116742
S0378778825014720
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
~HD
--K
29G
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
M41
R2-
RPZ
SAC
SET
WUQ
ZMT
ZY4
ID FETCH-LOGICAL-c1022-3fb99b1b31b36484db42c5f675b4d812c51a881d3191c16b9bc5b4a39dfffdfb3
ISSN 0378-7788
IngestDate Thu Nov 27 00:48:28 EST 2025
Sat Nov 29 17:14:46 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Cluster analysis
K-means algorithm
Change-point model
Energy retrofit
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1022-3fb99b1b31b36484db42c5f675b4d812c51a881d3191c16b9bc5b4a39dfffdfb3
ParticipantIDs crossref_primary_10_1016_j_enbuild_2025_116742
elsevier_sciencedirect_doi_10_1016_j_enbuild_2025_116742
PublicationCentury 2000
PublicationDate 2026-01-15
PublicationDateYYYYMMDD 2026-01-15
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Amasyali, El-Gohary (b0055) 2021; 142
Do, Cetin (b0100) 2018; 138
Lukianchenko, P. and D. Kopylov. Comparative Analysis of Traditional Machine Learning Approaches for Time Series Clustering Under Colored Noise. in International Scientific and Practical Conference on Information Technologies and Intelligent Decision Making Systems. 2023. Springer. https://doi.org/10.1007/978-3-031-60318-1_3.
Marrone (b0270) 2018; 11
International Energy Agency (IEA). Available online: https://www.iea.org/reports/transition-to-sustainable-buildings (accessed on 20 December 2024).
Kissock, Haberl, Claridge (b0025) 2003; 109
Bu (b0140) 2014
Science and Technology for the Built Environment, 20
Kaur, A., P. Kumar, and P. Kumar. Effect of noise on the performance of clustering techniques. in 2010 International Conference on Networking and Information Technology. 2010. IEEE.10.1109/ICNIT.2010.5508461.
2014. IEEE. 10.1109/ISSNIP.2014.6827661.
Jeong (b0010) 2021; 37
Mononen, M., et al.
Han (b0205) 2019; 9
Yulisasih (b0265) 2024; 16
Singh, V., P. T Agami Reddy PhD, and P. Bass Abushakra PhD
Wei (b0235) 2018; 82
Abushakra, B. and M.T. Paulus
Jin (b0200) 2020; 207
Miraftabzadeh (b0240) 2023; 11
Amoruso (b0020) 2021; 13
Hammarsten (b0065) 1987; 26
in
Kim (b0245) 2022; 12
Afroz (b0035) 2021; 244
Science and Technology for the Built Environment, 2019.
Park (b0190) 2019; 236
Burak Gunay, H., et al.
Milić, Rohdin, Moshfegh (b0095) 2021; 231
Kim, Haberl (b0085) 2015; 99
Chicco, Napoli, Piglione (b0145) 2006; 21
Uhn Ahn (b0175) 2017
2015. IEEE. doi: 10.1109/ICMLA.2015.18.
2014.
Bak, Yoon (b0260) 2021; 148
Jafari-Marandi, Hu, Omitaomu (b0150) 2016; 165
Korea City Gas Association. Available online: www.citygas.or.kr (accessed on 6 August 2023).
Kissock, J.K., J.S. Haberl, and D.E. Claridge
(4): p. 488-503.https://doi.org/10.1080/23744731.2019.1565550.
2002, The American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA. p. 41-63.
Rivallain (b0170) 2019
2019. IOP Publishing.10.1088/1742-6596/1361/1/012015.
Zhang (b0030) 2015; 86
İşeri, O.K. and İ.G. Dino. Building archetype characterization using K-means clustering in urban building energy models. in International Conference on Computer-Aided Architectural Design Futures. 2021. Springer.https://doi.org/10.1007/978-981-19-1280-1_14.
p. 397.
Gaitani (b0125) 2010; 87
Gassar, Yun, Kim (b0060) 2019; 187
An, Yan, Hong (b0105) 2018; 174
Do, Cetin (b0215) 2019
Melzi, F.N., et al.
ASHRAE Transactions, 2014.
Arambula Lara, R., et al.
Pieri, Santamouris (b0115) 2015; 94
Capozzoli, Piscitelli, Brandi (b0165) 2017; 134
MOLIT. Ministry of land, infrastructure and transport. Building life history management system. Available on https://blcm.go.kr/cmm/main/mainPage.do. Accessed on 24 October 2022.
Wu (b0180) 2023; 15
2002, Energy Systems Laboratory, Texas A&M University.
Byun, Choi (b0195) 2018; 15
Nainggolan, R., et al.
Pan (b0110) 2017
Marrone (b0230) 2018; 11
Deb, Lee (b0225) 2018; 159
Irakoze, Choi, Kim (b0250) 2024; 17
Yan (b0185) 2015; 107
Tardioli (b0135) 2018; 140
Hitchin (b0070) 2017; 38
ASHRAE
(7): p. 984-995.https://doi.org/10.1080/23744731.2016.1215199.
Lara (b0130) 2015; 95
Choi, Jeon, Do (b0275) 2017; 17
Choi, Yoon (b0280) 2023; 92
Hammarsten (10.1016/j.enbuild.2025.116742_b0065) 1987; 26
Gaitani (10.1016/j.enbuild.2025.116742_b0125) 2010; 87
10.1016/j.enbuild.2025.116742_b0090
Milić (10.1016/j.enbuild.2025.116742_b0095) 2021; 231
Kim (10.1016/j.enbuild.2025.116742_b0245) 2022; 12
Do (10.1016/j.enbuild.2025.116742_b0215) 2019
Bak (10.1016/j.enbuild.2025.116742_b0260) 2021; 148
Amasyali (10.1016/j.enbuild.2025.116742_b0055) 2021; 142
10.1016/j.enbuild.2025.116742_b0120
Miraftabzadeh (10.1016/j.enbuild.2025.116742_b0240) 2023; 11
10.1016/j.enbuild.2025.116742_b0285
Zhang (10.1016/j.enbuild.2025.116742_b0030) 2015; 86
10.1016/j.enbuild.2025.116742_b0045
Do (10.1016/j.enbuild.2025.116742_b0100) 2018; 138
10.1016/j.enbuild.2025.116742_b0160
Tardioli (10.1016/j.enbuild.2025.116742_b0135) 2018; 140
10.1016/j.enbuild.2025.116742_b0040
Jeong (10.1016/j.enbuild.2025.116742_b0010) 2021; 37
10.1016/j.enbuild.2025.116742_b0005
Byun (10.1016/j.enbuild.2025.116742_b0195) 2018; 15
Irakoze (10.1016/j.enbuild.2025.116742_b0250) 2024; 17
Bu (10.1016/j.enbuild.2025.116742_b0140) 2014
Afroz (10.1016/j.enbuild.2025.116742_b0035) 2021; 244
10.1016/j.enbuild.2025.116742_b0080
Marrone (10.1016/j.enbuild.2025.116742_b0230) 2018; 11
10.1016/j.enbuild.2025.116742_b0075
Jin (10.1016/j.enbuild.2025.116742_b0200) 2020; 207
10.1016/j.enbuild.2025.116742_b0155
Kissock (10.1016/j.enbuild.2025.116742_b0025) 2003; 109
An (10.1016/j.enbuild.2025.116742_b0105) 2018; 174
Gassar (10.1016/j.enbuild.2025.116742_b0060) 2019; 187
Capozzoli (10.1016/j.enbuild.2025.116742_b0165) 2017; 134
Yan (10.1016/j.enbuild.2025.116742_b0185) 2015; 107
Marrone (10.1016/j.enbuild.2025.116742_b0270) 2018; 11
Wu (10.1016/j.enbuild.2025.116742_b0180) 2023; 15
Hitchin (10.1016/j.enbuild.2025.116742_b0070) 2017; 38
Pieri (10.1016/j.enbuild.2025.116742_b0115) 2015; 94
Kim (10.1016/j.enbuild.2025.116742_b0085) 2015; 99
10.1016/j.enbuild.2025.116742_b0220
Lara (10.1016/j.enbuild.2025.116742_b0130) 2015; 95
Rivallain (10.1016/j.enbuild.2025.116742_b0170) 2019
Park (10.1016/j.enbuild.2025.116742_b0190) 2019; 236
Han (10.1016/j.enbuild.2025.116742_b0205) 2019; 9
Choi (10.1016/j.enbuild.2025.116742_b0280) 2023; 92
Chicco (10.1016/j.enbuild.2025.116742_b0145) 2006; 21
Amoruso (10.1016/j.enbuild.2025.116742_b0020) 2021; 13
Uhn Ahn (10.1016/j.enbuild.2025.116742_b0175) 2017
Jafari-Marandi (10.1016/j.enbuild.2025.116742_b0150) 2016; 165
Deb (10.1016/j.enbuild.2025.116742_b0225) 2018; 159
10.1016/j.enbuild.2025.116742_b0210
10.1016/j.enbuild.2025.116742_b0050
Wei (10.1016/j.enbuild.2025.116742_b0235) 2018; 82
Yulisasih (10.1016/j.enbuild.2025.116742_b0265) 2024; 16
Pan (10.1016/j.enbuild.2025.116742_b0110) 2017
10.1016/j.enbuild.2025.116742_b0255
Choi (10.1016/j.enbuild.2025.116742_b0275) 2017; 17
10.1016/j.enbuild.2025.116742_b0015
References_xml – reference: Science and Technology for the Built Environment, 2019.
– reference: . in
– volume: 38
  start-page: 318
  year: 2017
  end-page: 326
  ident: b0070
  publication-title: Build. Serv. Eng. Res. Technol.
– volume: 94
  start-page: 252
  year: 2015
  end-page: 262
  ident: b0115
  publication-title: Energ. Buildings
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: b0235
  publication-title: Renew. Sustain. Energy Rev.
– volume: 21
  start-page: 933
  year: 2006
  end-page: 940
  ident: b0145
  publication-title: IEEE Trans. Power Syst.
– volume: 159
  start-page: 228
  year: 2018
  end-page: 245
  ident: b0225
  publication-title: Energ. Buildings
– reference: . 2019. IOP Publishing.10.1088/1742-6596/1361/1/012015.
– volume: 109
  start-page: 425
  year: 2003
  ident: b0025
  publication-title: ASHRAE Trans.
– volume: 15
  year: 2023
  ident: b0180
  publication-title: Sustainability
– reference: (7): p. 984-995.https://doi.org/10.1080/23744731.2016.1215199.
– volume: 86
  start-page: 177
  year: 2015
  end-page: 190
  ident: b0030
  publication-title: Build. Environ.
– volume: 17
  start-page: 25
  year: 2017
  end-page: 31
  ident: b0275
  publication-title: KIEAE Journal
– year: 2019
  ident: b0170
  publication-title: Build. Simul.
– reference: Lukianchenko, P. and D. Kopylov. Comparative Analysis of Traditional Machine Learning Approaches for Time Series Clustering Under Colored Noise. in International Scientific and Practical Conference on Information Technologies and Intelligent Decision Making Systems. 2023. Springer. https://doi.org/10.1007/978-3-031-60318-1_3.
– volume: 107
  start-page: 264
  year: 2015
  end-page: 278
  ident: b0185
  publication-title: Energ. Buildings
– volume: 9
  year: 2019
  ident: b0205
  publication-title: Appl. Sci.
– volume: 244
  year: 2021
  ident: b0035
  publication-title: Energ. Buildings
– reference: ASHRAE,
– volume: 138
  start-page: 194
  year: 2018
  end-page: 206
  ident: b0100
  publication-title: Build. Environ.
– reference: Burak Gunay, H., et al.,
– year: 2017
  ident: b0175
  publication-title: Build. Simul.
– volume: 16
  start-page: 330
  year: 2024
  end-page: 342
  ident: b0265
  publication-title: ILKOM Jurnal Ilmiah
– volume: 187
  year: 2019
  ident: b0060
  publication-title: Energy
– volume: 99
  start-page: 140
  year: 2015
  end-page: 152
  ident: b0085
  publication-title: Energ. Buildings
– reference: Science and Technology for the Built Environment, 20
– volume: 207
  year: 2020
  ident: b0200
  publication-title: Energ. Buildings
– volume: 26
  start-page: 97
  year: 1987
  end-page: 110
  ident: b0065
  publication-title: Appl. Energy
– reference: International Energy Agency (IEA). Available online: https://www.iea.org/reports/transition-to-sustainable-buildings (accessed on 20 December 2024).
– volume: 13
  year: 2021
  ident: b0020
  publication-title: Sustainability
– volume: 140
  start-page: 90
  year: 2018
  end-page: 106
  ident: b0135
  publication-title: Build. Environ.
– reference: Singh, V., P. T Agami Reddy PhD, and P. Bass Abushakra PhD,
– reference: Mononen, M., et al.
– volume: 17
  year: 2024
  ident: b0250
  publication-title: Energies
– reference: Arambula Lara, R., et al.,
– reference: : p. 397.
– reference: Kaur, A., P. Kumar, and P. Kumar. Effect of noise on the performance of clustering techniques. in 2010 International Conference on Networking and Information Technology. 2010. IEEE.10.1109/ICNIT.2010.5508461.
– volume: 12
  start-page: 1717
  year: 2022
  ident: b0245
  publication-title: Buildings
– volume: 165
  start-page: 393
  year: 2016
  end-page: 404
  ident: b0150
  publication-title: Appl. Energy
– reference: MOLIT. Ministry of land, infrastructure and transport. Building life history management system. Available on https://blcm.go.kr/cmm/main/mainPage.do. Accessed on 24 October 2022.
– volume: 148
  year: 2021
  ident: b0260
  publication-title: Renew. Sustain. Energy Rev.
– volume: 231
  year: 2021
  ident: b0095
  publication-title: Energ. Buildings
– reference: Melzi, F.N., et al.
– reference: . 2014. IEEE. 10.1109/ISSNIP.2014.6827661.
– volume: 236
  start-page: 1280
  year: 2019
  end-page: 1295
  ident: b0190
  publication-title: Appl. Energy
– volume: 11
  year: 2018
  ident: b0270
  publication-title: Energies
– reference: Kissock, J.K., J.S. Haberl, and D.E. Claridge,
– volume: 11
  year: 2018
  ident: b0230
  publication-title: Energies
– volume: 174
  start-page: 214
  year: 2018
  end-page: 227
  ident: b0105
  publication-title: Energ. Buildings
– year: 2014
  ident: b0140
  publication-title: In
– reference: . 2015. IEEE. doi: 10.1109/ICMLA.2015.18.
– volume: 15
  start-page: 41
  year: 2018
  end-page: 48
  ident: b0195
  publication-title: Journal of Asian Architecture and Building Engineering
– reference: . 2002, Energy Systems Laboratory, Texas A&M University.
– reference: . 2002, The American Society of Heating Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA. p. 41-63.
– volume: 142
  year: 2021
  ident: b0055
  publication-title: Renew. Sustain. Energy Rev.
– reference: Korea City Gas Association. Available online: www.citygas.or.kr (accessed on 6 August 2023).
– volume: 95
  start-page: 160
  year: 2015
  end-page: 171
  ident: b0130
  publication-title: Energ. Buildings
– reference: (4): p. 488-503.https://doi.org/10.1080/23744731.2019.1565550.
– reference: ASHRAE Transactions, 2014.
– reference: 2014.
– reference: Abushakra, B. and M.T. Paulus,
– volume: 92
  year: 2023
  ident: b0280
  publication-title: Sustain. Cities Soc.
– year: 2017
  ident: b0110
  publication-title: Build. Simul.
– volume: 134
  start-page: 865
  year: 2017
  end-page: 874
  ident: b0165
  publication-title: Energy Procedia
– reference: İşeri, O.K. and İ.G. Dino. Building archetype characterization using K-means clustering in urban building energy models. in International Conference on Computer-Aided Architectural Design Futures. 2021. Springer.https://doi.org/10.1007/978-981-19-1280-1_14.
– volume: 37
  start-page: 189
  year: 2021
  end-page: 197
  ident: b0010
  publication-title: Journal of the Architectural Institute of Korea
– volume: 11
  start-page: 119596
  year: 2023
  end-page: 119633
  ident: b0240
  publication-title: IEEE Access
– reference: Nainggolan, R., et al.
– volume: 87
  start-page: 2079
  year: 2010
  end-page: 2086
  ident: b0125
  publication-title: Appl. Energy
– year: 2019
  ident: b0215
  publication-title: Build. Simul.
– ident: 10.1016/j.enbuild.2025.116742_b0220
– ident: 10.1016/j.enbuild.2025.116742_b0080
  doi: 10.1080/23744731.2016.1215199
– volume: 99
  start-page: 140
  year: 2015
  ident: 10.1016/j.enbuild.2025.116742_b0085
  article-title: Development of methodology for calibrated simulation in single-family residential buildings using three-parameter change-point regression model
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.04.032
– year: 2017
  ident: 10.1016/j.enbuild.2025.116742_b0175
  article-title: Big-data analysis on energy consumption of office buildings in Seoul, Korea
  publication-title: Build. Simul.
– volume: 92
  year: 2023
  ident: 10.1016/j.enbuild.2025.116742_b0280
  article-title: Energy signature-based clustering using open data for urban building energy analysis toward carbon neutrality: a case study on electricity change under COVID-19
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2023.104471
– ident: 10.1016/j.enbuild.2025.116742_b0255
  doi: 10.1088/1742-6596/1361/1/012015
– volume: 138
  start-page: 194
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0100
  article-title: Evaluation of the causes and impact of outliers on residential building energy use prediction using inverse modeling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.04.039
– ident: 10.1016/j.enbuild.2025.116742_b0210
– ident: 10.1016/j.enbuild.2025.116742_b0285
  doi: 10.1007/978-981-19-1280-1_14
– ident: 10.1016/j.enbuild.2025.116742_b0040
– volume: 134
  start-page: 865
  year: 2017
  ident: 10.1016/j.enbuild.2025.116742_b0165
  article-title: Mining typical load profiles in buildings to support energy management in the smart city context
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.545
– volume: 86
  start-page: 177
  year: 2015
  ident: 10.1016/j.enbuild.2025.116742_b0030
  article-title: Comparisons of inverse modeling approaches for predicting building energy performance
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.12.023
– volume: 21
  start-page: 933
  issue: 2
  year: 2006
  ident: 10.1016/j.enbuild.2025.116742_b0145
  article-title: Comparisons among clustering techniques for electricity customer classification
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.873122
– volume: 142
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0055
  article-title: Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110714
– volume: 12
  start-page: 1717
  issue: 10
  year: 2022
  ident: 10.1016/j.enbuild.2025.116742_b0245
  article-title: Simplified weather-related building energy disaggregation and change-point regression: heating and cooling energy use perspective
  publication-title: Buildings
  doi: 10.3390/buildings12101717
– volume: 11
  issue: 3
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0230
  article-title: Energy benchmarking in educational buildings through cluster analysis of energy retrofitting
  publication-title: Energies
  doi: 10.3390/en11030649
– ident: 10.1016/j.enbuild.2025.116742_b0090
  doi: 10.1080/23744731.2019.1565550
– ident: 10.1016/j.enbuild.2025.116742_b0005
– volume: 207
  year: 2020
  ident: 10.1016/j.enbuild.2025.116742_b0200
  article-title: Estimation of energy use and CO2 emission intensities by end use in south Korean apartment units based on in situ measurements
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2019.109603
– ident: 10.1016/j.enbuild.2025.116742_b0120
– volume: 148
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0260
  article-title: Dwelling infiltration and heating energy demand in multifamily high-rise and low-energy buildings in Korea
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111284
– volume: 140
  start-page: 90
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0135
  article-title: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.05.035
– ident: 10.1016/j.enbuild.2025.116742_b0015
– volume: 94
  start-page: 252
  year: 2015
  ident: 10.1016/j.enbuild.2025.116742_b0115
  article-title: Identifying energy consumption patterns in the Attica hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.02.017
– volume: 13
  issue: 9
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0020
  article-title: Sustainable building legislation and incentives in korea: a case-study-based comparison of building new and renovation
  publication-title: Sustainability
  doi: 10.3390/su13094889
– volume: 109
  start-page: 425
  year: 2003
  ident: 10.1016/j.enbuild.2025.116742_b0025
  article-title: Inverse modeling toolkit: Numerical algorithms
  publication-title: ASHRAE Trans.
– volume: 16
  start-page: 330
  issue: 3
  year: 2024
  ident: 10.1016/j.enbuild.2025.116742_b0265
  article-title: Evaluation of K-Means Clustering using Silhouette score Method on Customer Segmentation
  publication-title: ILKOM Jurnal Ilmiah
  doi: 10.33096/ilkom.v16i3.2325.330-342
– volume: 187
  year: 2019
  ident: 10.1016/j.enbuild.2025.116742_b0060
  article-title: Data-driven approach to prediction of residential energy consumption at urban scales in London
  publication-title: Energy
– volume: 107
  start-page: 264
  year: 2015
  ident: 10.1016/j.enbuild.2025.116742_b0185
  article-title: Occupant behavior modeling for building performance simulation: current state and future challenges
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.08.032
– volume: 38
  start-page: 318
  issue: 3
  year: 2017
  ident: 10.1016/j.enbuild.2025.116742_b0070
  article-title: Monthly utilisation factors for building energy calculations
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/0143624416681382
– ident: 10.1016/j.enbuild.2025.116742_b0045
  doi: 10.1007/978-3-031-60318-1_3
– volume: 87
  start-page: 2079
  issue: 6
  year: 2010
  ident: 10.1016/j.enbuild.2025.116742_b0125
  article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.007
– volume: 37
  start-page: 189
  issue: 10
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0010
  article-title: Scenario to reduce greenhouse gas emissions in building sector towards the goal of carbon neutrality by 2050
  publication-title: Journal of the Architectural Institute of Korea
– ident: 10.1016/j.enbuild.2025.116742_b0160
  doi: 10.1109/ISSNIP.2014.6827661
– volume: 159
  start-page: 228
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0225
  article-title: Determining key variables influencing energy consumption in office buildings through cluster analysis of pre-and post-retrofit building data
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2017.11.007
– volume: 17
  issue: 16
  year: 2024
  ident: 10.1016/j.enbuild.2025.116742_b0250
  article-title: Doing more with less: applying Low-Frequency Energy Data to Define thermal Performance of House units and Energy-Saving Opportunities
  publication-title: Energies
  doi: 10.3390/en17164186
– year: 2017
  ident: 10.1016/j.enbuild.2025.116742_b0110
  article-title: Cluster analysis for occupant-behavior based electricity load patterns in buildings: a case study in Shanghai residences
  publication-title: Build. Simul.
  doi: 10.1007/s12273-017-0377-9
– year: 2019
  ident: 10.1016/j.enbuild.2025.116742_b0170
  article-title: Clustering as a simplification tool for the decision-making process on building stock renovation
  publication-title: Build. Simul.
– volume: 9
  issue: 12
  year: 2019
  ident: 10.1016/j.enbuild.2025.116742_b0205
  article-title: An indirect Measurement Method for Gas Consumption of a Diaphragm Gas Meter based on Gas pressure Signal Detection
  publication-title: Appl. Sci.
  doi: 10.3390/app9122475
– volume: 11
  start-page: 119596
  year: 2023
  ident: 10.1016/j.enbuild.2025.116742_b0240
  article-title: K-means and alternative clustering methods in modern power systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3327640
– ident: 10.1016/j.enbuild.2025.116742_b0155
  doi: 10.1109/ICMLA.2015.18
– volume: 15
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0195
  article-title: A Typology of Korean Housing units: In Search of Spatial Configuration
  publication-title: Journal of Asian Architecture and Building Engineering
  doi: 10.3130/jaabe.15.41
– volume: 95
  start-page: 160
  year: 2015
  ident: 10.1016/j.enbuild.2025.116742_b0130
  article-title: Energy audit of schools by means of cluster analysis
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2015.03.036
– ident: 10.1016/j.enbuild.2025.116742_b0075
– volume: 15
  issue: 6
  year: 2023
  ident: 10.1016/j.enbuild.2025.116742_b0180
  article-title: Benchmarking evaluation of building energy consumption based on data mining
  publication-title: Sustainability
  doi: 10.3390/su15065211
– ident: 10.1016/j.enbuild.2025.116742_b0050
  doi: 10.1109/ICNIT.2010.5508461
– volume: 244
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0035
  article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2021.111054
– volume: 26
  start-page: 97
  issue: 2
  year: 1987
  ident: 10.1016/j.enbuild.2025.116742_b0065
  article-title: A critical appraisal of energy-signature models
  publication-title: Appl. Energy
  doi: 10.1016/0306-2619(87)90012-2
– year: 2019
  ident: 10.1016/j.enbuild.2025.116742_b0215
  article-title: Improvement of inverse change-point modeling of electricity consumption in residential buildings across multiple climate zones
  publication-title: Build. Simul.
  doi: 10.1007/s12273-019-0540-6
– volume: 11
  issue: 3
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0270
  article-title: Energy Benchmarking in Educational buildings through Cluster Analysis of Energy Retrofitting
  publication-title: Energies
  doi: 10.3390/en11030649
– volume: 231
  year: 2021
  ident: 10.1016/j.enbuild.2025.116742_b0095
  article-title: Further development of the change-point model–Differentiating thermal power characteristics for a residential district in a cold climate
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2020.110639
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0235
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.108
– volume: 236
  start-page: 1280
  year: 2019
  ident: 10.1016/j.enbuild.2025.116742_b0190
  article-title: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.025
– volume: 174
  start-page: 214
  year: 2018
  ident: 10.1016/j.enbuild.2025.116742_b0105
  article-title: Clustering and statistical analyses of air-conditioning intensity and use patterns in residential buildings
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2018.06.035
– volume: 165
  start-page: 393
  year: 2016
  ident: 10.1016/j.enbuild.2025.116742_b0150
  article-title: A distributed decision framework for building clusters with different heterogeneity settings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.088
– volume: 17
  start-page: 25
  issue: 6
  year: 2017
  ident: 10.1016/j.enbuild.2025.116742_b0275
  article-title: Establishment of Gas Energy Consumption basic unit by Building using Cluster Analysis
  publication-title: KIEAE Journal
  doi: 10.12813/kieae.2017.17.6.025
– year: 2014
  ident: 10.1016/j.enbuild.2025.116742_b0140
  article-title: A hierarchical classification algorithm for evaluating energy consumption behaviors
SSID ssj0006571
Score 2.4785366
Snippet Identifying energy-inefficient buildings is challenging, but critical for large-scale energy retrofit programs. Change-point model (CPM) is widely used to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116742
SubjectTerms Change-point model
Cluster analysis
Energy retrofit
K-means algorithm
Title Applying cluster analysis to identify target buildings for energy retrofit: An alternative to change-point model
URI https://dx.doi.org/10.1016/j.enbuild.2025.116742
Volume 351
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF58HfQgPrG-2IO3kppnk3grolgFEazQW8huslAfSWmjiL_e2Z3dWG0RFYQSSspOws7Xzcxsvm8IOYJnutOOOfy_Uzu0fNfPLQhiuSW4HWUsYsLn2GwivL6O-v34RssTjFU7gbAootfXePivroZz4GxJnf2Fu2ujcAK-g9PhCG6H448cL-NKxV3ij89SBaGZGt0RCDMHipcrIORUb4A3me6KPUbpbyQCjvJKdvI2RUO1oV6gQDiYQKqwNSwHRYWNdD5V99GELMfXtmv4jdKH8g0rqE-6bbeq7pRWV1Vh87LmDekuz1d53rzQANa1CVfVJpCdiQWzKdIMErUgcQ1D7OZnFmEPZWenFnSsLdy3pBAE3DQk9G7QkntHqMn1RSv7VtqWpl25XRq69jxZdMMghuVusdM961_WD-l2oHLx-l4-yF3HMy82O2yZCEV6a2RV5xC0g75fJ3N5sUFWJpQlN8nQoIBqFFCDAlqV1KCAIgpo7SkKKKCIAmpQcEI7BZ3AgDQwiQGqMLBF7s7PeqcXlm6uYXFHMTgEi2PmMA8-bT_yM-a7PBCQPzI_g6iPB04aQTIDS7TDnTaLGYdfUi_OhBCZYN42WSjKIt8h1EtFKriMFG3mhzaTgkQ2PDaj1IHxAW-Qlpm7ZIgaKol5ufA-0ZOdyMlOcLIbJDIznOhAEAO8BGDx_dDdvw_dI8sfGN4nC9XoOT8gS_ylGoxHhxpA75khiSs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+cluster+analysis+to+identify+target+buildings+for+energy+retrofit%3A+An+alternative+to+change-point+model&rft.jtitle=Energy+and+buildings&rft.au=Irakoze%2C+Amina&rft.au=So-I%2C+Seok&rft.au=Kim%2C+Kee+Han&rft.date=2026-01-15&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=351&rft_id=info:doi/10.1016%2Fj.enbuild.2025.116742&rft.externalDocID=S0378778825014720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon