Exploring Swarm Intelligence for Enhanced Clustering in Artificial Intelligence: A PSO-Kmeans Hybrid Approach

In recent years, the integration of swarm intelligence-based metaheuristic optimization techniques into Artificial Intelligence (AI) has garnered significant attention. This project aims to investigate the potential applications of swarm intelligence techniques within the domain of AI. By leveraging...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Revue d'Intelligence Artificielle Ročník 39; číslo 2; s. 11
Hlavní autoři: Adbi, Said, Mouncif, Hicham
Médium: Journal Article
Jazyk:angličtina
francouzština
Vydáno: Edmonton International Information and Engineering Technology Association (IIETA) 30.04.2025
Témata:
ISSN:0992-499X, 1958-5748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the integration of swarm intelligence-based metaheuristic optimization techniques into Artificial Intelligence (AI) has garnered significant attention. This project aims to investigate the potential applications of swarm intelligence techniques within the domain of AI. By leveraging the collective behavior and adaptive nature of swarm intelligence, these metaheuristic optimization methods offer unique opportunities for solving complex problems in AI. Numerous optimization methods have been proposed in academic research to address clustering-related challenges, but swarm intelligence has established a prominent position in the field. Particle swarm optimization (PSO) is the most popular swarm intelligence technique and one of the researchers' favorite areas. In this study, we introduce a novel clustering approach that integrates PSO with the K-means algorithm, aimed at enhancing clustering outcomes by effectively addressing common clustering challenges. The PSO algorithm has been shown to converge successfully during the initial stages of a global search, but around the global optimum. The proposed algorithm is designed to organize a given dataset into multiple clusters. To assess its effectiveness, we tested the algorithm on five different datasets. We then compared its clustering performance with that of the K-means and PSO algorithms, evaluating it based on metrics such as execution time, accuracy, quantization error, and both intra-cluster and inter-cluster distances.
AbstractList In recent years, the integration of swarm intelligence-based metaheuristic optimization techniques into Artificial Intelligence (AI) has garnered significant attention. This project aims to investigate the potential applications of swarm intelligence techniques within the domain of AI. By leveraging the collective behavior and adaptive nature of swarm intelligence, these metaheuristic optimization methods offer unique opportunities for solving complex problems in AI. Numerous optimization methods have been proposed in academic research to address clustering-related challenges, but swarm intelligence has established a prominent position in the field. Particle swarm optimization (PSO) is the most popular swarm intelligence technique and one of the researchers' favorite areas. In this study, we introduce a novel clustering approach that integrates PSO with the K-means algorithm, aimed at enhancing clustering outcomes by effectively addressing common clustering challenges. The PSO algorithm has been shown to converge successfully during the initial stages of a global search, but around the global optimum. The proposed algorithm is designed to organize a given dataset into multiple clusters. To assess its effectiveness, we tested the algorithm on five different datasets. We then compared its clustering performance with that of the K-means and PSO algorithms, evaluating it based on metrics such as execution time, accuracy, quantization error, and both intra-cluster and inter-cluster distances.
Author Mouncif, Hicham
Adbi, Said
Author_xml – sequence: 1
  givenname: Said
  surname: Adbi
  fullname: Adbi, Said
– sequence: 2
  givenname: Hicham
  surname: Mouncif
  fullname: Mouncif, Hicham
BookMark eNpVjU9LwzAchoNMcM6d_AIBz52__G3irZTqhoMJU_A2kibdIl060w712zvUi6f3PbzP-1yiUeyiR-iawIwoquA2BTNjGiiQMzQmWqhM5FyN0Bi0phnX-vUCTfs-WOBSUiY5jNG--jy0XQpxi9cfJu3xIg6-bcPWx9rjpku4ijtz6g6X7bEf_M80RFykITShDqb9h9zhAj-tV9nj3pvY4_mXTcHh4nBInal3V-i8MW3vp385QS_31XM5z5arh0VZLLOaACGZtJpqCwysF7KxtHaQCw86r7lyhFspSc69Io4ZrsFyZ3MtqTaNo1bbRrEJuvn9PWnfj74fNm_dMcWTcsMoIwIUF4J9AwnQXP8
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.18280/ria.390201
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1958-5748
GroupedDBID 8FE
8FG
ABJCF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
OK1
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-c1011-6b929b030be56fb2cd075e097c48d14b66174e81d3a490b4db79629afd2b9bf83
IEDL.DBID M7S
ISSN 0992-499X
IngestDate Sat Jul 19 15:11:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
French
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1011-6b929b030be56fb2cd075e097c48d14b66174e81d3a490b4db79629afd2b9bf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iieta.org/download/file/fid/170723
PQID 3231508455
PQPubID 2069447
ParticipantIDs proquest_journals_3231508455
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Edmonton
PublicationPlace_xml – name: Edmonton
PublicationTitle Revue d'Intelligence Artificielle
PublicationYear 2025
Publisher International Information and Engineering Technology Association (IIETA)
Publisher_xml – name: International Information and Engineering Technology Association (IIETA)
SSID ssib046623640
Score 2.3150544
Snippet In recent years, the integration of swarm intelligence-based metaheuristic optimization techniques into Artificial Intelligence (AI) has garnered significant...
SourceID proquest
SourceType Aggregation Database
StartPage 11
SubjectTerms Algorithms
Artificial intelligence
Behavior
Birds
Clustering
Collaboration
Datasets
Evolution & development
Heuristic methods
Methods
Optimization
Particle swarm optimization
Swarm intelligence
Velocity
Title Exploring Swarm Intelligence for Enhanced Clustering in Artificial Intelligence: A PSO-Kmeans Hybrid Approach
URI https://www.proquest.com/docview/3231508455
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPHjxETU-kPTgtWG7233Ui0ECwWiQiCbcSF8bSWTRBTT-e6el-IiJF89tN5tOO_PNdOYbhM7AwZGRyg3hzGSE5aEmXHBJJGjCVKVhllNXKHyT9nrZcMj7PuA282mVK53oFLWeKhsjb0QARABMsDi-eH4htmuUfV31LTTWUdWyJFCXujdYnSeWJJYe3YVZbJIlgPuhL9EDPyNogIStyx8G9Jcidtals_3f_9pBWx5X4ubyIOyitbzcQ5PPDDs8eBPlBF99I-DEAFdxu3h0KQC49bSwlAl26rhwn1lSS_xYco6buD-4JdcTAxYOd99tuRduelryffTQad-3usT3VyCK2shoIgEbSbjl0sRJLkOlAT-YgKeKZZoyCaY7BQlSHQnGA8m0THkScpHrUHKZZ9EBqhTTwhwiHAsj0kQoSjU4nLEQLOY6iRXNYJlm4RGqrXZv5C_JbPS1dcd_D5-gzdC23XWPODVUmZcLc4o21Ot8PCvrqHrZ7vXv6k72H6YHuGA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JTwIxFG4QTfTiEjUuqD3ocSLT6Sw1MYYgBAIiCZhww24TSQSURcKf8jf6WmZcYuKNg-eZNp15X9773utbEDoHB0d4MtYOozpyaEyUwzgTjgBNGMqQRLFrC4XrYaMRdTqsmUHvaS2MSatMdaJV1GooTYz80gMiAmSC-v7Ny6tjpkaZ29V0hMYCFjU9n4HLNr6u3oJ8Lwgpl9rFipNMFXCka-KBgQBGIADbQvtBLIhUYDV1noWSRsqlAgxWCOd2lccpywuqRMgCwnisiGAijjzYdwWtAo0gzKYKtlL80iAw7dhtWMckdYIz0UlKAsGvyV8CokyIgeTdX4rfWrPy1n_7D9toM-HNuLAA-g7KxKNd1P_MIMStGR_1cfVbg1EMdByXBk82xQEXn6emJYR5tTew2yxaZ_xYcoULuNm6d2p9DRYcV-amnA0Xkrbre-hhKV-4j7KD4UAfIOxzzcOAS9dV4FD7nFOfqcCXbgTLFCWHKJdKq5sogXH3S1RHfz8-Q-uV9l29W682asdog5gRw_bCKoeyk9FUn6A1-TbpjUenFm8YPS5bsB_mgBKv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Swarm+Intelligence+for+Enhanced+Clustering+in+Artificial+Intelligence%3A+A+PSO-Kmeans+Hybrid+Approach&rft.jtitle=Revue+d%27Intelligence+Artificielle&rft.au=Adbi%2C+Said&rft.au=Mouncif%2C+Hicham&rft.date=2025-04-30&rft.pub=International+Information+and+Engineering+Technology+Association+%28IIETA%29&rft.issn=0992-499X&rft.eissn=1958-5748&rft.volume=39&rft.issue=2&rft.spage=11&rft_id=info:doi/10.18280%2Fria.390201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0992-499X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0992-499X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0992-499X&client=summon