P18-63 Development and Implementation of a PBK Modeling Strategy for Next-Generation Risk Assessment in Chemical Food Safety

Next-generation risk assessment (NGRA) is an exposure-driven approach that relies on non-animal methods to evaluate chemical safety. Understanding internal exposure is critical to inform the translation of in vitro toxicity data into human risk assessment. This study presents the development of a ph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Toxicology letters Ročník 411; s. S214
Hlavní autori: Reale, E., Coulet, M., Basili, D., Stroheker, T., Uldry, M. Guitard, Panchaud, A., Montoya, G.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.09.2025
ISSN:0378-4274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Next-generation risk assessment (NGRA) is an exposure-driven approach that relies on non-animal methods to evaluate chemical safety. Understanding internal exposure is critical to inform the translation of in vitro toxicity data into human risk assessment. This study presents the development of a physiologically based kinetic (PBK) modeling strategy specifically designed for food-related chemicals, aiming to predict internal dose metrics for systemic exposure assessment. A structured approach was developed to parameterize physiologically based kinetic (PBK) models for food-related chemicals, considering oral exposure under different conditions (e.g. liquid vs. solid food matrix) and repeated exposure scenarios. A set of eight representative chemicals – atropine, aldicarb, caffeine, daidzein, genistein, erythritol, epigallocatechin gallate, resveratrol – was selected to test the framework. Model input parameters for physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were obtained through a tiered approach, integrating in silico predictions and in vitro experimental data. Sensitivity analysis was applied to identify key parameters requiring experimental refinement. The framework also incorporated population variability and uncertainty analysis to generate a range of internal dose predictions. The performance of the PBK modeling strategy was assessed by comparing predicted systemic concentrations with available human in vivo toxicokinetic data. In vivo data were used exclusively for evaluation, not model calibration, reflecting realistic NGRA scenarios where such data are often unavailable for food-related chemicals. The results suggest that the modeling framework provides adequate estimates of internal exposure, with notable improvements when dissolution kinetics in the gastrointestinal system were explicitly considered. The developed PBK modeling framework offers a structured approach for NGRA, enabling the integration of in vitro and in silico data to estimate systemic exposure. This strategy supports exposure-based risk assessment of food-related chemicals while reducing reliance on animal studies. Future work will expand the application to a broader set of chemicals and further investigate the role of in vitro digestion data in early-tier assessments.
AbstractList Next-generation risk assessment (NGRA) is an exposure-driven approach that relies on non-animal methods to evaluate chemical safety. Understanding internal exposure is critical to inform the translation of in vitro toxicity data into human risk assessment. This study presents the development of a physiologically based kinetic (PBK) modeling strategy specifically designed for food-related chemicals, aiming to predict internal dose metrics for systemic exposure assessment. A structured approach was developed to parameterize physiologically based kinetic (PBK) models for food-related chemicals, considering oral exposure under different conditions (e.g. liquid vs. solid food matrix) and repeated exposure scenarios. A set of eight representative chemicals – atropine, aldicarb, caffeine, daidzein, genistein, erythritol, epigallocatechin gallate, resveratrol – was selected to test the framework. Model input parameters for physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were obtained through a tiered approach, integrating in silico predictions and in vitro experimental data. Sensitivity analysis was applied to identify key parameters requiring experimental refinement. The framework also incorporated population variability and uncertainty analysis to generate a range of internal dose predictions. The performance of the PBK modeling strategy was assessed by comparing predicted systemic concentrations with available human in vivo toxicokinetic data. In vivo data were used exclusively for evaluation, not model calibration, reflecting realistic NGRA scenarios where such data are often unavailable for food-related chemicals. The results suggest that the modeling framework provides adequate estimates of internal exposure, with notable improvements when dissolution kinetics in the gastrointestinal system were explicitly considered. The developed PBK modeling framework offers a structured approach for NGRA, enabling the integration of in vitro and in silico data to estimate systemic exposure. This strategy supports exposure-based risk assessment of food-related chemicals while reducing reliance on animal studies. Future work will expand the application to a broader set of chemicals and further investigate the role of in vitro digestion data in early-tier assessments.
Author Montoya, G.
Stroheker, T.
Coulet, M.
Reale, E.
Basili, D.
Panchaud, A.
Uldry, M. Guitard
Author_xml – sequence: 1
  givenname: E.
  surname: Reale
  fullname: Reale, E.
– sequence: 2
  givenname: M.
  surname: Coulet
  fullname: Coulet, M.
– sequence: 3
  givenname: D.
  surname: Basili
  fullname: Basili, D.
– sequence: 4
  givenname: T.
  surname: Stroheker
  fullname: Stroheker, T.
– sequence: 5
  givenname: M. Guitard
  surname: Uldry
  fullname: Uldry, M. Guitard
– sequence: 6
  givenname: A.
  surname: Panchaud
  fullname: Panchaud, A.
– sequence: 7
  givenname: G.
  surname: Montoya
  fullname: Montoya, G.
BookMark eNp9kM9OAjEQh3vARFDfwENfYNfp_udigihIRCWi56bbzmJxaUnbEEh8eBfx7GUmk8zvm8k3ID1jDRJyzSBmwIqbdRzsvsUQJ5DkMZRxzpIe6UNaVlGWlNk5GXi_BoAiK_I--V6wKipSeo87bO12gyZQYRSdbbYtHicRtDXUNlTQxd0TfbYKW21WdBmcCLg60MY6-oL7EE3RoDutv2n_RUfeo_e_RG3o-BM3WoqWTqxVdCkaDIdLctaI1uPVX78gH5OH9_FjNH-dzsajeSQZQBKpNFHQ5EVRdjUTuWLDLKlyEFDVw1qiUjUoKZO8FI1kosmrAoYMMyUQVJ2y9IJkJ6501nuHDd86vRHuwBnwozW-5idr_GiNQ8k7a13s9hTD7redRse91Gi6g9qhDFxZ_T_gBwfrfPo
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.toxlet.2025.07.512
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EndPage S214
ExternalDocumentID 10_1016_j_toxlet_2025_07_512
S0378427425020958
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSJ
SSP
SSZ
T5K
WH7
WUQ
XPP
ZGI
ZXP
~G-
~HD
~KM
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c1002-d32d0f56670f54a5d1942850a08b9bceddb0dcc257afc1af586091e4dae0db313
ISSN 0378-4274
IngestDate Sat Nov 29 07:26:36 EST 2025
Sat Oct 25 17:56:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1002-d32d0f56670f54a5d1942850a08b9bceddb0dcc257afc1af586091e4dae0db313
ParticipantIDs crossref_primary_10_1016_j_toxlet_2025_07_512
elsevier_sciencedirect_doi_10_1016_j_toxlet_2025_07_512
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Toxicology letters
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
SSID ssj0006465
Score 2.468315
Snippet Next-generation risk assessment (NGRA) is an exposure-driven approach that relies on non-animal methods to evaluate chemical safety. Understanding internal...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage S214
Title P18-63 Development and Implementation of a PBK Modeling Strategy for Next-Generation Risk Assessment in Chemical Food Safety
URI https://dx.doi.org/10.1016/j.toxlet.2025.07.512
Volume 411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-4274
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006465
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMSmmCAGAN0H9BeWCrn23nsoBMfoopokPoWOY6jdSrJtHZTJ_ET-NFcx3bSUYQAiRcrtZra6j2xj51zjwl55fOi8qLCdTxPSkcZdDms8rGgkUBGIYOAs_awiXgyYbNZkg4G320uzPUirmu2XicX_zXUWIfBVqmzfxHu7kexAq8x6Fhi2LH8o8CnLnMif1MNpDW_X61S3HJE_jo9-dgehmZsuVvXCC3gnKgFsbakbr_-WSnQR52LZ5sraK0GTpUx8pRXxlHEUt2sWc-FdnhatDlDvapeGhHzeNi9AmmuFvq1yKeu7oQv5zp5-21Xh51szqRRgmTDzT0LL-xEWWYjbSuZRidw4YI28PShPXZwDsxQrIfXqaczTs1UbT9uTQN6R-J8uGrW2Pmh6oKyaA2NYvu2wfZUNazaRTboIeNkd8iuF4cJjpG7o_fj2YduZo-C9mjSrqM2FbPVC2639Wuqs0Ffsgdkz6w7YKTx8pAMZL1PjlJtXH5zDFmfh7c8hiNIe0vzm31yX-_ugk5ae0S-aZDBBsgAQQa3QQZNBRwQZGBBBhZkgCCDn0AGCmTQgwzmNViQgQIZaJA9Jl9Ox9mbd445x8MRyuDXKX2vpBWuG2IsAx6WboKL3pByyoqkELIsC1oKgZMHr4TLq5BFyGJlUHJJy8J3_Sdkp25q-ZRAKbgbMyojGdJA0KpgflBFkRAREnfO3APi2L88v9B2LbnVMZ7nOkS5ClFO4xxDdEBiG5fcUE5NJXOE0m_vfPbPdx6Se_0z8ZzsrC6v5AtyV1yv5svLlwZzPwA_5Kf0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P18-63+Development+and+Implementation+of+a+PBK+Modeling+Strategy+for+Next-Generation+Risk+Assessment+in+Chemical+Food+Safety&rft.jtitle=Toxicology+letters&rft.au=Reale%2C+E.&rft.au=Coulet%2C+M.&rft.au=Basili%2C+D.&rft.au=Stroheker%2C+T.&rft.date=2025-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-4274&rft.volume=411&rft.spage=S214&rft.epage=S214&rft_id=info:doi/10.1016%2Fj.toxlet.2025.07.512&rft.externalDocID=S0378427425020958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4274&client=summon