Learning the Shape of Evolutionary Landscapes: Geometric Deep Learning Reveals Hidden Structure in Phenotype-to-Fitness Maps

Elucidating the complex relationships between genotypes, phenotypes, and fitness remains one of the fundamental challenges in evolutionary biology. Part of the difficulty arises from the enormous number of possible genotypes and the lack of understanding of the underlying phenotypic differences driv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Razo-Mejia, Manuel, Mani, Madhav, Petrov, Dmitri A.
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Laboratory 07.05.2025
Vydanie:1.1
Predmet:
ISSN:2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Elucidating the complex relationships between genotypes, phenotypes, and fitness remains one of the fundamental challenges in evolutionary biology. Part of the difficulty arises from the enormous number of possible genotypes and the lack of understanding of the underlying phenotypic differences driving adaptation. Here, we present a computational method that takes advantage of modern high-throughput fitness measurements to learn a map from high-dimensional fitness profiles to a low-dimensional latent space in a geometry-informed manner. We demonstrate that our approach using a Riemannian Hamiltonian Variational Autoencoder (RHVAE) outperforms traditional linear dimensionality reduction techniques by capturing the nonlinear structure of the phenotype-fitness map. When applied to simulated adaptive dynamics, we show that the learned latent space retains information about the underlying adaptive phenotypic space and accurately reconstructs complex fitness landscapes. We then apply this method to a dataset of high-throughput fitness measurements of E. coli under different antibiotic pressures and demonstrate superior predictive power for out-of-sample data compared to linear approaches. Our work provides a data-driven implementation of Fisher’s geometric model of adaptation, transforming it from a theoretical framework into an empirically grounded approach for understanding evolutionary dynamics using modern deep learning methods.
AbstractList Elucidating the complex relationships between genotypes, phenotypes, and fitness remains one of the fundamental challenges in evolutionary biology. Part of the difficulty arises from the enormous number of possible genotypes and the lack of understanding of the underlying phenotypic differences driving adaptation. Here, we present a computational method that takes advantage of modern high-throughput fitness measurements to learn a map from high-dimensional fitness profiles to a low-dimensional latent space in a geometry-informed manner. We demonstrate that our approach using a Riemannian Hamiltonian Variational Autoencoder (RHVAE) outperforms traditional linear dimensionality reduction techniques by capturing the nonlinear structure of the phenotype-fitness map. When applied to simulated adaptive dynamics, we show that the learned latent space retains information about the underlying adaptive phenotypic space and accurately reconstructs complex fitness landscapes. We then apply this method to a dataset of high-throughput fitness measurements of E. coli under different antibiotic pressures and demonstrate superior predictive power for out-of-sample data compared to linear approaches. Our work provides a data-driven implementation of Fisher’s geometric model of adaptation, transforming it from a theoretical framework into an empirically grounded approach for understanding evolutionary dynamics using modern deep learning methods.
Author Mani, Madhav
Petrov, Dmitri A.
Razo-Mejia, Manuel
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0002-9510-0527
  surname: Razo-Mejia
  fullname: Razo-Mejia, Manuel
  organization: Department of Biology, Stanford University
– sequence: 2
  givenname: Madhav
  orcidid: 0000-0002-5812-4167
  surname: Mani
  fullname: Mani, Madhav
  email: madhav.mani@gmail.com
  organization: Department of Engineering Sciences and Applied Mathematics, Northwestern University
– sequence: 3
  givenname: Dmitri A.
  orcidid: 0000-0002-3664-9130
  surname: Petrov
  fullname: Petrov, Dmitri A.
  email: madhav.mani@gmail.com
  organization: Chan Zuckerberg Biohub
BookMark eNo9kEFLwzAcxYMoOOc-gLccvXQmaZqm3mRuU6gobveSJv-6yJaUJBsO_PBWJsKDd3j8Hrx3hc6dd4DQDSVTSgm9Y4QVUzKonIqCCSrO0IiJimWSkeISTWL8JISwStC85CP0XYMKzroPnDaAVxvVA_Ydnh_8dp-sdyocca2ciXpI4j1egt9BClbjR4Ae_9PvcAC1jfjJGgMOr1LY67QPgK3DbxtwPh17yJLPFjY5iBG_qD5eo4tugGDy52O0XszXs6esfl0-zx7qrC2FyDSvONeatFXHuTKMdzRnALqTRhmuS9BcaQmGSyC8lLwjYCoNpJWSFjnofIxuT7Wt9eHLHpo-2N0wrPn9qiGDyub0Vf4DeztjdQ
ContentType Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2025.05.07.652616
DatabaseName bioRxiv
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2025.05.07.652616v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PHGZT
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b766-c4944cc0b9f44ad24f132eecf8dad4c7ec4ac8ed48e04784f0ed9ce0b88153ec3
IngestDate Sat May 10 15:10:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b766-c4944cc0b9f44ad24f132eecf8dad4c7ec4ac8ed48e04784f0ed9ce0b88153ec3
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-9510-0527
0000-0002-5812-4167
0000-0002-3664-9130
OpenAccessLink https://www.biorxiv.org/content/10.1101/2025.05.07.652616
PageCount 22
ParticipantIDs biorxiv_primary_2025_05_07_652616
PublicationCentury 2000
PublicationDate 20250507
PublicationDateYYYYMMDD 2025-05-07
PublicationDate_xml – month: 5
  year: 2025
  text: 20250507
  day: 7
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Arvanitidis, Hansen, Hauberg (2025.05.07.652616v1.19) 2018
Weinreich, Delaney, DePristo, Hartl (2025.05.07.652616v1.11) 2006
Wagner (2025.05.07.652616v1.12) 2008; 275
Kingma, Welling (2025.05.07.652616v1.18) 2014
Martin, Lequerica Mateos, Onuchic, Coluzza, Morcos (2025.05.07.652616v1.14) 2024; 121
Petti, Reddy, Desai (2025.05.07.652616v1.17) 2023
Ascensao, Wetmore, Good, Arkin, Hallatschek (2025.05.07.652616v1.10) 2023; 14
Łuksza, Lässig (2025.05.07.652616v1.3) 2014; 507
Lässig, Mustonen, Walczak (2025.05.07.652616v1.1) 2017; 1
Chadebec, Allassonnière (2025.05.07.652616v1.24) 2022
Ghosh, Kinsler, Good, Petrov (2025.05.07.652616v1.16) 2025
Orr (2025.05.07.652616v1.23) 2005; 6
Louis (2025.05.07.652616v1.5) 2016; 58
Iwasawa, Maeda, Shibai, Kotani, Kawada, Furusawa (2025.05.07.652616v1.9) 2022
Kaneko, Furusawa, Yomo (2025.05.07.652616v1.20) 2015; 5
Łuksza (2025.05.07.652616v1.4) 2017; 551
Hauberg (2025.05.07.652616v1.22) 2019
Chadebec, Mantoux, Allassonnière (2025.05.07.652616v1.15) 2020
Kinsler, Geiler-Samerotte, Petrov (2025.05.07.652616v1.7) 2020; 9
Furusawa, Kaneko (2025.05.07.652616v1.13) 2018; 97
Manrubia (2025.05.07.652616v1.2) 2021; 38
Shoval, Sheftel, Shinar, Hart, Ramote, Mayo, Dekel, Kavanagh, Alon (2025.05.07.652616v1.6) 2012; 336
Maeda, Iwasawa, Kotani, Sakata, Kawada, Horinouchi, Sakai, Tanabe, Furusawa (2025.05.07.652616v1.8) 2020; 11
Russo, Husain, Murugan (2025.05.07.652616v1.21) 2025
References_xml – start-page: e3001920
  year: 2022
  ident: 2025.05.07.652616v1.9
  article-title: Analysis of the Evolution of Resistance to Multiple Antibiotics Enables Prediction of the Escherichia Coli Phenotype-Based Fitness Landscape
  publication-title: PLOS Biology
– volume: 121
  start-page: e2311807121
  year: 2024
  ident: 2025.05.07.652616v1.14
  article-title: Machine Learning in Biological Physics: From Biomolecular Prediction to Design
  publication-title: Proceedings of the National Academy of Sciences
– volume: 58
  start-page: 107
  year: 2016
  end-page: 16
  ident: 2025.05.07.652616v1.5
  article-title: Contingency, Convergence and Hyper-Astronomical Numbers in Biological Evolution
  publication-title: Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences
– volume: 275
  start-page: 91
  year: 2008
  end-page: 100
  ident: 2025.05.07.652616v1.12
  article-title: Robustness and Evolvability: A Paradox Resolved
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2018
  ident: 2025.05.07.652616v1.19
  publication-title: Latent Space Oddity: On the Curvature of Deep Generative Models
– volume: 551
  start-page: 517
  year: 2017
  end-page: 20
  ident: 2025.05.07.652616v1.4
  article-title: A Neoantigen Fitness Model Predicts Tumour Response to Checkpoint Blockade Immunotherapy
  publication-title: Nature
– volume: 9
  start-page: 1
  year: 2020
  end-page: 52
  ident: 2025.05.07.652616v1.7
  article-title: Fitness Variation across Subtle Environ-mental Perturbations Reveals Local Modularity and Global Pleiotropy of Adaptation
  publication-title: eLife
– year: 2025
  ident: 2025.05.07.652616v1.16
  article-title: Low-Dimensional Genotype-Fitness Mapping across Divergent Environments Suggests a Limiting Functions Model of Fitness
  publication-title: bioRxiv
– volume: 14
  start-page: 248
  year: 2023
  ident: 2025.05.07.652616v1.10
  article-title: Quantifying the Local Adaptive Landscape of a Nascent Bacterial Community
  publication-title: Nature Communications
– volume: 11
  start-page: 5970
  year: 2020
  ident: 2025.05.07.652616v1.8
  article-title: High-Throughput Laboratory Evolution Reveals Evolutionary Constraints in Escherichia Coli
  publication-title: Nature Communications
– year: 2022
  ident: 2025.05.07.652616v1.24
  publication-title: A Geometric Perspective on Variational Autoencoders
– volume: 507
  start-page: 57
  year: 2014
  end-page: 61
  ident: 2025.05.07.652616v1.3
  article-title: A Predictive Fitness Model for Influenza
  publication-title: Nature
– volume: 336
  start-page: 1157
  year: 2012
  end-page: 60
  ident: 2025.05.07.652616v1.6
  article-title: Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space
  publication-title: Science
– year: 2014
  ident: 2025.05.07.652616v1.18
  publication-title: Auto-Encoding Variational Bayes
– volume: 5
  start-page: 011014
  year: 2015
  ident: 2025.05.07.652616v1.20
  article-title: Universal Relationship in Gene-Expression Changes for Cells in Steady-Growth State
  publication-title: Physical Review X
– volume: 1
  start-page: 0077
  year: 2017
  ident: 2025.05.07.652616v1.1
  article-title: Predicting Evolution
  publication-title: Nature Ecology & Evolution
– volume: 6
  start-page: 119
  year: 2005
  end-page: 27
  ident: 2025.05.07.652616v1.23
  article-title: The Genetic Theory of Adaptation: A Brief History
  publication-title: Nature Reviews Genetics
– volume: 97
  start-page: 042410
  year: 2018
  ident: 2025.05.07.652616v1.13
  article-title: Formation of Dominant Mode by Evolution in Biological Systems
  publication-title: Physical Review E
– volume: 38
  start-page: 55
  year: 2021
  end-page: 106
  ident: 2025.05.07.652616v1.2
  article-title: From Genotypes to Organisms: State-of-the-art and Perspectives of a Cornerstone in Evolutionary Dynamics
  publication-title: Physics of Life Reviews
– year: 2023
  ident: 2025.05.07.652616v1.17
  article-title: Inferring Sparse Structure in Genotype-Phenotype Maps
  publication-title: Genetics
– year: 2020
  ident: 2025.05.07.652616v1.15
  publication-title: Geometry-Aware Hamiltonian Variational Auto-Encoder
– year: 2006
  ident: 2025.05.07.652616v1.11
  article-title: Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins
  publication-title: Science
– year: 2025
  ident: 2025.05.07.652616v1.21
  article-title: Soft Modes as a Predictive Framework for Low Dimensional Biological Systems across Scales
  publication-title: Annual Review of Biophysics
– year: 2019
  ident: 2025.05.07.652616v1.22
  publication-title: Only Bayes Should Learn a Manifold (on the Estimation of Differential Geometric Structure from Data)
SSID ssj0002961374
Score 1.7571771
SecondaryResourceType preprint
Snippet Elucidating the complex relationships between genotypes, phenotypes, and fitness remains one of the fundamental challenges in evolutionary biology. Part of the...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Evolutionary Biology
Title Learning the Shape of Evolutionary Landscapes: Geometric Deep Learning Reveals Hidden Structure in Phenotype-to-Fitness Maps
URI https://www.biorxiv.org/content/10.1101/2025.05.07.652616
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj2WBv-2TfaLC34i5VVUva2zba9aEJIctD34Isn4jHapkkNenYH7872bXD2ofuYWCMEZY_7idOd6ef7hj7YG0mMushodkSHRRPJIBMJd4646ywqXY6FptQk4k-PzfTlpC5juUEVFnq7dZU_xVqbEOwaevsP8DdPRQb8BpBxzPCjuc7AX92Hewgk_L70lYNe7BuX0osuTPa30vMp8iH-wbhgupqOVQ-UO11_WdQAyVXPqUsI1TolzLN0npDgXpzCWWg8G2yCclJsYkKc2yr9a6xmxVhti3qfinpV0jG8KOh545teQk9KbEpLYWt-dLWvb7erEId1eJFgV-493l_N0ohjiInUPVkofATzecYqqTdSTi88VfjIA8t2xmizhOpQQUt4k7sW7R7rCpAj4_ZVtV-eoQO4F-ZtOPcfOOeGj3koaBVyAEbfjmeTGddJE4YNGmUbJe88R0fb_RG5whFtkKR7Rgf80dsOEWoVo_ZPSifsAdN9dCrp-z3NVIckeYRaR4830Wa90h_4h3OnHDmXe8WZ97gzDuceVHy23DmhPMzNj85nn89TdpiGkmm0jRx0kjp3CgzXkqbC-kPDgWA8zq3uXQKnLROQy41UL4m6UeQGwejTGucE8EdPmeDMpTwgnEjI18hS8EbCamy2qQKDqSVRmt011-y962wFlWTMWVBAl2M8FCLRqCv7nDPa_awH0lv2AD_Ht6y-67eFOvVuxbFP7HhYbg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+the+Shape+of+Evolutionary+Landscapes%3A+Geometric+Deep+Learning+Reveals+Hidden+Structure+in+Phenotype-to-Fitness+Maps&rft.jtitle=bioRxiv&rft.au=Razo-Mejia%2C+Manuel&rft.au=Mani%2C+Madhav&rft.au=Petrov%2C+Dmitri+A.&rft.date=2025-05-07&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.05.07.652616&rft.externalDocID=2025.05.07.652616v1