Indiv-Brain: Individualized Brain Network Partition Learned from Individual fMRI Data using Deep Clustering with Vertex-level Attention

Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of...

Full description

Saved in:
Bibliographic Details
Published in:bioRxiv
Main Authors: Guo, Zhitao, Duan, Yongjie, Xing, Le, Zhao, Xiaojie, Yao, Li, Long, Zhiying
Format: Paper
Language:English
Published: Cold Spring Harbor Laboratory 22.08.2024
Edition:1.1
Subjects:
ISSN:2692-8205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of common brain region parcellations ignores the individual variations in brain structure and reduces the spatial resolution of the results. Moreover, some studies trained models on a group of subjects to guide individual network partitioning. These methods largely depend on the sample size and encounter challenges in the case of limited subject data. In this paper, we propose Indiv-Brain which automatically partition brain vertices into different brain networks based on individual fMRI data without any prior brain parcellation. The Indiv-Brain consists of three sequential modules: stacked denoising autoencoder (SDAE) for mapping the raw fMRI data to a latent embedding space, masked vertex modeling (MVM) for learning attention-enhanced representations of brain vertices, and deep embedding clustering with spatial attention (DEC-A) for unsupervised clustering on the learned vertex representations. The experiments on Human Connectome Project (HCP) demonstrate that the accuracy of Indiv-Brain outperforms existing methods. We compared the model with methods like SDAE, DEC, IDEC, and k-means. For the results of 8 subjects, the accuracy of Indiv-Brain was consistently the highest, averaging 6.65 percentage points higher than the IDEC method. To the best of our knowledge, this is the first study to obtain individualized brain network partition based on individual fMRI data with deep learning models. Our study provides a novel insight into understanding individualized brain networks, especially suitable for special patients.
AbstractList Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of common brain region parcellations ignores the individual variations in brain structure and reduces the spatial resolution of the results. Moreover, some studies trained models on a group of subjects to guide individual network partitioning. These methods largely depend on the sample size and encounter challenges in the case of limited subject data. In this paper, we propose Indiv-Brain which automatically partition brain vertices into different brain networks based on individual fMRI data without any prior brain parcellation. The Indiv-Brain consists of three sequential modules: stacked denoising autoencoder (SDAE) for mapping the raw fMRI data to a latent embedding space, masked vertex modeling (MVM) for learning attention-enhanced representations of brain vertices, and deep embedding clustering with spatial attention (DEC-A) for unsupervised clustering on the learned vertex representations. The experiments on Human Connectome Project (HCP) demonstrate that the accuracy of Indiv-Brain outperforms existing methods. We compared the model with methods like SDAE, DEC, IDEC, and k-means. For the results of 8 subjects, the accuracy of Indiv-Brain was consistently the highest, averaging 6.65 percentage points higher than the IDEC method. To the best of our knowledge, this is the first study to obtain individualized brain network partition based on individual fMRI data with deep learning models. Our study provides a novel insight into understanding individualized brain networks, especially suitable for special patients.
Author Guo, Zhitao
Yao, Li
Long, Zhiying
Duan, Yongjie
Xing, Le
Zhao, Xiaojie
Author_xml – sequence: 1
  givenname: Zhitao
  surname: Guo
  fullname: Guo, Zhitao
  organization: School of Artificial Intelligence, Beijing Normal University
– sequence: 2
  givenname: Yongjie
  surname: Duan
  fullname: Duan, Yongjie
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
– sequence: 3
  givenname: Le
  surname: Xing
  fullname: Xing, Le
  organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University
– sequence: 4
  givenname: Xiaojie
  surname: Zhao
  fullname: Zhao, Xiaojie
  organization: School of Artificial Intelligence, Beijing Normal University
– sequence: 5
  givenname: Li
  surname: Yao
  fullname: Yao, Li
  organization: School of Artificial Intelligence, Beijing Normal University
– sequence: 6
  givenname: Zhiying
  surname: Long
  fullname: Long, Zhiying
  email: zlong@bnu.edu.cn
  organization: School of Artificial Intelligence, Beijing Normal University
BookMark eNpNUMlOwzAUtBBIlNIP4OYjl4Rnx3UcbqVslcoiVHGNnPoZDKlTOe4CP8Bv04UDp9HMaEaaOSGHvvFIyBmDlDFgFxy4SEGlnKcSVCHlAelwWfBEcegfk17bfgAALyTLctEhPyNv3DK5Ctr5S7ojzix07b7R0J1KHzGumvBJn3WILrrG0zHq4De-Dc3sX4bah5cRvdZR00Xr_Bu9RpzTYb1oI4YtX7n4Tl8xRFwnNS6xpoMY0W87T8mR1XWLvT_sksntzWR4n4yf7kbDwTipcikTqaZ5pRRu9pjNBAOMGSmstPnUFEaLXPeLDFDbqi-mkkOegbVaCsOqTBdCZF1yvq-tXBPWblnOg5vp8FVubytBlZyX-9uyX_EsZjk
ContentType Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2024.08.22.608966
DatabaseName bioRxiv
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.08.22.608966v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b766-68c7b88e692d296d011d64f6f7cd9da47a5930eafb54c620730ffa64d1b3a9443
IngestDate Tue Jan 07 18:54:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b766-68c7b88e692d296d011d64f6f7cd9da47a5930eafb54c620730ffa64d1b3a9443
Notes Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.08.22.608966
PageCount 17
ParticipantIDs biorxiv_primary_2024_08_22_608966
PublicationCentury 2000
PublicationDate 20240822
PublicationDateYYYYMMDD 2024-08-22
PublicationDate_xml – month: 8
  year: 2024
  text: 20240822
  day: 22
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Lecun, Bottou, Bengio, Haffner (2024.08.22.608966v1.42) 1998; 86
Harrison, Woolrich, Robinson, Glasser, Beckmann, Jenkinson, Smith (2024.08.22.608966v1.17) 2015; 109
Wig (2024.08.22.608966v1.6) 2017; 21
Chen, Qing, Xiang, Yue, Zhou (2024.08.22.608966v1.34) 2023
Li, Satterthwaite, Fan (2024.08.22.608966v1.16) 2017; 156
Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (2024.08.22.608966v1.3) 2014; 26
Devlin, Chang, Lee, Toutanova (2024.08.22.608966v1.26) 2019
Bijsterbosch, Woolrich, Glasser, Robinson, Beckmann, Van Essen, Harrison, Smith (2024.08.22.608966v1.8) 2018; 7
Liao, Cao, Xia, He (2024.08.22.608966v1.10) 2017; 152
Jiang, Zheng, Tan, Tang, Zhou (2024.08.22.608966v1.23) 2017
Li, Srinivasan, Zhuo, Cui, Gur, Gur, Oathes, Davatzikos, Satterthwaite, Fan (2024.08.22.608966v1.14) 2023; 85
Van Essen, Smith, Glasser, Elam, Donahue, Dierker, Reid, Coalson, Harwell (2024.08.22.608966v1.38) 2017; 144
Telesford, Lynall, Vettel, Miller, Grafton, Bassett (2024.08.22.608966v1.12) 2016; 142
Ji, Zhang, Li, Salzmann, Reid (2024.08.22.608966v1.25) 2017
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (2024.08.22.608966v1.41) 2019
He, Chen, Xie, Li, Doll’ar, Girshick (2024.08.22.608966v1.27) 2021
Guo, Zhao, Yao, Long (2024.08.22.608966v1.11) 2023; 18
Thomas, Christopher, Poldrack (2024.08.22.608966v1.33) 2022
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (2024.08.22.608966v1.1) 2011; 106
Dosenbach, Fair, Miezin, Cohen, Wenger, Dosenbach, Fox, Snyder, Vincent, Raichle, Schlaggar, Petersen (2024.08.22.608966v1.4) 2007; 104
Braun, Schafer, Walter, Erk, Romanczuk-Seiferth, Haddad, Schweiger, Grimm, Heinz, Tost, Meyer-Lindenberg, Bassett (2024.08.22.608966v1.13) 2015; 112
Xie, Zhang, Cao, Lin, Bao, Yao, Dai, Hu (2024.08.22.608966v1.28) 2022
Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (2024.08.22.608966v1.9) 2017; 95
Turc, Chang, Lee, Toutanova (2024.08.22.608966v1.39) 2019
Kong, Li, Orban, Sabuncu, Liu, Schaefer, Sun, Zuo, Holmes, Eickhoff, Yeo (2024.08.22.608966v1.15) 2018; 29
Doucet, Naveau, Petit, Delcroix, Zago, Crivello, Jobard, Tzourio-Mazoyer, Mazoyer, Mellet, Joliot (2024.08.22.608966v1.5) 2011; 105
Harrison, Bijsterbosch, Segerdahl, Fitzgibbon, Farahibozorg, Duff, Smith, Woolrich (2024.08.22.608966v1.18) 2020; 222
Yang, Fu, Sidiropoulos, Hong (2024.08.22.608966v1.22) 2017
Li, Zhu, Fan (2024.08.22.608966v1.19) 2018
Hendrycks, Gimpel (2024.08.22.608966v1.40) 2016
Caron, Bojanowski, Joulin, Douze (2024.08.22.608966v1.24) 2018
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (2024.08.22.608966v1.20) 2013; 80
Guo, Gao, Liu, Yin (2024.08.22.608966v1.35) 2017
Hinton, Zemel (2024.08.22.608966v1.30) 1993
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2024.08.22.608966v1.37) 2017
Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (2024.08.22.608966v1.2) 2011; 72
Bao, Dong, Piao, Wei (2024.08.22.608966v1.32) 2022
Sporns (2024.08.22.608966v1.7) 2013; 23
Xie, Girshick, Farhadi (2024.08.22.608966v1.21) 2016; 48
Zhai, Jaitly, Ramapuram, Busbridge, Likhomanenko, Cheng, Talbott, Huang, Goh, Susskind (2024.08.22.608966v1.29) 2022
Vincent, Larochelle, Lajoie, Bengio, Manzagol (2024.08.22.608966v1.31) 2010; 11
Nguyen, Bui, Duong, Bui, Luu (2024.08.22.608966v1.36) 2021
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (2024.08.22.608966v1.43) 2013; 80
References_xml – volume: 109
  start-page: 217
  year: 2015
  end-page: 231
  ident: 2024.08.22.608966v1.17
  article-title: Large-scale probabilistic functional modes from resting state fmri
  publication-title: NeuroImage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: 2024.08.22.608966v1.20
  article-title: The wu-minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 222
  start-page: 117226
  year: 2020
  ident: 2024.08.22.608966v1.18
  article-title: Modelling subject variability in the spatial and temporal characteristics of functional modes
  publication-title: NeuroImage
– volume: 18
  start-page: e0295428
  issue: 12
  year: 2023
  ident: 2024.08.22.608966v1.11
  article-title: Improved brain community structure detection by two-step weighted modularity maximization
  publication-title: PLOS ONE
– year: 2019
  ident: 2024.08.22.608966v1.41
  article-title: Pytorch: an imperative style, high-performance deep learning library
  publication-title: In Proceedings of the 33rd International Conference on Neural Information Processing Systems
– volume: 112
  start-page: 11678
  issue: 37
  year: 2015
  end-page: 11683
  ident: 2024.08.22.608966v1.13
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proc Natl Acad Sci U S A
– volume: 144
  start-page: 270
  year: 2017
  end-page: 274
  ident: 2024.08.22.608966v1.38
  article-title: The brain analysis library of spatial maps and atlases (balsa) database
  publication-title: NeuroImage
– start-page: 6000
  year: 2017
  end-page: 6010
  ident: 2024.08.22.608966v1.37
  article-title: Attention is all you need
  publication-title: In Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 7
  start-page: e32992
  year: 2018
  ident: 2024.08.22.608966v1.8
  article-title: The relationship between spatial configuration and functional connectivity of brain regions
  publication-title: eLife
– volume: 142
  start-page: 198
  year: 2016
  end-page: 210
  ident: 2024.08.22.608966v1.12
  article-title: Detection of functional brain network reconfiguration during task-driven cognitive states
  publication-title: NeuroImage
– start-page: 3
  year: 1993
  end-page: 10
  ident: 2024.08.22.608966v1.30
  article-title: Autoencoders, minimum description length and helmholtz free energy
  publication-title: In Proceedings of the 6th International Conference on Neural Information Processing Systems
– start-page: 10842
  year: 2021
  end-page: 10851
  ident: 2024.08.22.608966v1.36
  article-title: Clusformer: A transformer based clustering approach to unsupervised large-scale face and visual landmark recognition
  publication-title: In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 104
  start-page: 11073
  issue: 26
  year: 2007
  end-page: 11078
  ident: 2024.08.22.608966v1.4
  article-title: Distinct brain networks for adaptive and stable task control in humans
  publication-title: Proceedings of the National Academy of Sciences
– year: 2019
  ident: 2024.08.22.608966v1.26
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
  publication-title: In North American Chapter of the Association for Computational Linguistics
– volume: 23
  start-page: 162
  issue: 2
  year: 2013
  end-page: 171
  ident: 2024.08.22.608966v1.7
  article-title: Network attributes for segregation and integration in the human brain
  publication-title: Current Opinion in Neurobiology
– start-page: 1965
  year: 2017
  end-page: 1972
  ident: 2024.08.22.608966v1.23
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
  publication-title: In Proceedings of the 26th International Joint Conference on Artificial Intelligence
– year: 2022
  ident: 2024.08.22.608966v1.33
  article-title: Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data
  publication-title: In Advances in Neural Information Processing Systems
– start-page: 23
  year: 2017
  end-page: 32
  ident: 2024.08.22.608966v1.25
  article-title: Deep subspace clustering networks
  publication-title: In Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: 2024.08.22.608966v1.31
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res
– volume: 29
  start-page: 2533
  issue: 6
  year: 2018
  end-page: 2551
  ident: 2024.08.22.608966v1.15
  article-title: Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion
  publication-title: Cerebral Cortex
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: 2024.08.22.608966v1.42
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– year: 2022
  ident: 2024.08.22.608966v1.32
  article-title: BEiT: BERT pre-training of image transformers
  publication-title: In International Conference on Learning Representations
– start-page: 22710
  year: 2023
  end-page: 22720
  ident: 2024.08.22.608966v1.34
  article-title: Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for Vision Decoding
  publication-title: In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: 2024.08.22.608966v1.2
  article-title: Functional network organization of the human brain
  publication-title: Neuron
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: 2024.08.22.608966v1.43
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 156
  start-page: 1
  year: 2017
  end-page: 13
  ident: 2024.08.22.608966v1.16
  article-title: Large-scale sparse functional networks from resting state fmri
  publication-title: NeuroImage
– year: 2016
  ident: 2024.08.22.608966v1.40
  article-title: Gaussian error linear units (gelus)
  publication-title: arXiv preprint
– start-page: 3861
  year: 2017
  end-page: 3870
  ident: 2024.08.22.608966v1.22
  article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering
  publication-title: In Proceedings of the 34th International Conference on Machine Learning
– start-page: 15979
  year: 2021
  end-page: 15988
  ident: 2024.08.22.608966v1.27
  article-title: Masked autoencoders are scalable vision learners
  publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 26010
  year: 2022
  end-page: 26027
  ident: 2024.08.22.608966v1.29
  article-title: Position Prediction as an Effective Pretraining Strategy
  publication-title: In Proceedings of the 39th International Conference on Machine Learning
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  ident: 2024.08.22.608966v1.1
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– year: 2019
  ident: 2024.08.22.608966v1.39
  article-title: Well-read students learn better: On the importance of pre-training compact models
  publication-title: arXiv preprint
– volume: 26
  start-page: 288
  issue: 1
  year: 2014
  end-page: 303
  ident: 2024.08.22.608966v1.3
  article-title: Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations
  publication-title: Cerebral Cortex
– volume: 152
  start-page: 94
  year: 2017
  end-page: 107
  ident: 2024.08.22.608966v1.10
  article-title: Individual differences and time-varying features of modular brain architecture
  publication-title: NeuroImage
– start-page: 9643
  year: 2022
  end-page: 9653
  ident: 2024.08.22.608966v1.28
  article-title: Simmim: a simple framework for masked image modeling
  publication-title: In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 48
  start-page: 478
  year: 2016
  end-page: 487
  ident: 2024.08.22.608966v1.21
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: In Proceedings of the 33rd International Conference on International Conference on Machine Learning -
– volume: 95
  start-page: 791
  issue: 4
  year: 2017
  end-page: 807
  ident: 2024.08.22.608966v1.9
  article-title: Precision Functional Mapping of Individual Human Brains
  publication-title: Neuron
– year: 2018
  ident: 2024.08.22.608966v1.24
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: In Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 85
  start-page: 102756
  year: 2023
  ident: 2024.08.22.608966v1.14
  article-title: Computing personalized brain functional networks from fmri using self-supervised deep learning
  publication-title: Medical Image Analysis
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: 2024.08.22.608966v1.35
  article-title: Improved deep embedded clustering with local structure preservation
  publication-title: In Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 105
  start-page: 2753
  issue: 6
  year: 2011
  end-page: 2763
  ident: 2024.08.22.608966v1.5
  article-title: Brain activity at rest: a multiscale hierarchical functional organization
  publication-title: Journal of Neurophysiology
– volume: 21
  start-page: 981
  issue: 12
  year: 2017
  end-page: 996
  ident: 2024.08.22.608966v1.6
  article-title: Segregated systems of human brain networks
  publication-title: Trends in Cognitive Sciences
– start-page: 223
  year: 2018
  end-page: 231
  ident: 2024.08.22.608966v1.19
  article-title: Identification of multi-scale hierarchical brain functional networks using deep matrix factorization
  publication-title: In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
SSID ssj0002961374
Score 1.7319286
SecondaryResourceType preprint
Snippet Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Neuroscience
Title Indiv-Brain: Individualized Brain Network Partition Learned from Individual fMRI Data using Deep Clustering with Vertex-level Attention
URI https://www.biorxiv.org/content/10.1101/2024.08.22.608966
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEICtqgWJG0_xlpG4RYGu6zgxN7YsolKpqqpCZS-V4wcbVCVVSKrCH-BvM-Nk08JyWA5cosq1U3W-kTOezIOQl8q4iHGhwxNnZMjjKApTbXholNY2jaVW1lfXn8azWbJayXmvV1_mwuw2cZ4n-73c_lfUMAawMXX2H3B3N4UB-AzQ4QrY4Xot8BNMsQpPsfUDHvcnXcZV9gOMSz-Oab4YkAX2Y9kUK2rqrML3Pt3ksCZwHxcTUI1KBbX3KryzdhuMNzXWV-j8uJ9sWdl9uMEApOBtVTUhlMd2b5oVi32266J9au-hPb_IKlUcbOnGGfu5yL98zTqFW7VdV6bdyPmF8stXmSouJ7aOC8bRE8sOx9xxsQGL2nsvMWEJND6YNnpftAHQ1m-DTEjYs5lPzv7Lhu8bDeDtsRIrY6_EMJHij-La_nF9Zc4ODs0Dhi8m-2RwejabLzrnHJNg5cS8fQsOv_H6ymo4L4HoShDdkT2yvE0Gc7W15R3Ss_ldcrNpKPr9Hvl5BP8N_R099aO0RU879LRFTxH90RqK6Cmipx49RfT0gJ4ienqMnnbo75Pl-7Pl-EPYttoI01iIUCQ6TpPEgqgN_HcDm74R3AkXayON4rGK5GholUsjrgXDx4JzSnBzko6U5Hz0gPTzIrcPCcV6RlpqpjRY2to4NMBdmrJERWIkEveIvGjltt429VTWKNv1MFkztm5k-_gac56QWwelekr6VVnbZ-SG3lXZt_J5C_QXqfNspw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indiv-Brain%3A+Individualized+Brain+Network+Partition+Learned+from+Individual+fMRI+Data+using+Deep+Clustering+with+Vertex-level+Attention&rft.jtitle=bioRxiv&rft.au=Guo%2C+Zhitao&rft.au=Duan%2C+Yongjie&rft.au=Xing%2C+Le&rft.au=Zhao%2C+Xiaojie&rft.date=2024-08-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.08.22.608966&rft.externalDocID=2024.08.22.608966v1