Indiv-Brain: Individualized Brain Network Partition Learned from Individual fMRI Data using Deep Clustering with Vertex-level Attention
Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of...
Saved in:
| Published in: | bioRxiv |
|---|---|
| Main Authors: | , , , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Cold Spring Harbor Laboratory
22.08.2024
|
| Edition: | 1.1 |
| Subjects: | |
| ISSN: | 2692-8205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of common brain region parcellations ignores the individual variations in brain structure and reduces the spatial resolution of the results. Moreover, some studies trained models on a group of subjects to guide individual network partitioning. These methods largely depend on the sample size and encounter challenges in the case of limited subject data. In this paper, we propose Indiv-Brain which automatically partition brain vertices into different brain networks based on individual fMRI data without any prior brain parcellation. The Indiv-Brain consists of three sequential modules: stacked denoising autoencoder (SDAE) for mapping the raw fMRI data to a latent embedding space, masked vertex modeling (MVM) for learning attention-enhanced representations of brain vertices, and deep embedding clustering with spatial attention (DEC-A) for unsupervised clustering on the learned vertex representations. The experiments on Human Connectome Project (HCP) demonstrate that the accuracy of Indiv-Brain outperforms existing methods. We compared the model with methods like SDAE, DEC, IDEC, and k-means. For the results of 8 subjects, the accuracy of Indiv-Brain was consistently the highest, averaging 6.65 percentage points higher than the IDEC method. To the best of our knowledge, this is the first study to obtain individualized brain network partition based on individual fMRI data with deep learning models. Our study provides a novel insight into understanding individualized brain networks, especially suitable for special patients. |
|---|---|
| AbstractList | Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The previous studies grouped brain regions that were pre-defined by common brain parcellations into individualized brain networks. The employment of common brain region parcellations ignores the individual variations in brain structure and reduces the spatial resolution of the results. Moreover, some studies trained models on a group of subjects to guide individual network partitioning. These methods largely depend on the sample size and encounter challenges in the case of limited subject data. In this paper, we propose Indiv-Brain which automatically partition brain vertices into different brain networks based on individual fMRI data without any prior brain parcellation. The Indiv-Brain consists of three sequential modules: stacked denoising autoencoder (SDAE) for mapping the raw fMRI data to a latent embedding space, masked vertex modeling (MVM) for learning attention-enhanced representations of brain vertices, and deep embedding clustering with spatial attention (DEC-A) for unsupervised clustering on the learned vertex representations. The experiments on Human Connectome Project (HCP) demonstrate that the accuracy of Indiv-Brain outperforms existing methods. We compared the model with methods like SDAE, DEC, IDEC, and k-means. For the results of 8 subjects, the accuracy of Indiv-Brain was consistently the highest, averaging 6.65 percentage points higher than the IDEC method. To the best of our knowledge, this is the first study to obtain individualized brain network partition based on individual fMRI data with deep learning models. Our study provides a novel insight into understanding individualized brain networks, especially suitable for special patients. |
| Author | Guo, Zhitao Yao, Li Long, Zhiying Duan, Yongjie Xing, Le Zhao, Xiaojie |
| Author_xml | – sequence: 1 givenname: Zhitao surname: Guo fullname: Guo, Zhitao organization: School of Artificial Intelligence, Beijing Normal University – sequence: 2 givenname: Yongjie surname: Duan fullname: Duan, Yongjie organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University – sequence: 3 givenname: Le surname: Xing fullname: Xing, Le organization: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University – sequence: 4 givenname: Xiaojie surname: Zhao fullname: Zhao, Xiaojie organization: School of Artificial Intelligence, Beijing Normal University – sequence: 5 givenname: Li surname: Yao fullname: Yao, Li organization: School of Artificial Intelligence, Beijing Normal University – sequence: 6 givenname: Zhiying surname: Long fullname: Long, Zhiying email: zlong@bnu.edu.cn organization: School of Artificial Intelligence, Beijing Normal University |
| BookMark | eNpNUMlOwzAUtBBIlNIP4OYjl4Rnx3UcbqVslcoiVHGNnPoZDKlTOe4CP8Bv04UDp9HMaEaaOSGHvvFIyBmDlDFgFxy4SEGlnKcSVCHlAelwWfBEcegfk17bfgAALyTLctEhPyNv3DK5Ctr5S7ojzix07b7R0J1KHzGumvBJn3WILrrG0zHq4De-Dc3sX4bah5cRvdZR00Xr_Bu9RpzTYb1oI4YtX7n4Tl8xRFwnNS6xpoMY0W87T8mR1XWLvT_sksntzWR4n4yf7kbDwTipcikTqaZ5pRRu9pjNBAOMGSmstPnUFEaLXPeLDFDbqi-mkkOegbVaCsOqTBdCZF1yvq-tXBPWblnOg5vp8FVubytBlZyX-9uyX_EsZjk |
| ContentType | Paper |
| Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2024.08.22.608966 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2024.08.22.608966v1 |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
| ID | FETCH-LOGICAL-b766-68c7b88e692d296d011d64f6f7cd9da47a5930eafb54c620730ffa64d1b3a9443 |
| IngestDate | Tue Jan 07 18:54:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b766-68c7b88e692d296d011d64f6f7cd9da47a5930eafb54c620730ffa64d1b3a9443 |
| Notes | Competing Interest Statement: The authors have declared no competing interest. |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.08.22.608966 |
| PageCount | 17 |
| ParticipantIDs | biorxiv_primary_2024_08_22_608966 |
| PublicationCentury | 2000 |
| PublicationDate | 20240822 |
| PublicationDateYYYYMMDD | 2024-08-22 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240822 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory |
| References | Lecun, Bottou, Bengio, Haffner (2024.08.22.608966v1.42) 1998; 86 Harrison, Woolrich, Robinson, Glasser, Beckmann, Jenkinson, Smith (2024.08.22.608966v1.17) 2015; 109 Wig (2024.08.22.608966v1.6) 2017; 21 Chen, Qing, Xiang, Yue, Zhou (2024.08.22.608966v1.34) 2023 Li, Satterthwaite, Fan (2024.08.22.608966v1.16) 2017; 156 Gordon, Laumann, Adeyemo, Huckins, Kelley, Petersen (2024.08.22.608966v1.3) 2014; 26 Devlin, Chang, Lee, Toutanova (2024.08.22.608966v1.26) 2019 Bijsterbosch, Woolrich, Glasser, Robinson, Beckmann, Van Essen, Harrison, Smith (2024.08.22.608966v1.8) 2018; 7 Liao, Cao, Xia, He (2024.08.22.608966v1.10) 2017; 152 Jiang, Zheng, Tan, Tang, Zhou (2024.08.22.608966v1.23) 2017 Li, Srinivasan, Zhuo, Cui, Gur, Gur, Oathes, Davatzikos, Satterthwaite, Fan (2024.08.22.608966v1.14) 2023; 85 Van Essen, Smith, Glasser, Elam, Donahue, Dierker, Reid, Coalson, Harwell (2024.08.22.608966v1.38) 2017; 144 Telesford, Lynall, Vettel, Miller, Grafton, Bassett (2024.08.22.608966v1.12) 2016; 142 Ji, Zhang, Li, Salzmann, Reid (2024.08.22.608966v1.25) 2017 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Köpf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (2024.08.22.608966v1.41) 2019 He, Chen, Xie, Li, Doll’ar, Girshick (2024.08.22.608966v1.27) 2021 Guo, Zhao, Yao, Long (2024.08.22.608966v1.11) 2023; 18 Thomas, Christopher, Poldrack (2024.08.22.608966v1.33) 2022 Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (2024.08.22.608966v1.1) 2011; 106 Dosenbach, Fair, Miezin, Cohen, Wenger, Dosenbach, Fox, Snyder, Vincent, Raichle, Schlaggar, Petersen (2024.08.22.608966v1.4) 2007; 104 Braun, Schafer, Walter, Erk, Romanczuk-Seiferth, Haddad, Schweiger, Grimm, Heinz, Tost, Meyer-Lindenberg, Bassett (2024.08.22.608966v1.13) 2015; 112 Xie, Zhang, Cao, Lin, Bao, Yao, Dai, Hu (2024.08.22.608966v1.28) 2022 Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun, Hampton, Coalson, Nguyen, McDermott, Shimony, Snyder, Schlaggar, Petersen, Nelson, Dosenbach (2024.08.22.608966v1.9) 2017; 95 Turc, Chang, Lee, Toutanova (2024.08.22.608966v1.39) 2019 Kong, Li, Orban, Sabuncu, Liu, Schaefer, Sun, Zuo, Holmes, Eickhoff, Yeo (2024.08.22.608966v1.15) 2018; 29 Doucet, Naveau, Petit, Delcroix, Zago, Crivello, Jobard, Tzourio-Mazoyer, Mazoyer, Mellet, Joliot (2024.08.22.608966v1.5) 2011; 105 Harrison, Bijsterbosch, Segerdahl, Fitzgibbon, Farahibozorg, Duff, Smith, Woolrich (2024.08.22.608966v1.18) 2020; 222 Yang, Fu, Sidiropoulos, Hong (2024.08.22.608966v1.22) 2017 Li, Zhu, Fan (2024.08.22.608966v1.19) 2018 Hendrycks, Gimpel (2024.08.22.608966v1.40) 2016 Caron, Bojanowski, Joulin, Douze (2024.08.22.608966v1.24) 2018 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (2024.08.22.608966v1.20) 2013; 80 Guo, Gao, Liu, Yin (2024.08.22.608966v1.35) 2017 Hinton, Zemel (2024.08.22.608966v1.30) 1993 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (2024.08.22.608966v1.37) 2017 Power, Cohen, Nelson, Wig, Barnes, Church, Vogel, Laumann, Miezin, Schlaggar, Petersen (2024.08.22.608966v1.2) 2011; 72 Bao, Dong, Piao, Wei (2024.08.22.608966v1.32) 2022 Sporns (2024.08.22.608966v1.7) 2013; 23 Xie, Girshick, Farhadi (2024.08.22.608966v1.21) 2016; 48 Zhai, Jaitly, Ramapuram, Busbridge, Likhomanenko, Cheng, Talbott, Huang, Goh, Susskind (2024.08.22.608966v1.29) 2022 Vincent, Larochelle, Lajoie, Bengio, Manzagol (2024.08.22.608966v1.31) 2010; 11 Nguyen, Bui, Duong, Bui, Luu (2024.08.22.608966v1.36) 2021 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (2024.08.22.608966v1.43) 2013; 80 |
| References_xml | – volume: 109 start-page: 217 year: 2015 end-page: 231 ident: 2024.08.22.608966v1.17 article-title: Large-scale probabilistic functional modes from resting state fmri publication-title: NeuroImage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: 2024.08.22.608966v1.20 article-title: The wu-minn human connectome project: An overview publication-title: NeuroImage – volume: 222 start-page: 117226 year: 2020 ident: 2024.08.22.608966v1.18 article-title: Modelling subject variability in the spatial and temporal characteristics of functional modes publication-title: NeuroImage – volume: 18 start-page: e0295428 issue: 12 year: 2023 ident: 2024.08.22.608966v1.11 article-title: Improved brain community structure detection by two-step weighted modularity maximization publication-title: PLOS ONE – year: 2019 ident: 2024.08.22.608966v1.41 article-title: Pytorch: an imperative style, high-performance deep learning library publication-title: In Proceedings of the 33rd International Conference on Neural Information Processing Systems – volume: 112 start-page: 11678 issue: 37 year: 2015 end-page: 11683 ident: 2024.08.22.608966v1.13 article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans publication-title: Proc Natl Acad Sci U S A – volume: 144 start-page: 270 year: 2017 end-page: 274 ident: 2024.08.22.608966v1.38 article-title: The brain analysis library of spatial maps and atlases (balsa) database publication-title: NeuroImage – start-page: 6000 year: 2017 end-page: 6010 ident: 2024.08.22.608966v1.37 article-title: Attention is all you need publication-title: In Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 7 start-page: e32992 year: 2018 ident: 2024.08.22.608966v1.8 article-title: The relationship between spatial configuration and functional connectivity of brain regions publication-title: eLife – volume: 142 start-page: 198 year: 2016 end-page: 210 ident: 2024.08.22.608966v1.12 article-title: Detection of functional brain network reconfiguration during task-driven cognitive states publication-title: NeuroImage – start-page: 3 year: 1993 end-page: 10 ident: 2024.08.22.608966v1.30 article-title: Autoencoders, minimum description length and helmholtz free energy publication-title: In Proceedings of the 6th International Conference on Neural Information Processing Systems – start-page: 10842 year: 2021 end-page: 10851 ident: 2024.08.22.608966v1.36 article-title: Clusformer: A transformer based clustering approach to unsupervised large-scale face and visual landmark recognition publication-title: In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 104 start-page: 11073 issue: 26 year: 2007 end-page: 11078 ident: 2024.08.22.608966v1.4 article-title: Distinct brain networks for adaptive and stable task control in humans publication-title: Proceedings of the National Academy of Sciences – year: 2019 ident: 2024.08.22.608966v1.26 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding publication-title: In North American Chapter of the Association for Computational Linguistics – volume: 23 start-page: 162 issue: 2 year: 2013 end-page: 171 ident: 2024.08.22.608966v1.7 article-title: Network attributes for segregation and integration in the human brain publication-title: Current Opinion in Neurobiology – start-page: 1965 year: 2017 end-page: 1972 ident: 2024.08.22.608966v1.23 article-title: Variational deep embedding: an unsupervised and generative approach to clustering publication-title: In Proceedings of the 26th International Joint Conference on Artificial Intelligence – year: 2022 ident: 2024.08.22.608966v1.33 article-title: Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data publication-title: In Advances in Neural Information Processing Systems – start-page: 23 year: 2017 end-page: 32 ident: 2024.08.22.608966v1.25 article-title: Deep subspace clustering networks publication-title: In Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: 2024.08.22.608966v1.31 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res – volume: 29 start-page: 2533 issue: 6 year: 2018 end-page: 2551 ident: 2024.08.22.608966v1.15 article-title: Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion publication-title: Cerebral Cortex – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: 2024.08.22.608966v1.42 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – year: 2022 ident: 2024.08.22.608966v1.32 article-title: BEiT: BERT pre-training of image transformers publication-title: In International Conference on Learning Representations – start-page: 22710 year: 2023 end-page: 22720 ident: 2024.08.22.608966v1.34 article-title: Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for Vision Decoding publication-title: In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: 2024.08.22.608966v1.2 article-title: Functional network organization of the human brain publication-title: Neuron – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: 2024.08.22.608966v1.43 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 156 start-page: 1 year: 2017 end-page: 13 ident: 2024.08.22.608966v1.16 article-title: Large-scale sparse functional networks from resting state fmri publication-title: NeuroImage – year: 2016 ident: 2024.08.22.608966v1.40 article-title: Gaussian error linear units (gelus) publication-title: arXiv preprint – start-page: 3861 year: 2017 end-page: 3870 ident: 2024.08.22.608966v1.22 article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering publication-title: In Proceedings of the 34th International Conference on Machine Learning – start-page: 15979 year: 2021 end-page: 15988 ident: 2024.08.22.608966v1.27 article-title: Masked autoencoders are scalable vision learners publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 26010 year: 2022 end-page: 26027 ident: 2024.08.22.608966v1.29 article-title: Position Prediction as an Effective Pretraining Strategy publication-title: In Proceedings of the 39th International Conference on Machine Learning – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 ident: 2024.08.22.608966v1.1 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – year: 2019 ident: 2024.08.22.608966v1.39 article-title: Well-read students learn better: On the importance of pre-training compact models publication-title: arXiv preprint – volume: 26 start-page: 288 issue: 1 year: 2014 end-page: 303 ident: 2024.08.22.608966v1.3 article-title: Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations publication-title: Cerebral Cortex – volume: 152 start-page: 94 year: 2017 end-page: 107 ident: 2024.08.22.608966v1.10 article-title: Individual differences and time-varying features of modular brain architecture publication-title: NeuroImage – start-page: 9643 year: 2022 end-page: 9653 ident: 2024.08.22.608966v1.28 article-title: Simmim: a simple framework for masked image modeling publication-title: In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 48 start-page: 478 year: 2016 end-page: 487 ident: 2024.08.22.608966v1.21 article-title: Unsupervised deep embedding for clustering analysis publication-title: In Proceedings of the 33rd International Conference on International Conference on Machine Learning - – volume: 95 start-page: 791 issue: 4 year: 2017 end-page: 807 ident: 2024.08.22.608966v1.9 article-title: Precision Functional Mapping of Individual Human Brains publication-title: Neuron – year: 2018 ident: 2024.08.22.608966v1.24 article-title: Deep clustering for unsupervised learning of visual features publication-title: In Proceedings of the European Conference on Computer Vision (ECCV) – volume: 85 start-page: 102756 year: 2023 ident: 2024.08.22.608966v1.14 article-title: Computing personalized brain functional networks from fmri using self-supervised deep learning publication-title: Medical Image Analysis – start-page: 1753 year: 2017 end-page: 1759 ident: 2024.08.22.608966v1.35 article-title: Improved deep embedded clustering with local structure preservation publication-title: In Proceedings of the 26th International Joint Conference on Artificial Intelligence – volume: 105 start-page: 2753 issue: 6 year: 2011 end-page: 2763 ident: 2024.08.22.608966v1.5 article-title: Brain activity at rest: a multiscale hierarchical functional organization publication-title: Journal of Neurophysiology – volume: 21 start-page: 981 issue: 12 year: 2017 end-page: 996 ident: 2024.08.22.608966v1.6 article-title: Segregated systems of human brain networks publication-title: Trends in Cognitive Sciences – start-page: 223 year: 2018 end-page: 231 ident: 2024.08.22.608966v1.19 article-title: Identification of multi-scale hierarchical brain functional networks using deep matrix factorization publication-title: In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 |
| SSID | ssj0002961374 |
| Score | 1.7319286 |
| SecondaryResourceType | preprint |
| Snippet | Individualized functional network partitioning is increasingly critical in elucidating individual differences in cognition, development, and behavior. The... |
| SourceID | biorxiv |
| SourceType | Open Access Repository |
| SubjectTerms | Neuroscience |
| Title | Indiv-Brain: Individualized Brain Network Partition Learned from Individual fMRI Data using Deep Clustering with Vertex-level Attention |
| URI | https://www.biorxiv.org/content/10.1101/2024.08.22.608966 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEICtqgWJG0_xlpG4RYGu6zgxN7YsolKpqqpCZS-V4wcbVCVVSKrCH-BvM-Nk08JyWA5cosq1U3W-kTOezIOQl8q4iHGhwxNnZMjjKApTbXholNY2jaVW1lfXn8azWbJayXmvV1_mwuw2cZ4n-73c_lfUMAawMXX2H3B3N4UB-AzQ4QrY4Xot8BNMsQpPsfUDHvcnXcZV9gOMSz-Oab4YkAX2Y9kUK2rqrML3Pt3ksCZwHxcTUI1KBbX3KryzdhuMNzXWV-j8uJ9sWdl9uMEApOBtVTUhlMd2b5oVi32266J9au-hPb_IKlUcbOnGGfu5yL98zTqFW7VdV6bdyPmF8stXmSouJ7aOC8bRE8sOx9xxsQGL2nsvMWEJND6YNnpftAHQ1m-DTEjYs5lPzv7Lhu8bDeDtsRIrY6_EMJHij-La_nF9Zc4ODs0Dhi8m-2RwejabLzrnHJNg5cS8fQsOv_H6ymo4L4HoShDdkT2yvE0Gc7W15R3Ss_ldcrNpKPr9Hvl5BP8N_R099aO0RU879LRFTxH90RqK6Cmipx49RfT0gJ4ienqMnnbo75Pl-7Pl-EPYttoI01iIUCQ6TpPEgqgN_HcDm74R3AkXayON4rGK5GholUsjrgXDx4JzSnBzko6U5Hz0gPTzIrcPCcV6RlpqpjRY2to4NMBdmrJERWIkEveIvGjltt429VTWKNv1MFkztm5k-_gac56QWwelekr6VVnbZ-SG3lXZt_J5C_QXqfNspw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indiv-Brain%3A+Individualized+Brain+Network+Partition+Learned+from+Individual+fMRI+Data+using+Deep+Clustering+with+Vertex-level+Attention&rft.jtitle=bioRxiv&rft.au=Guo%2C+Zhitao&rft.au=Duan%2C+Yongjie&rft.au=Xing%2C+Le&rft.au=Zhao%2C+Xiaojie&rft.date=2024-08-22&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.08.22.608966&rft.externalDocID=2024.08.22.608966v1 |