BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis
Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning...
Gespeichert in:
| Veröffentlicht in: | bioRxiv |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Cold Spring Harbor Laboratory
08.06.2022
|
| Ausgabe: | 1.1 |
| Schlagworte: | |
| ISSN: | 2692-8205 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning by providing user-friendly interfaces to analyze new data with pre-trained or fine-tuned models. Still, few of the existing pre-trained models are interoperable between these tools, critically restricting a model’s overall utility and the possibility of validating and reproducing scientific analyses. Here, we present the BioImage Model Zoo (https://bioimage.io): a community-driven, fully open resource where standardized pre-trained models can be shared, explored, tested, and downloaded for further adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ, QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich list of example models and practical use-cases, developer tools, documentation, and the accompanying infrastructure for model upload, download and testing. Our contribution aims to lay the groundwork to make deep learning methods for microscopy imaging findable, accessible, interoperable, and reusable (FAIR) across software tools and platforms. |
|---|---|
| AbstractList | Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning by providing user-friendly interfaces to analyze new data with pre-trained or fine-tuned models. Still, few of the existing pre-trained models are interoperable between these tools, critically restricting a model’s overall utility and the possibility of validating and reproducing scientific analyses. Here, we present the BioImage Model Zoo (https://bioimage.io): a community-driven, fully open resource where standardized pre-trained models can be shared, explored, tested, and downloaded for further adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ, QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich list of example models and practical use-cases, developer tools, documentation, and the accompanying infrastructure for model upload, download and testing. Our contribution aims to lay the groundwork to make deep learning methods for microscopy imaging findable, accessible, interoperable, and reusable (FAIR) across software tools and platforms. |
| Author | Henriques, Ricardo de-la-Torre-Gutiérrez, Cristina Kreshuk, Anna Pape, Constantin Sage, Daniel Beuttenmueller, Fynn Lundberg, Emma Weigert, Martin Bankhead, Peter Burke, Tom Kutra, Dominik Muñoz-Barrutia, Arrate Schmidt, Uwe Moya-Sans, Lucía Schmidt, Deborah Novikov, Maksim Jug, Florian Gómez-de-Mariscal, Estibaliz Ouyang, Wei Russell, Craig Jacquemet, Guillaume Garcia-López-de-Haro, Carlos |
| Author_xml | – sequence: 1 givenname: Wei surname: Ouyang fullname: Ouyang, Wei organization: Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology – sequence: 2 givenname: Fynn surname: Beuttenmueller fullname: Beuttenmueller, Fynn organization: Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University – sequence: 3 givenname: Estibaliz surname: Gómez-de-Mariscal fullname: Gómez-de-Mariscal, Estibaliz organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid – sequence: 4 givenname: Constantin surname: Pape fullname: Pape, Constantin organization: Institute of Computer Science, University Göttingen – sequence: 5 givenname: Tom surname: Burke fullname: Burke, Tom organization: Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) – sequence: 6 givenname: Carlos surname: Garcia-López-de-Haro fullname: Garcia-López-de-Haro, Carlos organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid – sequence: 7 givenname: Craig surname: Russell fullname: Russell, Craig organization: European Molecular Biology Laboratory, European Bioinformatics Institute – sequence: 8 givenname: Lucía surname: Moya-Sans fullname: Moya-Sans, Lucía organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid – sequence: 9 givenname: Cristina surname: de-la-Torre-Gutiérrez fullname: de-la-Torre-Gutiérrez, Cristina organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid – sequence: 10 givenname: Deborah surname: Schmidt fullname: Schmidt, Deborah organization: Helmholtz Imaging, Max Delbrück Center for Molecular Medicine in the Helmholtz Association – sequence: 11 givenname: Dominik surname: Kutra fullname: Kutra, Dominik organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory – sequence: 12 givenname: Maksim surname: Novikov fullname: Novikov, Maksim organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory – sequence: 13 givenname: Martin surname: Weigert fullname: Weigert, Martin organization: Institute of Bioengineering, School of Life Sciences, EPFL – sequence: 14 givenname: Uwe surname: Schmidt fullname: Schmidt, Uwe organization: Independent researcher – sequence: 15 givenname: Peter orcidid: 0000-0003-4851-8813 surname: Bankhead fullname: Bankhead, Peter organization: Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh – sequence: 16 givenname: Guillaume orcidid: 0000-0002-9286-920X surname: Jacquemet fullname: Jacquemet, Guillaume organization: Turku Bioimaging, University of Turku and Åbo Akademi University – sequence: 17 givenname: Daniel surname: Sage fullname: Sage, Daniel organization: Biomedical Imaging Group and EPFL Center for Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne – sequence: 18 givenname: Ricardo surname: Henriques fullname: Henriques, Ricardo organization: MRC-Laboratory for Molecular Cell Biology, University College London – sequence: 19 givenname: Arrate orcidid: 0000-0002-1573-1661 surname: Muñoz-Barrutia fullname: Muñoz-Barrutia, Arrate organization: Instituto de Investigación Sanitaria Gregorio Marañón – sequence: 20 givenname: Emma surname: Lundberg fullname: Lundberg, Emma organization: Chan Zuckerberg Biohub – sequence: 21 givenname: Florian surname: Jug fullname: Jug, Florian organization: Fondazione Human Technopole – sequence: 22 givenname: Anna orcidid: 0000-0003-1334-6388 surname: Kreshuk fullname: Kreshuk, Anna email: anna.kreshuk@embl.de organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory |
| BookMark | eNo9kL1OwzAURi0EEqX0Adg8siTYN4kds4WWn0pFSKgTS-Q415VRYlc2rejbU1TE8p1vOsO5Iuc-eCTkhrOcc8bvgAHkTORM5qWqOIMzMgGhIKuBVZdkltInYwyU4IUsJ0Q_uLAc9Qbpa-hxoB8h3NOGzsM47rz7OmSL6Pbo6TumsIsGqQ2RNsZgSq4bkC4Qt3SFOnrnN9R5-u9rvB4OyaVrcmH1kHD2xylZPz2u5y_Z6u15OW9WWScFZLYz3Bo0ypayVH3dK1tZezwAgJU1CgtrrbS653Upa807oZSBkgt-HGaKKbk9aTsX4rfbt9voRh0P7W-QlomWyfYUpPgBNuRX2w |
| Cites_doi | 10.1007/978-3-030-00934-2_30 10.5281/zenodo.4430893 10.5281/zenodo.6516123 10.12688/f1000research.50798.1 10.1109/WACV45572.2020.9093435 10.1109/ICCVW54120.2021.00082 10.5281/zenodo.6519294 10.31219/osf.io/wd2gu 10.6084/m9.figshare.856713.v1 10.48550/arXiv.2005.02987 10.1109/ICCV.2017.244 10.1007/978-3-030-59722-1_7 |
| ContentType | Paper |
| Copyright | 2022, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2022, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2022.06.07.495102 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2022.06.07.495102v1 |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
| ID | FETCH-LOGICAL-b762-fbc1fcec9f4749d8d9f5ff9d8222e5fc9e3fff7fad18478a1b699c241612410c3 |
| IngestDate | Tue Jan 07 18:50:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at http://creativecommons.org/licenses/by-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b762-fbc1fcec9f4749d8d9f5ff9d8222e5fc9e3fff7fad18478a1b699c241612410c3 |
| Notes | Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-9286-920X 0000-0002-1573-1661 0000-0003-4851-8813 0000-0003-1334-6388 |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2022.06.07.495102 |
| PageCount | 28 |
| ParticipantIDs | biorxiv_primary_2022_06_07_495102 |
| PublicationCentury | 2000 |
| PublicationDate | 20220608 |
| PublicationDateYYYYMMDD | 2022-06-08 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220608 day: 8 |
| PublicationDecade | 2020 |
| PublicationTitle | bioRxiv |
| PublicationYear | 2022 |
| Publisher | Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory |
| References | Sofroniew (2022.06.07.495102v1.32) 2022 Matskevych, Wolny, Pape, Kreshuk (2022.06.07.495102v1.44) 2022; 4 Gerhard, Funke, Martel, Cardona, Fetter (2022.06.07.495102v1.57) 2013 Filby, Carpenter (2022.06.07.495102v1.19) 2022; 386 Berg (2022.06.07.495102v1.33) 2019; 16 Pietzsch, Preibisch, Tomančák, Saalfeld (2022.06.07.495102v1.54) 2012; 28 Chen, Wang, Kao, Chuang (2022.06.07.495102v1.3) 2018 Stringer, Wang, Michaelos, Pachitariu (2022.06.07.495102v1.12) 2021; 18 Jamali, Dobson, Eliceiri, Carpenter, Cimini (2022.06.07.495102v1.21) 2022; 1 Wilkinson (2022.06.07.495102v1.35) 2016; 3 Weigert, Schmidt, Haase, Sugawara, Myers (2022.06.07.495102v1.26) 2020 Paszke (2022.06.07.495102v1.36) 2019 Bassel (2022.06.07.495102v1.43) 2019 Falk (2022.06.07.495102v1.27) 2019; 16 Buchholz, Prakash, Krull, Jug (2022.06.07.495102v1.55) 2020 Legland, Arganda-Carreras, Andrey (2022.06.07.495102v1.42) 2016; 32 Zhu, Park, Isola, Efros (2022.06.07.495102v1.1) 2017 Schindelin (2022.06.07.495102v1.22) 2012; 9 Krull, Buchholz, Jug (2022.06.07.495102v1.6) 2019 Ounkomol, Seshamani, Maleckar, Collman, Johnson (2022.06.07.495102v1.14) 2018; 15 Ison (2022.06.07.495102v1.48) 2013; 29 Schroeder (2022.06.07.495102v1.53) 2021; 30 Graham (2022.06.07.495102v1.40) 2021 Kumar (2022.06.07.495102v1.38) 2017; 36 Caicedo (2022.06.07.495102v1.13) 2019; 16 Schmidt, Weigert, Broaddus, Myers (2022.06.07.495102v1.25) 2018 Kaimal, Thul (2022.06.07.495102v1.56) 2021 Ouyang (2022.06.07.495102v1.9) 2019; 16 Bankhead (2022.06.07.495102v1.34) 2017; 7 Hollandi (2022.06.07.495102v1.11) 2020; 10 McCormick (2022.06.07.495102v1.50) 2022 Bannon (2022.06.07.495102v1.28) 2021; 18 Rivenson (2022.06.07.495102v1.15) 2019; 3 Ouyang, Aristov, Lelek, Hao, Zimmer (2022.06.07.495102v1.4) 2018; 36 von Chamier (2022.06.07.495102v1.31) 2021; 12 Wolny (2022.06.07.495102v1.41) 2020; 9 Wolf (2022.06.07.495102v1.52) 2021; 43 Kim (2022.06.07.495102v1.20) 2020; 10 2022.06.07.495102v1.24 Manz (2022.06.07.495102v1.51) 2020 Piccinini (2022.06.07.495102v1.8) 2017; 4 Wei (2022.06.07.495102v1.45) 2020 Ouyang, Le, Xu, Lundberg (2022.06.07.495102v1.49) 2021 Ouyang, Mueller, Hjelmare, Lundberg, Zimmer (2022.06.07.495102v1.29) 2019; 16 Arzt (2022.06.07.495102v1.46) 2022; 4 Vergara (2022.06.07.495102v1.17) 2021; 184 Naylor, Laé, Reyal, Walter (2022.06.07.495102v1.39) 2019; 38 Rueden (2022.06.07.495102v1.23) 2017; 18 Sullivan (2022.06.07.495102v1.10) 2018; 36 Gómez-de-Mariscal (2022.06.07.495102v1.30) 2021; 18 Weigert (2022.06.07.495102v1.5) 2018; 15 Heinrich (2022.06.07.495102v1.16) 2021; 599 Prakash, Krull, Jug (2022.06.07.495102v1.7) 2021 Abadi (2022.06.07.495102v1.37) 2016 2022.06.07.495102v1.2 Arganda-Carreras (2022.06.07.495102v1.47) 2017; 33 McDole (2022.06.07.495102v1.18) 2018; 175 |
| References_xml | – start-page: 265 year: 2018 end-page: 273 ident: 2022.06.07.495102v1.25 publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 doi: 10.1007/978-3-030-00934-2_30 – volume: 15 start-page: 1090 year: 2018 end-page: 1097 ident: 2022.06.07.495102v1.5 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods – volume: 10 start-page: 21899 year: 2020 ident: 2022.06.07.495102v1.20 article-title: Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections publication-title: Sci. Rep – volume: 10 start-page: 453 year: 2020 end-page: 458 ident: 2022.06.07.495102v1.11 article-title: nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer publication-title: Cell Syst – volume: 3 start-page: 160018 year: 2016 ident: 2022.06.07.495102v1.35 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci. Data – volume: 386 start-page: 1755 year: 2022 end-page: 1758 ident: 2022.06.07.495102v1.19 article-title: A New Image for Cell Sorting publication-title: N. Engl. J. Med – volume: 32 start-page: 3532 year: 2016 end-page: 3534 ident: 2022.06.07.495102v1.42 article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ publication-title: Bioinformatics – volume: 16 start-page: 1199 year: 2019 end-page: 1200 ident: 2022.06.07.495102v1.29 article-title: ImJoy: an open-source computational platform for the deep learning era publication-title: Nat. Methods – volume: 4 year: 2022 ident: 2022.06.07.495102v1.46 article-title: LABKIT: Labeling and Segmentation Toolkit for Big Image Data publication-title: Front. Comput. Sci – volume: 18 start-page: 100 year: 2021 end-page: 106 ident: 2022.06.07.495102v1.12 article-title: Cellpose: a generalist algorithm for cellular segmentation publication-title: Nat. Methods – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: 2022.06.07.495102v1.22 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 43 start-page: 3724 year: 2021 end-page: 3738 ident: 2022.06.07.495102v1.52 article-title: The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning publication-title: IEEE Trans. Pattern Anal. Mach. Intell – year: 2021 ident: 2022.06.07.495102v1.56 article-title: HPA Cell Image Segmentation Dataset doi: 10.5281/zenodo.4430893 – start-page: 8026 year: 2019 end-page: 8037 ident: 2022.06.07.495102v1.36 article-title: PyTorch: an imperative style, high-performance deep learning library – volume: 7 start-page: 16878 year: 2017 ident: 2022.06.07.495102v1.34 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci. Rep – volume: 15 start-page: 917 year: 2018 end-page: 920 ident: 2022.06.07.495102v1.14 article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy publication-title: Nat. Methods – volume: 36 start-page: 1550 year: 2017 end-page: 1560 ident: 2022.06.07.495102v1.38 article-title: A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology publication-title: IEEE Trans. Med. Imaging – year: 2022 ident: 2022.06.07.495102v1.50 publication-title: Kitware/itk-vtk-viewer: v12.2.0 doi: 10.5281/zenodo.6516123 – year: 2019 ident: 2022.06.07.495102v1.43 article-title: Arabidopsis 3D Digital Tissue Atlas – volume: 28 start-page: 3009 year: 2012 end-page: 3011 ident: 2022.06.07.495102v1.54 article-title: ImgLib2—generic image processing in Java publication-title: Bioinformatics – volume: 36 start-page: 460 year: 2018 end-page: 468 ident: 2022.06.07.495102v1.4 article-title: Deep learning massively accelerates super-resolution localization microscopy publication-title: Nat. Biotechnol – volume: 18 start-page: 1192 year: 2021 end-page: 1195 ident: 2022.06.07.495102v1.30 article-title: DeepImageJ: A user-friendly environment to run deep learning models in ImageJ publication-title: Nat. Methods – year: 2021 ident: 2022.06.07.495102v1.49 article-title: Interactive biomedical segmentation tool powered by deep learning and ImJoy doi: 10.12688/f1000research.50798.1 – start-page: 6306 year: 2018 end-page: 6314 ident: 2022.06.07.495102v1.3 article-title: Deep Photo Enhancer: Unpaired Learning for Image Enhancement From Photographs With GANs – volume: 36 start-page: 820 year: 2018 end-page: 828 ident: 2022.06.07.495102v1.10 article-title: Deep learning is combined with massive-scale citizen science to improve large-scale image classification publication-title: Nat. Biotechnol – year: 2021 ident: 2022.06.07.495102v1.7 article-title: Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders publication-title: ArXiv200606072 Cs Eess – volume: 3 start-page: 466 year: 2019 end-page: 477 ident: 2022.06.07.495102v1.15 article-title: Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning publication-title: Nat. Biomed. Eng – volume: 4 year: 2022 ident: 2022.06.07.495102v1.44 article-title: From Shallow to Deep: Exploiting Feature-Based Classifiers for Domain Adaptation in Semantic Segmentation publication-title: Front. Comput. Sci – volume: 33 start-page: 2424 year: 2017 end-page: 2426 ident: 2022.06.07.495102v1.47 article-title: Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification publication-title: Bioinformatics – start-page: 3655 year: 2020 end-page: 3662 ident: 2022.06.07.495102v1.26 article-title: Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy publication-title: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) doi: 10.1109/WACV45572.2020.9093435 – volume: 16 start-page: 67 year: 2019 ident: 2022.06.07.495102v1.27 article-title: U-Net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods – start-page: 684 year: 2021 end-page: 693 ident: 2022.06.07.495102v1.40 article-title: Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification publication-title: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) doi: 10.1109/ICCVW54120.2021.00082 – volume: 4 start-page: 651 year: 2017 end-page: 655 ident: 2022.06.07.495102v1.8 article-title: Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data publication-title: Cell Syst – volume: 16 start-page: 1247 year: 2019 end-page: 1253 ident: 2022.06.07.495102v1.13 article-title: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl publication-title: Nat. Methods – volume: 184 start-page: 4819 year: 2021 end-page: 4837 ident: 2022.06.07.495102v1.17 article-title: Whole-body integration of gene expression and single-cell morphology publication-title: Cell – year: 2022 ident: 2022.06.07.495102v1.32 publication-title: napari: a multi-dimensional image viewer for Python doi: 10.5281/zenodo.6519294 – year: 2020 ident: 2022.06.07.495102v1.51 article-title: Viv: Multiscale Visualization of High-Resolution Multiplexed Bioimaging Data on the Web doi: 10.31219/osf.io/wd2gu – year: 2013 ident: 2022.06.07.495102v1.57 article-title: Segmented anisotropic ssTEM dataset of neural tissue doi: 10.6084/m9.figshare.856713.v1 – volume: 18 start-page: 529 year: 2017 ident: 2022.06.07.495102v1.23 article-title: ImageJ2: ImageJ for the next generation of scientific image data publication-title: BMC Bioinformatics – year: 2020 ident: 2022.06.07.495102v1.55 publication-title: DenoiSeg: Joint Denoising and Segmentation doi: 10.48550/arXiv.2005.02987 – volume: 175 start-page: 859 year: 2018 end-page: 876 ident: 2022.06.07.495102v1.18 article-title: In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level publication-title: Cell – volume: 18 start-page: 43 year: 2021 end-page: 45 ident: 2022.06.07.495102v1.28 article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes publication-title: Nat. Methods – ident: 2022.06.07.495102v1.24 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nature Methods – volume: 38 start-page: 448 year: 2019 end-page: 459 ident: 2022.06.07.495102v1.39 article-title: Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map publication-title: IEEE Trans. Med. Imaging – start-page: 2242 year: 2017 end-page: 2251 ident: 2022.06.07.495102v1.1 article-title: Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2017.244 – volume: 29 start-page: 1325 year: 2013 end-page: 1332 ident: 2022.06.07.495102v1.48 article-title: EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats publication-title: Bioinformatics – volume: 16 start-page: 1254 year: 2019 end-page: 1261 ident: 2022.06.07.495102v1.9 article-title: Analysis of the Human Protein Atlas Image Classification competition publication-title: Nat. Methods – ident: 2022.06.07.495102v1.2 article-title: Deep Visual-Semantic Alignments for Generating Image Descriptions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 599 start-page: 141 year: 2021 end-page: 146 ident: 2022.06.07.495102v1.16 article-title: Whole-cell organelle segmentation in volume electron microscopy publication-title: Nature – volume: 30 start-page: 234 year: 2021 end-page: 249 ident: 2022.06.07.495102v1.53 article-title: The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis publication-title: Protein Sci – volume: 16 start-page: 1226 year: 2019 end-page: 1232 ident: 2022.06.07.495102v1.33 article-title: ilastik: interactive machine learning for (bio)image analysis publication-title: Nat. Methods – volume: 12 start-page: 2276 year: 2021 ident: 2022.06.07.495102v1.31 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat. Commun – start-page: 66 year: 2020 end-page: 76 ident: 2022.06.07.495102v1.45 publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 doi: 10.1007/978-3-030-59722-1_7 – start-page: 265 year: 2016 end-page: 283 ident: 2022.06.07.495102v1.37 article-title: TensorFlow: A system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) – start-page: 2129 year: 2019 end-page: 2137 ident: 2022.06.07.495102v1.6 article-title: Noise2Void – Learning Denoising From Single Noisy Images – volume: 1 year: 2022 ident: 2022.06.07.495102v1.21 article-title: 2020 BioImage Analysis Survey: Community experiences and needs for the future publication-title: Biol. Imaging – volume: 9 start-page: e57613 year: 2020 ident: 2022.06.07.495102v1.41 article-title: Accurate and versatile 3D segmentation of plant tissues at cellular resolution publication-title: eLife |
| SSID | ssj0002961374 |
| Score | 1.6570361 |
| SecondaryResourceType | preprint |
| Snippet | Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based... |
| SourceID | biorxiv |
| SourceType | Open Access Repository |
| SubjectTerms | Bioinformatics |
| Title | BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis |
| URI | https://www.biorxiv.org/content/10.1101/2022.06.07.495102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj2WBv-2Tr1qHB3oKZ4zqWtbemTbfBFkoJrOwlWPIJDI0d3CQk_et7J0tKWffQPexFOMaR4X7n030fY5-KWOOpa0SUilKigQIoB9NERSbW5Who0hwybYdNiOk0v7yU5y5ccG3HCYi6zrdbufyvUOM9BJtKZ_8B7rAp3sBrBB1XhB3XBwE_rprvC8rEoTFnV4PfTeOrz20pyGoXnbYk4oLn3mYaHtvBiRXVUZ0CLH3fVVvvEnb0HUzuarSqai621SY4a9c754H-BVWw9YHGYdeLNfjCw7NdHbjyKwXrx0cLuIlKiH7SVERtxxAMJih_FBoKN_tA17LLXOy0Wt823Hkt0OAlx0Ue-OykuUJ12rouqVoJ2X3wo2P6xmU_g5WBSSZRYCe2Mvsv0t5OGaDtXQ_WlPTFZH-0hYTDe89s0GLuJxSV7LH-eDI9vwieuUSiiiNSFwLHd3y-9280lpC6LVL3jjIye8b6RIb2OXsE9Qv2pJsmunvJCo8Tt8hzRP4LP-Z_4s497hxx53vcOeHOPe68qnnYz-P-is3OJrOTb5GboBEpPOQio_TQaNDSpCKVZV5KMzIGL1AphJHREo6MMcIUJdr5Ii-GKpNSJ2Tz4oJf8WvWq5sa3jCuhgmITCk0F0RaZInEX2Us4xgQHROLt-yjo8h82bVJmRPV5pQ1KeYd1Q4e8Mw79nTPLu9Zb9Wu4ZA91ptVdd1-cFDdArAFWic |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioImage+Model+Zoo%3A+A+Community-Driven+Resource+for+Accessible+Deep+Learning+in+BioImage+Analysis&rft.jtitle=bioRxiv&rft.au=Ouyang%2C+Wei&rft.au=Beuttenmueller%2C+Fynn&rft.au=G%C3%B3mez-de-Mariscal%2C+Estibaliz&rft.au=Pape%2C+Constantin&rft.date=2022-06-08&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.06.07.495102&rft.externalDocID=2022.06.07.495102v1 |