BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis

Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv
Hauptverfasser: Ouyang, Wei, Beuttenmueller, Fynn, Gómez-de-Mariscal, Estibaliz, Pape, Constantin, Burke, Tom, Garcia-López-de-Haro, Carlos, Russell, Craig, Moya-Sans, Lucía, de-la-Torre-Gutiérrez, Cristina, Schmidt, Deborah, Kutra, Dominik, Novikov, Maksim, Weigert, Martin, Schmidt, Uwe, Bankhead, Peter, Jacquemet, Guillaume, Sage, Daniel, Henriques, Ricardo, Muñoz-Barrutia, Arrate, Lundberg, Emma, Jug, Florian, Kreshuk, Anna
Format: Paper
Sprache:Englisch
Veröffentlicht: Cold Spring Harbor Laboratory 08.06.2022
Ausgabe:1.1
Schlagworte:
ISSN:2692-8205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning by providing user-friendly interfaces to analyze new data with pre-trained or fine-tuned models. Still, few of the existing pre-trained models are interoperable between these tools, critically restricting a model’s overall utility and the possibility of validating and reproducing scientific analyses. Here, we present the BioImage Model Zoo (https://bioimage.io): a community-driven, fully open resource where standardized pre-trained models can be shared, explored, tested, and downloaded for further adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ, QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich list of example models and practical use-cases, developer tools, documentation, and the accompanying infrastructure for model upload, download and testing. Our contribution aims to lay the groundwork to make deep learning methods for microscopy imaging findable, accessible, interoperable, and reusable (FAIR) across software tools and platforms.
AbstractList Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based workflows for imaging scientists remain far from sufficient. Several tools have recently risen to the challenge of democratizing deep learning by providing user-friendly interfaces to analyze new data with pre-trained or fine-tuned models. Still, few of the existing pre-trained models are interoperable between these tools, critically restricting a model’s overall utility and the possibility of validating and reproducing scientific analyses. Here, we present the BioImage Model Zoo (https://bioimage.io): a community-driven, fully open resource where standardized pre-trained models can be shared, explored, tested, and downloaded for further adaptation or direct deployment in multiple end user-facing tools (e.g., ilastik, deepImageJ, QuPath, StarDist, ImJoy, ZeroCostDL4Mic, CSBDeep). To enable everyone to contribute and consume the Zoo resources, we provide a model standard to enable cross-compatibility, a rich list of example models and practical use-cases, developer tools, documentation, and the accompanying infrastructure for model upload, download and testing. Our contribution aims to lay the groundwork to make deep learning methods for microscopy imaging findable, accessible, interoperable, and reusable (FAIR) across software tools and platforms.
Author Henriques, Ricardo
de-la-Torre-Gutiérrez, Cristina
Kreshuk, Anna
Pape, Constantin
Sage, Daniel
Beuttenmueller, Fynn
Lundberg, Emma
Weigert, Martin
Bankhead, Peter
Burke, Tom
Kutra, Dominik
Muñoz-Barrutia, Arrate
Schmidt, Uwe
Moya-Sans, Lucía
Schmidt, Deborah
Novikov, Maksim
Jug, Florian
Gómez-de-Mariscal, Estibaliz
Ouyang, Wei
Russell, Craig
Jacquemet, Guillaume
Garcia-López-de-Haro, Carlos
Author_xml – sequence: 1
  givenname: Wei
  surname: Ouyang
  fullname: Ouyang, Wei
  organization: Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology
– sequence: 2
  givenname: Fynn
  surname: Beuttenmueller
  fullname: Beuttenmueller, Fynn
  organization: Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg University
– sequence: 3
  givenname: Estibaliz
  surname: Gómez-de-Mariscal
  fullname: Gómez-de-Mariscal, Estibaliz
  organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid
– sequence: 4
  givenname: Constantin
  surname: Pape
  fullname: Pape, Constantin
  organization: Institute of Computer Science, University Göttingen
– sequence: 5
  givenname: Tom
  surname: Burke
  fullname: Burke, Tom
  organization: Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)
– sequence: 6
  givenname: Carlos
  surname: Garcia-López-de-Haro
  fullname: Garcia-López-de-Haro, Carlos
  organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid
– sequence: 7
  givenname: Craig
  surname: Russell
  fullname: Russell, Craig
  organization: European Molecular Biology Laboratory, European Bioinformatics Institute
– sequence: 8
  givenname: Lucía
  surname: Moya-Sans
  fullname: Moya-Sans, Lucía
  organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid
– sequence: 9
  givenname: Cristina
  surname: de-la-Torre-Gutiérrez
  fullname: de-la-Torre-Gutiérrez, Cristina
  organization: Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid
– sequence: 10
  givenname: Deborah
  surname: Schmidt
  fullname: Schmidt, Deborah
  organization: Helmholtz Imaging, Max Delbrück Center for Molecular Medicine in the Helmholtz Association
– sequence: 11
  givenname: Dominik
  surname: Kutra
  fullname: Kutra, Dominik
  organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory
– sequence: 12
  givenname: Maksim
  surname: Novikov
  fullname: Novikov, Maksim
  organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory
– sequence: 13
  givenname: Martin
  surname: Weigert
  fullname: Weigert, Martin
  organization: Institute of Bioengineering, School of Life Sciences, EPFL
– sequence: 14
  givenname: Uwe
  surname: Schmidt
  fullname: Schmidt, Uwe
  organization: Independent researcher
– sequence: 15
  givenname: Peter
  orcidid: 0000-0003-4851-8813
  surname: Bankhead
  fullname: Bankhead, Peter
  organization: Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh
– sequence: 16
  givenname: Guillaume
  orcidid: 0000-0002-9286-920X
  surname: Jacquemet
  fullname: Jacquemet, Guillaume
  organization: Turku Bioimaging, University of Turku and Åbo Akademi University
– sequence: 17
  givenname: Daniel
  surname: Sage
  fullname: Sage, Daniel
  organization: Biomedical Imaging Group and EPFL Center for Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne
– sequence: 18
  givenname: Ricardo
  surname: Henriques
  fullname: Henriques, Ricardo
  organization: MRC-Laboratory for Molecular Cell Biology, University College London
– sequence: 19
  givenname: Arrate
  orcidid: 0000-0002-1573-1661
  surname: Muñoz-Barrutia
  fullname: Muñoz-Barrutia, Arrate
  organization: Instituto de Investigación Sanitaria Gregorio Marañón
– sequence: 20
  givenname: Emma
  surname: Lundberg
  fullname: Lundberg, Emma
  organization: Chan Zuckerberg Biohub
– sequence: 21
  givenname: Florian
  surname: Jug
  fullname: Jug, Florian
  organization: Fondazione Human Technopole
– sequence: 22
  givenname: Anna
  orcidid: 0000-0003-1334-6388
  surname: Kreshuk
  fullname: Kreshuk, Anna
  email: anna.kreshuk@embl.de
  organization: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory
BookMark eNo9kL1OwzAURi0EEqX0Adg8siTYN4kds4WWn0pFSKgTS-Q415VRYlc2rejbU1TE8p1vOsO5Iuc-eCTkhrOcc8bvgAHkTORM5qWqOIMzMgGhIKuBVZdkltInYwyU4IUsJ0Q_uLAc9Qbpa-hxoB8h3NOGzsM47rz7OmSL6Pbo6TumsIsGqQ2RNsZgSq4bkC4Qt3SFOnrnN9R5-u9rvB4OyaVrcmH1kHD2xylZPz2u5y_Z6u15OW9WWScFZLYz3Bo0ypayVH3dK1tZezwAgJU1CgtrrbS653Upa807oZSBkgt-HGaKKbk9aTsX4rfbt9voRh0P7W-QlomWyfYUpPgBNuRX2w
Cites_doi 10.1007/978-3-030-00934-2_30
10.5281/zenodo.4430893
10.5281/zenodo.6516123
10.12688/f1000research.50798.1
10.1109/WACV45572.2020.9093435
10.1109/ICCVW54120.2021.00082
10.5281/zenodo.6519294
10.31219/osf.io/wd2gu
10.6084/m9.figshare.856713.v1
10.48550/arXiv.2005.02987
10.1109/ICCV.2017.244
10.1007/978-3-030-59722-1_7
ContentType Paper
Copyright 2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2022.06.07.495102
DatabaseName bioRxiv
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.06.07.495102v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b762-fbc1fcec9f4749d8d9f5ff9d8222e5fc9e3fff7fad18478a1b699c241612410c3
IngestDate Tue Jan 07 18:50:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NoDerivs 4.0 International), CC BY-ND 4.0, as described at http://creativecommons.org/licenses/by-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b762-fbc1fcec9f4749d8d9f5ff9d8222e5fc9e3fff7fad18478a1b699c241612410c3
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-9286-920X
0000-0002-1573-1661
0000-0003-4851-8813
0000-0003-1334-6388
OpenAccessLink https://www.biorxiv.org/content/10.1101/2022.06.07.495102
PageCount 28
ParticipantIDs biorxiv_primary_2022_06_07_495102
PublicationCentury 2000
PublicationDate 20220608
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 6
  year: 2022
  text: 20220608
  day: 8
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Sofroniew (2022.06.07.495102v1.32) 2022
Matskevych, Wolny, Pape, Kreshuk (2022.06.07.495102v1.44) 2022; 4
Gerhard, Funke, Martel, Cardona, Fetter (2022.06.07.495102v1.57) 2013
Filby, Carpenter (2022.06.07.495102v1.19) 2022; 386
Berg (2022.06.07.495102v1.33) 2019; 16
Pietzsch, Preibisch, Tomančák, Saalfeld (2022.06.07.495102v1.54) 2012; 28
Chen, Wang, Kao, Chuang (2022.06.07.495102v1.3) 2018
Stringer, Wang, Michaelos, Pachitariu (2022.06.07.495102v1.12) 2021; 18
Jamali, Dobson, Eliceiri, Carpenter, Cimini (2022.06.07.495102v1.21) 2022; 1
Wilkinson (2022.06.07.495102v1.35) 2016; 3
Weigert, Schmidt, Haase, Sugawara, Myers (2022.06.07.495102v1.26) 2020
Paszke (2022.06.07.495102v1.36) 2019
Bassel (2022.06.07.495102v1.43) 2019
Falk (2022.06.07.495102v1.27) 2019; 16
Buchholz, Prakash, Krull, Jug (2022.06.07.495102v1.55) 2020
Legland, Arganda-Carreras, Andrey (2022.06.07.495102v1.42) 2016; 32
Zhu, Park, Isola, Efros (2022.06.07.495102v1.1) 2017
Schindelin (2022.06.07.495102v1.22) 2012; 9
Krull, Buchholz, Jug (2022.06.07.495102v1.6) 2019
Ounkomol, Seshamani, Maleckar, Collman, Johnson (2022.06.07.495102v1.14) 2018; 15
Ison (2022.06.07.495102v1.48) 2013; 29
Schroeder (2022.06.07.495102v1.53) 2021; 30
Graham (2022.06.07.495102v1.40) 2021
Kumar (2022.06.07.495102v1.38) 2017; 36
Caicedo (2022.06.07.495102v1.13) 2019; 16
Schmidt, Weigert, Broaddus, Myers (2022.06.07.495102v1.25) 2018
Kaimal, Thul (2022.06.07.495102v1.56) 2021
Ouyang (2022.06.07.495102v1.9) 2019; 16
Bankhead (2022.06.07.495102v1.34) 2017; 7
Hollandi (2022.06.07.495102v1.11) 2020; 10
McCormick (2022.06.07.495102v1.50) 2022
Bannon (2022.06.07.495102v1.28) 2021; 18
Rivenson (2022.06.07.495102v1.15) 2019; 3
Ouyang, Aristov, Lelek, Hao, Zimmer (2022.06.07.495102v1.4) 2018; 36
von Chamier (2022.06.07.495102v1.31) 2021; 12
Wolny (2022.06.07.495102v1.41) 2020; 9
Wolf (2022.06.07.495102v1.52) 2021; 43
Kim (2022.06.07.495102v1.20) 2020; 10
2022.06.07.495102v1.24
Manz (2022.06.07.495102v1.51) 2020
Piccinini (2022.06.07.495102v1.8) 2017; 4
Wei (2022.06.07.495102v1.45) 2020
Ouyang, Le, Xu, Lundberg (2022.06.07.495102v1.49) 2021
Ouyang, Mueller, Hjelmare, Lundberg, Zimmer (2022.06.07.495102v1.29) 2019; 16
Arzt (2022.06.07.495102v1.46) 2022; 4
Vergara (2022.06.07.495102v1.17) 2021; 184
Naylor, Laé, Reyal, Walter (2022.06.07.495102v1.39) 2019; 38
Rueden (2022.06.07.495102v1.23) 2017; 18
Sullivan (2022.06.07.495102v1.10) 2018; 36
Gómez-de-Mariscal (2022.06.07.495102v1.30) 2021; 18
Weigert (2022.06.07.495102v1.5) 2018; 15
Heinrich (2022.06.07.495102v1.16) 2021; 599
Prakash, Krull, Jug (2022.06.07.495102v1.7) 2021
Abadi (2022.06.07.495102v1.37) 2016
2022.06.07.495102v1.2
Arganda-Carreras (2022.06.07.495102v1.47) 2017; 33
McDole (2022.06.07.495102v1.18) 2018; 175
References_xml – start-page: 265
  year: 2018
  end-page: 273
  ident: 2022.06.07.495102v1.25
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
  doi: 10.1007/978-3-030-00934-2_30
– volume: 15
  start-page: 1090
  year: 2018
  end-page: 1097
  ident: 2022.06.07.495102v1.5
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat. Methods
– volume: 10
  start-page: 21899
  year: 2020
  ident: 2022.06.07.495102v1.20
  article-title: Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections
  publication-title: Sci. Rep
– volume: 10
  start-page: 453
  year: 2020
  end-page: 458
  ident: 2022.06.07.495102v1.11
  article-title: nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer
  publication-title: Cell Syst
– volume: 3
  start-page: 160018
  year: 2016
  ident: 2022.06.07.495102v1.35
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci. Data
– volume: 386
  start-page: 1755
  year: 2022
  end-page: 1758
  ident: 2022.06.07.495102v1.19
  article-title: A New Image for Cell Sorting
  publication-title: N. Engl. J. Med
– volume: 32
  start-page: 3532
  year: 2016
  end-page: 3534
  ident: 2022.06.07.495102v1.42
  article-title: MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ
  publication-title: Bioinformatics
– volume: 16
  start-page: 1199
  year: 2019
  end-page: 1200
  ident: 2022.06.07.495102v1.29
  article-title: ImJoy: an open-source computational platform for the deep learning era
  publication-title: Nat. Methods
– volume: 4
  year: 2022
  ident: 2022.06.07.495102v1.46
  article-title: LABKIT: Labeling and Segmentation Toolkit for Big Image Data
  publication-title: Front. Comput. Sci
– volume: 18
  start-page: 100
  year: 2021
  end-page: 106
  ident: 2022.06.07.495102v1.12
  article-title: Cellpose: a generalist algorithm for cellular segmentation
  publication-title: Nat. Methods
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: 2022.06.07.495102v1.22
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 43
  start-page: 3724
  year: 2021
  end-page: 3738
  ident: 2022.06.07.495102v1.52
  article-title: The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– year: 2021
  ident: 2022.06.07.495102v1.56
  article-title: HPA Cell Image Segmentation Dataset
  doi: 10.5281/zenodo.4430893
– start-page: 8026
  year: 2019
  end-page: 8037
  ident: 2022.06.07.495102v1.36
  article-title: PyTorch: an imperative style, high-performance deep learning library
– volume: 7
  start-page: 16878
  year: 2017
  ident: 2022.06.07.495102v1.34
  article-title: QuPath: Open source software for digital pathology image analysis
  publication-title: Sci. Rep
– volume: 15
  start-page: 917
  year: 2018
  end-page: 920
  ident: 2022.06.07.495102v1.14
  article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy
  publication-title: Nat. Methods
– volume: 36
  start-page: 1550
  year: 2017
  end-page: 1560
  ident: 2022.06.07.495102v1.38
  article-title: A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
  publication-title: IEEE Trans. Med. Imaging
– year: 2022
  ident: 2022.06.07.495102v1.50
  publication-title: Kitware/itk-vtk-viewer: v12.2.0
  doi: 10.5281/zenodo.6516123
– year: 2019
  ident: 2022.06.07.495102v1.43
  article-title: Arabidopsis 3D Digital Tissue Atlas
– volume: 28
  start-page: 3009
  year: 2012
  end-page: 3011
  ident: 2022.06.07.495102v1.54
  article-title: ImgLib2—generic image processing in Java
  publication-title: Bioinformatics
– volume: 36
  start-page: 460
  year: 2018
  end-page: 468
  ident: 2022.06.07.495102v1.4
  article-title: Deep learning massively accelerates super-resolution localization microscopy
  publication-title: Nat. Biotechnol
– volume: 18
  start-page: 1192
  year: 2021
  end-page: 1195
  ident: 2022.06.07.495102v1.30
  article-title: DeepImageJ: A user-friendly environment to run deep learning models in ImageJ
  publication-title: Nat. Methods
– year: 2021
  ident: 2022.06.07.495102v1.49
  article-title: Interactive biomedical segmentation tool powered by deep learning and ImJoy
  doi: 10.12688/f1000research.50798.1
– start-page: 6306
  year: 2018
  end-page: 6314
  ident: 2022.06.07.495102v1.3
  article-title: Deep Photo Enhancer: Unpaired Learning for Image Enhancement From Photographs With GANs
– volume: 36
  start-page: 820
  year: 2018
  end-page: 828
  ident: 2022.06.07.495102v1.10
  article-title: Deep learning is combined with massive-scale citizen science to improve large-scale image classification
  publication-title: Nat. Biotechnol
– year: 2021
  ident: 2022.06.07.495102v1.7
  article-title: Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders
  publication-title: ArXiv200606072 Cs Eess
– volume: 3
  start-page: 466
  year: 2019
  end-page: 477
  ident: 2022.06.07.495102v1.15
  article-title: Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning
  publication-title: Nat. Biomed. Eng
– volume: 4
  year: 2022
  ident: 2022.06.07.495102v1.44
  article-title: From Shallow to Deep: Exploiting Feature-Based Classifiers for Domain Adaptation in Semantic Segmentation
  publication-title: Front. Comput. Sci
– volume: 33
  start-page: 2424
  year: 2017
  end-page: 2426
  ident: 2022.06.07.495102v1.47
  article-title: Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
  publication-title: Bioinformatics
– start-page: 3655
  year: 2020
  end-page: 3662
  ident: 2022.06.07.495102v1.26
  article-title: Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy
  publication-title: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
  doi: 10.1109/WACV45572.2020.9093435
– volume: 16
  start-page: 67
  year: 2019
  ident: 2022.06.07.495102v1.27
  article-title: U-Net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
– start-page: 684
  year: 2021
  end-page: 693
  ident: 2022.06.07.495102v1.40
  article-title: Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
  doi: 10.1109/ICCVW54120.2021.00082
– volume: 4
  start-page: 651
  year: 2017
  end-page: 655
  ident: 2022.06.07.495102v1.8
  article-title: Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data
  publication-title: Cell Syst
– volume: 16
  start-page: 1247
  year: 2019
  end-page: 1253
  ident: 2022.06.07.495102v1.13
  article-title: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl
  publication-title: Nat. Methods
– volume: 184
  start-page: 4819
  year: 2021
  end-page: 4837
  ident: 2022.06.07.495102v1.17
  article-title: Whole-body integration of gene expression and single-cell morphology
  publication-title: Cell
– year: 2022
  ident: 2022.06.07.495102v1.32
  publication-title: napari: a multi-dimensional image viewer for Python
  doi: 10.5281/zenodo.6519294
– year: 2020
  ident: 2022.06.07.495102v1.51
  article-title: Viv: Multiscale Visualization of High-Resolution Multiplexed Bioimaging Data on the Web
  doi: 10.31219/osf.io/wd2gu
– year: 2013
  ident: 2022.06.07.495102v1.57
  article-title: Segmented anisotropic ssTEM dataset of neural tissue
  doi: 10.6084/m9.figshare.856713.v1
– volume: 18
  start-page: 529
  year: 2017
  ident: 2022.06.07.495102v1.23
  article-title: ImageJ2: ImageJ for the next generation of scientific image data
  publication-title: BMC Bioinformatics
– year: 2020
  ident: 2022.06.07.495102v1.55
  publication-title: DenoiSeg: Joint Denoising and Segmentation
  doi: 10.48550/arXiv.2005.02987
– volume: 175
  start-page: 859
  year: 2018
  end-page: 876
  ident: 2022.06.07.495102v1.18
  article-title: In Toto Imaging and Reconstruction of Post-Implantation Mouse Development at the Single-Cell Level
  publication-title: Cell
– volume: 18
  start-page: 43
  year: 2021
  end-page: 45
  ident: 2022.06.07.495102v1.28
  article-title: DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes
  publication-title: Nat. Methods
– ident: 2022.06.07.495102v1.24
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nature Methods
– volume: 38
  start-page: 448
  year: 2019
  end-page: 459
  ident: 2022.06.07.495102v1.39
  article-title: Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2242
  year: 2017
  end-page: 2251
  ident: 2022.06.07.495102v1.1
  article-title: Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2017.244
– volume: 29
  start-page: 1325
  year: 2013
  end-page: 1332
  ident: 2022.06.07.495102v1.48
  article-title: EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats
  publication-title: Bioinformatics
– volume: 16
  start-page: 1254
  year: 2019
  end-page: 1261
  ident: 2022.06.07.495102v1.9
  article-title: Analysis of the Human Protein Atlas Image Classification competition
  publication-title: Nat. Methods
– ident: 2022.06.07.495102v1.2
  article-title: Deep Visual-Semantic Alignments for Generating Image Descriptions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 599
  start-page: 141
  year: 2021
  end-page: 146
  ident: 2022.06.07.495102v1.16
  article-title: Whole-cell organelle segmentation in volume electron microscopy
  publication-title: Nature
– volume: 30
  start-page: 234
  year: 2021
  end-page: 249
  ident: 2022.06.07.495102v1.53
  article-title: The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis
  publication-title: Protein Sci
– volume: 16
  start-page: 1226
  year: 2019
  end-page: 1232
  ident: 2022.06.07.495102v1.33
  article-title: ilastik: interactive machine learning for (bio)image analysis
  publication-title: Nat. Methods
– volume: 12
  start-page: 2276
  year: 2021
  ident: 2022.06.07.495102v1.31
  article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic
  publication-title: Nat. Commun
– start-page: 66
  year: 2020
  end-page: 76
  ident: 2022.06.07.495102v1.45
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
  doi: 10.1007/978-3-030-59722-1_7
– start-page: 265
  year: 2016
  end-page: 283
  ident: 2022.06.07.495102v1.37
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
– start-page: 2129
  year: 2019
  end-page: 2137
  ident: 2022.06.07.495102v1.6
  article-title: Noise2Void – Learning Denoising From Single Noisy Images
– volume: 1
  year: 2022
  ident: 2022.06.07.495102v1.21
  article-title: 2020 BioImage Analysis Survey: Community experiences and needs for the future
  publication-title: Biol. Imaging
– volume: 9
  start-page: e57613
  year: 2020
  ident: 2022.06.07.495102v1.41
  article-title: Accurate and versatile 3D segmentation of plant tissues at cellular resolution
  publication-title: eLife
SSID ssj0002961374
Score 1.6570361
SecondaryResourceType preprint
Snippet Deep learning-based approaches are revolutionizing imaging-driven scientific research. However, the accessibility and reproducibility of deep learning-based...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Bioinformatics
Title BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis
URI https://www.biorxiv.org/content/10.1101/2022.06.07.495102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj2WBv-2Tr1qHB3oKZ4zqWtbemTbfBFkoJrOwlWPIJDI0d3CQk_et7J0tKWffQPexFOMaR4X7n030fY5-KWOOpa0SUilKigQIoB9NERSbW5Who0hwybYdNiOk0v7yU5y5ccG3HCYi6zrdbufyvUOM9BJtKZ_8B7rAp3sBrBB1XhB3XBwE_rprvC8rEoTFnV4PfTeOrz20pyGoXnbYk4oLn3mYaHtvBiRXVUZ0CLH3fVVvvEnb0HUzuarSqai621SY4a9c754H-BVWw9YHGYdeLNfjCw7NdHbjyKwXrx0cLuIlKiH7SVERtxxAMJih_FBoKN_tA17LLXOy0Wt823Hkt0OAlx0Ue-OykuUJ12rouqVoJ2X3wo2P6xmU_g5WBSSZRYCe2Mvsv0t5OGaDtXQ_WlPTFZH-0hYTDe89s0GLuJxSV7LH-eDI9vwieuUSiiiNSFwLHd3y-9280lpC6LVL3jjIye8b6RIb2OXsE9Qv2pJsmunvJCo8Tt8hzRP4LP-Z_4s497hxx53vcOeHOPe68qnnYz-P-is3OJrOTb5GboBEpPOQio_TQaNDSpCKVZV5KMzIGL1AphJHREo6MMcIUJdr5Ii-GKpNSJ2Tz4oJf8WvWq5sa3jCuhgmITCk0F0RaZInEX2Us4xgQHROLt-yjo8h82bVJmRPV5pQ1KeYd1Q4e8Mw79nTPLu9Zb9Wu4ZA91ptVdd1-cFDdArAFWic
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioImage+Model+Zoo%3A+A+Community-Driven+Resource+for+Accessible+Deep+Learning+in+BioImage+Analysis&rft.jtitle=bioRxiv&rft.au=Ouyang%2C+Wei&rft.au=Beuttenmueller%2C+Fynn&rft.au=G%C3%B3mez-de-Mariscal%2C+Estibaliz&rft.au=Pape%2C+Constantin&rft.date=2022-06-08&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.06.07.495102&rft.externalDocID=2022.06.07.495102v1