Simulating human-in-the-loop optimization of exoskeleton assistance to compare optimization algorithm performance
Assistive robotic devices like exoskeletons offer the promise of improving mobility for millions of people. However, developing devices that improve an objective mobility metric is challenging. Human-in-the-loop optimization is a systematic approach for personalizing robotic assistance to maximize a...
Saved in:
| Published in: | bioRxiv |
|---|---|
| Main Authors: | , |
| Format: | Paper |
| Language: | English |
| Published: |
Cold Spring Harbor Laboratory
09.04.2024
|
| Edition: | 1.1 |
| Subjects: | |
| ISSN: | 2692-8205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Assistive robotic devices like exoskeletons offer the promise of improving mobility for millions of people. However, developing devices that improve an objective mobility metric is challenging. Human-in-the-loop optimization is a systematic approach for personalizing robotic assistance to maximize a mobility metric that has improved device performance for different metrics and applications. Successfully performing human-in-the-loop optimization requires the experimenter to make many decisions, like selecting the appropriate optimization algorithm, hyperparameters, and convergence criteria. Typically, selecting these experimental settings involves pilot experimentation. We propose an approach that uses a probabilistic surrogate model, mapping assistance parameters to corresponding experimental evaluations of the objective mobility metric, to simulate human-in-the-loop optimization and inform these decisions. In this paper, we form a surrogate model of the metabolic landscape of walking with exoskeleton assistance using an existing experimental dataset. We simulate human-in-the-loop optimization by using a synthetic metabolic landscape model to evaluate the metabolic cost of walking with different assistance parameters, instead of performing an experimental measurement. We perform three simulated scenarios optimizing assistance for an expert subject, a novice subject adapting to the device, and an expert subject with up to 20 assistance parameters. The code and analyses from this work are open-source to promote use by other researchers. Simulation enables direct comparison of optimization settings to inform experimental human-in-the-loop optimization and potentially reduce the resources and time required to develop effective assistive devices. |
|---|---|
| AbstractList | Assistive robotic devices like exoskeletons offer the promise of improving mobility for millions of people. However, developing devices that improve an objective mobility metric is challenging. Human-in-the-loop optimization is a systematic approach for personalizing robotic assistance to maximize a mobility metric that has improved device performance for different metrics and applications. Successfully performing human-in-the-loop optimization requires the experimenter to make many decisions, like selecting the appropriate optimization algorithm, hyperparameters, and convergence criteria. Typically, selecting these experimental settings involves pilot experimentation. We propose an approach that uses a probabilistic surrogate model, mapping assistance parameters to corresponding experimental evaluations of the objective mobility metric, to simulate human-in-the-loop optimization and inform these decisions. In this paper, we form a surrogate model of the metabolic landscape of walking with exoskeleton assistance using an existing experimental dataset. We simulate human-in-the-loop optimization by using a synthetic metabolic landscape model to evaluate the metabolic cost of walking with different assistance parameters, instead of performing an experimental measurement. We perform three simulated scenarios optimizing assistance for an expert subject, a novice subject adapting to the device, and an expert subject with up to 20 assistance parameters. The code and analyses from this work are open-source to promote use by other researchers. Simulation enables direct comparison of optimization settings to inform experimental human-in-the-loop optimization and potentially reduce the resources and time required to develop effective assistive devices. |
| Author | Kutulakos, Zoe Slade, Patrick |
| Author_xml | – sequence: 1 givenname: Zoe orcidid: 0009-0008-2091-050X surname: Kutulakos fullname: Kutulakos, Zoe organization: School of Engineering and Applied Sciences, Harvard University – sequence: 2 givenname: Patrick orcidid: 0000-0001-9302-3911 surname: Slade fullname: Slade, Patrick email: slade@seas.harvard.edu organization: School of Engineering and Applied Sciences, Harvard University |
| BookMark | eNpVUMtKAzEADKJgrf0Abzl6Sc1js5scpfiCggd7X7KbpI1ukjVJpfr1bqkXYWAY5nGYK3AeYjAA3BC8JASTO4pptcQT-JKLRgp6Bma0lhQJivklWOT8jjGmsiasqWbg8835_aCKC1u423sVkAuo7AwaYhxhHIvz7meyY4DRQnOI-cMMpkxS5exyUaE3sETYRz-qZP431LCNyZWdh6NJNiZ_TF-DC6uGbBZ_PAebx4fN6hmtX59eVvdr1DU1RVJoqYmhTBMpBee9qnrLGsuFkV2tldaacSyYlVVnFLGSa66UJF1thGZGsjm4Pc12LqaD-2rH5LxK3-3xoBZP4O3pIPYLV2RhRA |
| ContentType | Paper |
| Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2024.04.05.587982 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2024.04.05.587982v1 |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
| ID | FETCH-LOGICAL-b762-98d9d1e23d199855ca4cf37f58e9b6daddd35083f94bea1f95d5aa91b6e8d3e93 |
| IngestDate | Tue Jan 07 18:50:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b762-98d9d1e23d199855ca4cf37f58e9b6daddd35083f94bea1f95d5aa91b6e8d3e93 |
| Notes | Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0001-9302-3911 0009-0008-2091-050X |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.04.05.587982 |
| PageCount | 9 |
| ParticipantIDs | biorxiv_primary_2024_04_05_587982 |
| PublicationCentury | 2000 |
| PublicationDate | 20240409 |
| PublicationDateYYYYMMDD | 2024-04-09 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240409 day: 9 |
| PublicationDecade | 2020 |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory |
| References | 2024.04.05.587982v1.26 Kim, Liu, Kim, Lee, Meguid, Walsh, Kuindersma (2024.04.05.587982v1.18) 2019 Xu, Liu, Chen, Yu, Yan, Yang, Zhou, Yang (2024.04.05.587982v1.14) 2023; 11 Slade, Kochenderfer, Delp, Collins (2024.04.05.587982v1.12) 2022; 610 Lee, Kim, Panizzolo, Zhou, Baker, Galiana, Malcolm, Walsh (2024.04.05.587982v1.10) 2017; 2 Kim, Ding, Malcolm, Speeckaert, Siviy, Walsh, Kuindersma (2024.04.05.587982v1.17) 2017; 12 Okoro (2024.04.05.587982v1.1) 2018; 67 Nogueira (2024.04.05.587982v1.25) 2014 Catkin, Patoglu (2024.04.05.587982v1.16) 2023 Fang, Orekhov, Lerner (2024.04.05.587982v1.2) 2021; 69 Hybart, Villancio-Wolter, Ferris (2024.04.05.587982v1.3) 2023; 11 Ding, Kim, Kuindersma, Walsh (2024.04.05.587982v1.9) 2018; 3 Poggensee, Collins (2024.04.05.587982v1.23) 2021; 6 Sawicki, Beck, Kang, Young (2024.04.05.587982v1.4) 2020; 17 Bryan, Franks, Song, Voloshina, Reyes, O’Donovan, Gregorczyk, Collins (2024.04.05.587982v1.11) 2021; 18 Seth, Hicks, Uchida, Habib, Dembia, Dunne, Ong, DeMers, Rajagopal, Millard (2024.04.05.587982v1.5) 2018; 14 Hamaya, Matsubara, Noda, Teramae, Morimoto (2024.04.05.587982v1.22) 2017 Zhang, Fiers, Witte, Jackson, Poggensee, Atkeson, Collins (2024.04.05.587982v1.7) 2017; 356 Caputo, Collins (2024.04.05.587982v1.15) 2014; 136 Felt, Selinger, Donelan, Remy (2024.04.05.587982v1.19) 2015; 10 Kantharaju, Jeong, Ramadurai, Jacobson, Jeong, Kim (2024.04.05.587982v1.8) 2022; 30 Kochenderfer, Wheeler (2024.04.05.587982v1.24) 2019 Kim, Quinlivan, Deprey, Revi, Eckert-Erdheim, Murphy, Orzel, Walsh (2024.04.05.587982v1.13) 2022; 12 Garcia-Rosas, Tan, Oetomo, Manzie, Choong (2024.04.05.587982v1.20) 2019; 51 Franks, Bryan, Reyes, O’Donovan, Gregorczyk, Collins (2024.04.05.587982v1.6) 2022; 30 Wen, Si, Brandt, Gao, Huang (2024.04.05.587982v1.21) 2019; 50 |
| References_xml | – year: 2014 ident: 2024.04.05.587982v1.25 publication-title: Bayesian Optimization: Open source constrained global optimization tool for Python – volume: 17 start-page: 1 year: 2020 end-page: 9 ident: 2024.04.05.587982v1.4 article-title: The exoskeleton expansion: improving walking and running economy publication-title: Journal of neuroengineering and rehabilitation – volume: 18 start-page: 1 year: 2021 end-page: 12 ident: 2024.04.05.587982v1.11 article-title: Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads publication-title: Journal of neuroengineering and rehabilitation – volume: 67 year: 2018 ident: 2024.04.05.587982v1.1 article-title: Prevalence of disabilities and health care access by disability status and type among adults—united states, 2016 publication-title: MMWR. Morbidity and mortality weekly report – volume: 51 start-page: 1070 issue: 2 year: 2019 end-page: 1084 ident: 2024.04.05.587982v1.20 article-title: Personalized online adaptation of kinematic synergies for human-prosthesis interfaces publication-title: IEEE transactions on cybernetics – volume: 12 start-page: 11004 issue: 1 year: 2022 ident: 2024.04.05.587982v1.13 article-title: Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit publication-title: Scientific reports – start-page: 9173 year: 2019 end-page: 9179 ident: 2024.04.05.587982v1.18 publication-title: In 2019 international conference on robotics and automation (icra) – volume: 50 start-page: 2346 issue: 6 year: 2019 end-page: 2356 ident: 2024.04.05.587982v1.21 article-title: Online reinforcement learning control for the personalization of a robotic knee prosthesis publication-title: IEEE transactions on cybernetics – start-page: 5907 year: 2017 end-page: 5912 ident: 2024.04.05.587982v1.22 publication-title: In 2017 IEEE International Conference on Robotics and Automation (ICRA) – volume: 3 start-page: eaar5438 issue: 15 year: 2018 ident: 2024.04.05.587982v1.9 article-title: Human-in-the-loop optimization of hip assistance with a soft exosuit during walking publication-title: Science robotics – volume: 2 start-page: eaan6708 issue: 6 year: 2017 ident: 2024.04.05.587982v1.10 article-title: Reducing the metabolic cost of running with a tethered soft exosuit publication-title: Science Robotics – volume: 14 start-page: e1006223 issue: 7 year: 2018 ident: 2024.04.05.587982v1.5 article-title: Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement publication-title: PLoS computational biology – volume: 11 start-page: 1006326 year: 2023 ident: 2024.04.05.587982v1.14 article-title: Reducing the muscle activity of walking using a portable hip exoskeleton based on human-in-the-loop optimization publication-title: Frontiers in Bioengineering and Biotechnology – volume: 69 start-page: 2143 issue: 7 year: 2021 end-page: 2152 ident: 2024.04.05.587982v1.2 article-title: Improving the energy cost of incline walking and stair ascent with ankle exoskeleton assistance in cerebral palsy publication-title: IEEE Transactions on Biomedical Engineering – year: 2023 ident: 2024.04.05.587982v1.16 article-title: Preference-based human-in-the-loop optimization for perceived realism of haptic rendering publication-title: IEEE Transactions on Haptics – volume: 136 start-page: 035002 issue: 3 year: 2014 ident: 2024.04.05.587982v1.15 article-title: A universal ankle–foot prosthesis emulator for human locomotion experiments publication-title: Journal of biomechanical engineering – volume: 6 start-page: eabf1078 issue: 58 year: 2021 ident: 2024.04.05.587982v1.23 article-title: How adaptation, training, and customization contribute to benefits from exoskeleton assistance publication-title: Science Robotics – volume: 356 start-page: 1280 issue: 6344 year: 2017 end-page: 1284 ident: 2024.04.05.587982v1.7 article-title: Human-in-the-loop optimization of exoskeleton assistance during walking publication-title: Science – volume: 11 start-page: e15775 year: 2023 ident: 2024.04.05.587982v1.3 article-title: Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors publication-title: PeerJ – volume: 610 start-page: 277 issue: 7931 year: 2022 end-page: 282 ident: 2024.04.05.587982v1.12 article-title: Personalizing exoskeleton assistance while walking in the real world publication-title: Nature – volume: 10 start-page: e0135342 issue: 8 year: 2015 ident: 2024.04.05.587982v1.19 article-title: “body-in-the-loop”: Optimizing device parameters using measures of instantaneous energetic cost publication-title: PloS one – ident: 2024.04.05.587982v1.26 – volume: 30 start-page: 2494 year: 2022 end-page: 2505 ident: 2024.04.05.587982v1.6 article-title: The effects of incline level on optimized lower-limb exoskeleton assistance: A case series publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 30 start-page: 1786 year: 2022 end-page: 1795 ident: 2024.04.05.587982v1.8 article-title: Reducing squat physical effort using personalized assistance from an ankle exoskeleton publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 12 issue: 9 year: 2017 ident: 2024.04.05.587982v1.17 article-title: Human-in-the-loop bayesian optimization of wearable device parameters publication-title: PloS one – year: 2019 ident: 2024.04.05.587982v1.24 publication-title: Algorithms for optimization |
| SSID | ssj0002961374 |
| Score | 1.7188787 |
| SecondaryResourceType | preprint |
| Snippet | Assistive robotic devices like exoskeletons offer the promise of improving mobility for millions of people. However, developing devices that improve an... |
| SourceID | biorxiv |
| SourceType | Open Access Repository |
| SubjectTerms | Bioengineering |
| Title | Simulating human-in-the-loop optimization of exoskeleton assistance to compare optimization algorithm performance |
| URI | https://www.biorxiv.org/content/10.1101/2024.04.05.587982 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYQBYnbGCB-DORJ3JCBOHFiX4dAHFBVQYUQl8pJbIjaxqXNqu6_33NsmrDuwA6ToiiKYid6n_38xfZ7H0Kngc650okkGbAFElEZEyEo9CuZUattwWW9ev54l3S7_OlJ9LxK36yWE0jKki8WYvJfoYZ7ALYNnf0HuJeVwg24BtDhDLDD-VPAPxTjWpKrfHECfKQoCbA8MjJmcmbAQ4x96KXliWphZkMYeWxyDaDRlkzang6E1G9O_1hCjl7MtKhexzbd8XvAQZvfpoW5XxTzZoGogm8Zuq18z2bZiB5GPt2vUwgYtuceqNuy0ni4KzMCUlxPQNqYI2i0Z3eu6Rq_h1nVnozGAtwureOr_-Kza60AW32ddJadM54Ip0j0RyrslWfm8N_boQkT4M86P667vfvl_BoVQFSSyC9kwzsuVkrDLw9YZQpWaVGK_hfU6Ukw4jZaU-VXtOk0QX_toLcGP7yCH26jgY3GLfxwgx-uDPb4fSyxxA-38NtF_Zvr_tUt8boYJIWhiwieizxQNMxtfCRjmYwyHSaacSXSOIcBKw9tkn8tolTJQAuWMylFkMaK56ES4R5aL02p9hG24qEySDUUZlEccAljTkx1rEPBY8mjA_TdW2gwcclPBtaKg0s42MBZ8fATzxyhrab5fEPr1fSnOkYb2bwqZtMTD91vcgNTVQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+human-in-the-loop+optimization+of+exoskeleton+assistance+to+compare+optimization+algorithm+performance&rft.jtitle=bioRxiv&rft.au=Kutulakos%2C+Zoe&rft.au=Slade%2C+Patrick&rft.date=2024-04-09&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.04.05.587982&rft.externalDocID=2024.04.05.587982v1 |