Temporal Synchronization Analysis: A Model-Free Method for Detecting Robust and Nonlinear Brain Activation in fMRI Data

The sluggishness of the fMRI blood oxygenation level dependent (BOLD) signal has motivated the use of block or trial-based experimental designs that rely on the assumption of linearity, typically modeled using the General Linear Model (GLM). But many non-sensory brain regions and subcortical areas d...

Full description

Saved in:
Bibliographic Details
Published in:bioRxiv
Main Authors: Fialoke, Suruchi, Deb, Aniruddha, Rode, Kushagra, Tripathi, Vaibhav, Garg, Rahul
Format: Paper
Language:English
Published: Cold Spring Harbor Laboratory 24.04.2025
Edition:1.1
Subjects:
ISSN:2692-8205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The sluggishness of the fMRI blood oxygenation level dependent (BOLD) signal has motivated the use of block or trial-based experimental designs that rely on the assumption of linearity, typically modeled using the General Linear Model (GLM). But many non-sensory brain regions and subcortical areas do not correspond to such linearities. We introduce a model-free estimation method called Temporal Synchronization Analysis (TSA) which detects significant brain activations across trials and subjects at an individual time point. We validate it across multiple cognitive tasks (combined n=1600). In constrained task stimuli like visual checkerboard paradigms, we discovered novel nonlinearities not reported previously. In model-free task paradigms like listening to naturalistic auditory stimuli, TSA can detect unique stimuli linked quasi-temporal activations across default mode and language networks. Our user-friendly Python toolkit enables cognitive neuroscience researchers to identify stable and robust brain activation across various cognitive paradigms that are challenging to model with current methods.
AbstractList The sluggishness of the fMRI blood oxygenation level dependent (BOLD) signal has motivated the use of block or trial-based experimental designs that rely on the assumption of linearity, typically modeled using the General Linear Model (GLM). But many non-sensory brain regions and subcortical areas do not correspond to such linearities. We introduce a model-free estimation method called Temporal Synchronization Analysis (TSA) which detects significant brain activations across trials and subjects at an individual time point. We validate it across multiple cognitive tasks (combined n=1600). In constrained task stimuli like visual checkerboard paradigms, we discovered novel nonlinearities not reported previously. In model-free task paradigms like listening to naturalistic auditory stimuli, TSA can detect unique stimuli linked quasi-temporal activations across default mode and language networks. Our user-friendly Python toolkit enables cognitive neuroscience researchers to identify stable and robust brain activation across various cognitive paradigms that are challenging to model with current methods.
Author Deb, Aniruddha
Fialoke, Suruchi
Rode, Kushagra
Tripathi, Vaibhav
Garg, Rahul
Author_xml – sequence: 1
  givenname: Suruchi
  surname: Fialoke
  fullname: Fialoke, Suruchi
  organization: National Resource Center for Value Education in Engineering, Indian Institute of Technology
– sequence: 2
  givenname: Aniruddha
  surname: Deb
  fullname: Deb, Aniruddha
  organization: Department of Computer Science and Engineering, Indian Institute of Technology
– sequence: 3
  givenname: Kushagra
  surname: Rode
  fullname: Rode, Kushagra
  organization: Department of Computer Science and Engineering, Indian Institute of Technology
– sequence: 4
  givenname: Vaibhav
  orcidid: 0000-0001-7520-4188
  surname: Tripathi
  fullname: Tripathi, Vaibhav
  email: vaibhav.tripathi@iitgn.ac.in
  organization: Center for Brain Science & Department of Psychology, Harvard University
– sequence: 5
  givenname: Rahul
  surname: Garg
  fullname: Garg, Rahul
  email: vaibhav.tripathi@iitgn.ac.in
  organization: School of Information Technology, Indian Institute of Technology
BookMark eNotkEFPwjAYhhujiYj8AG89etlsu9Ju3hBESZgmyH35un6TmtGSbqL468Xg6c2TvHkOzxU598EjITecpZwzfieYGKdMpoKnShY5Z2dkIFQhklyw8SUZdd0HY0wUimdaDsjXGre7EKGlbwdfb2Lw7gd6FzydeGgPnevu6YSWwWKbzCMiLbHfBEubEOkMe6x759_pKpjPrqfgLX0JvnUeIdKHCO6oOT72J-ORmnK1oDPo4ZpcNNB2OPrfIVnPH9fT52T5-rSYTpaJ0Yolmczq3JpGI5egFaIsNLeWG1bUxmgAqK22XNcIIMQYsDB5plQuG5TMyDwbktuT1rgQv92-2kW3hXio_jJVTFaCV6dM2S_EFGB6
Cites_doi 10.1177/0956797620916786
10.1016/j.neuroimage.2004.11.008
10.1006/nimg.2000.0630
10.3389/fnhum.2011.00028
10.1155/2013/645043
10.7554/eLife.86453
10.1016/j.neuroimage.2023.120224
10.1016/j.neuroimage.2013.05.033
10.1016/j.cobeha.2021.03.029
10.1016/j.neuroimage.2011.09.015
10.1038/s41597-021-01033-3
10.1006/nimg.1997.0316
10.1006/cbmr.1996.0014
10.1152/jn.00308.2023
10.1006/nimg.2001.0873
10.3389/fnins.2012.00152
10.1002/mrm.1910390109
10.1016/j.cobeha.2021.05.002
10.1016/j.neuron.2017.06.041
10.1073/pnas.1608117113
10.1016/j.tics.2019.05.004
10.1016/j.neuroimage.2018.06.056
10.1038/nature06976
10.1016/j.neuroimage.2009.06.001
10.1126/science.1089506
10.1006/nimg.1998.0369
10.1016/S1053-8119(03)00230-1
10.1038/ncomms12141
10.1093/cercor/bhaa023
10.1038/nn1761
10.1152/jn.00529.2019
10.1152/jn.00338.2011
10.1523/jneurosci.16-13-04207.1996
10.3167/proj.2008.020102
10.1016/S0531-5131(02)00174-7
10.1038/s41583-019-0212-7
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2022.118940
10.1016/j.neuroimage.2003.11.029
ContentType Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2025.04.21.649810
DatabaseName bioRxiv
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2025.04.21.649810v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PHGZT
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b760-343c8dbf7e14a76ee4971dd1b09cbb7aaacd7d17ceaa225ae9b836684fe40b483
IngestDate Sat Apr 26 14:23:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b760-343c8dbf7e14a76ee4971dd1b09cbb7aaacd7d17ceaa225ae9b836684fe40b483
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-7520-4188
OpenAccessLink https://www.biorxiv.org/content/10.1101/2025.04.21.649810
PageCount 39
ParticipantIDs biorxiv_primary_2025_04_21_649810
PublicationCentury 2000
PublicationDate 20250424
PublicationDateYYYYMMDD 2025-04-24
PublicationDate_xml – month: 4
  year: 2025
  text: 20250424
  day: 24
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References de Zwart, van Gelderen, Jansma, Fukunaga, Bianciardi, Duyn (2025.04.21.649810v1.14) 2009; 47
Somers, Michalka, Tobyne, Noyce (2025.04.21.649810v1.36) 2021; 40
Rio, Rawlings, Woltz, Gilman, Hommer (2025.04.21.649810v1.33) 2013; 2013
Saxe, Kanwisher (2025.04.21.649810v1.34) 2003; 19
Monti (2025.04.21.649810v1.30) 2011; 5
Boynton, Engel, Glover, Heeger (2025.04.21.649810v1.8) 1996; 16
Hasson, Landesman, Knappmeyer, Vallines, Rubin, Heeger (2025.04.21.649810v1.24) 2008; 2
Handwerker, Ollinger, D’Esposito (2025.04.21.649810v1.22) 2004; 21
Assem, Glasser, Van Essen, Duncan (2025.04.21.649810v1.2) 2020; 30
Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno, Panek, Brown, Zavitz, Li, Sikka, Gutman, Bangaru, Schlachter, Kamiel, Anwar, Hinz, Kaplan, Rachlin, Milham (2025.04.21.649810v1.32) 2012; 6
Sonkusare, Breakspear, Guo (2025.04.21.649810v1.37) 2019; 23
Logothetis (2025.04.21.649810v1.29) 2008; 453
Friston, Mechelli, Turner, Price (2025.04.21.649810v1.20) 2000; 12
Jenkinson, Beckmann, Behrens, Woolrich, Smith (2025.04.21.649810v1.25) 2012; 62
Yeo, Krienen, Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni, Fischl, Liu, Buckner (2025.04.21.649810v1.42) 2011; 106
Hasson (2025.04.21.649810v1.23) 2004; 303
Bandettini, Birn, Kelley, Saad (2025.04.21.649810v1.5) 2002; 1235
Barch, Burgess, Harms, Petersen, Schlaggar, Corbetta, Glasser, Curtiss, Dixit, Feldt, Nolan, Bryant, Hartley, Footer, Bjork, Poldrack, Smith, Johansen-Berg, Snyder, Van Essen (2025.04.21.649810v1.6) 2013; 80
Ling, Carrasco (2025.04.21.649810v1.28) 2006; 9
Elliott, Knodt, Ireland, Morris, Poulton, Ramrakha, Sison, Moffitt, Caspi, Hariri (2025.04.21.649810v1.18) 2020; 919
Birn, Saad, Bandettini (2025.04.21.649810v1.7) 2001; 14
Wager, Vazquez, Hernandez, Noll (2025.04.21.649810v1.41) 2005; 25
Friston, Josephs, Rees, Turner (2025.04.21.649810v1.19) 1998; 39
Baldassano, Chen, Zadbood, Pillow, Hasson, Norman (2025.04.21.649810v1.4) 2017
Chen, Nash, Reding, Kohn, Wei (2025.04.21.649810v1.10) 2020
Lewis, Setsompop, Rosen, Polimeni (2025.04.21.649810v1.26) 2016; 113
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (2025.04.21.649810v1.39) 2013
Cox (2025.04.21.649810v1.12) 1996; 29
Lewis, Setsompop, Rosen, Polimeni (2025.04.21.649810v1.27) 2018
Aguirre, Zarahn, D’Esposito (2025.04.21.649810v1.1) 1998; 8
DiNicola, Buckner (2025.04.21.649810v1.16) 2021; 40
Greicius, Menon (2025.04.21.649810v1.21) 2004
DiNicola, Braga, Buckner (2025.04.21.649810v1.15) 2020; 123
Buckner, DiNicola (2025.04.21.649810v1.9) 2019; 20
Bailes, Gomez, Setzer, Lewis (2025.04.21.649810v1.3) 2023; 12
Dale, Buckner (2025.04.21.649810v1.13) 1997
Du, DiNicola, Angeli, Saadon-Grosman, Sun, Kaiser, Ladopoulou, Xue, Yeo, Eldaief, Buckner (2025.04.21.649810v1.17) 2024
Simony, Honey, Chen, Lositsky, Yeshurun, Wiesel, Hasson (2025.04.21.649810v1.35) 2016; 7
Chen, Taylor, Reynolds, Leibenluft, Pine, Brotman, Pagliaccio, Haller (2025.04.21.649810v1.11) 2023; 277
Nastase, Liu, Hillman, Zadbood, Hasenfratz, Keshavarzian, Chen, Honey, Yeshurun, Regev, Nguyen, Chang, Baldassano, Lositsky, Simony, Chow, Leong, Brooks, Micciche, Hasson (2025.04.21.649810v1.31) 2021; 8
Tripathi, Garg (2025.04.21.649810v1.38) 2022; 251
Vazquez, Noll (2025.04.21.649810v1.40) 1998; 7
References_xml – volume: 919
  start-page: 1
  year: 2020
  end-page: 33
  ident: 2025.04.21.649810v1.18
  article-title: What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis
  publication-title: Psychological Science
  doi: 10.1177/0956797620916786
– volume: 25
  start-page: 206
  issue: 1
  year: 2005
  end-page: 218
  ident: 2025.04.21.649810v1.41
  article-title: Accounting for nonlinear BOLD effects in fMRI: Parameter estimates and a model for prediction in rapid event-related studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.008
– volume: 12
  start-page: 466
  issue: 4
  year: 2000
  end-page: 477
  ident: 2025.04.21.649810v1.20
  article-title: Nonlinear responses in fMRI: The balloon model, Volterra kernels, and other hemodynamics
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0630
– volume: 5
  start-page: 28
  year: 2011
  ident: 2025.04.21.649810v1.30
  article-title: Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2011.00028
– volume: 2013
  start-page: 645043
  year: 2013
  ident: 2025.04.21.649810v1.33
  article-title: Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2013/645043
– volume: 12
  start-page: e86453
  year: 2023
  ident: 2025.04.21.649810v1.3
  article-title: Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing
  publication-title: eLife
  doi: 10.7554/eLife.86453
– volume: 277
  start-page: 120224
  year: 2023
  ident: 2025.04.21.649810v1.11
  article-title: BOLD Response is more than just magnitude: Improving detection sensitivity through capturing hemodynamic profiles
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120224
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: 2025.04.21.649810v1.6
  article-title: Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 40
  start-page: 120
  year: 2021
  end-page: 129
  ident: 2025.04.21.649810v1.16
  article-title: Precision estimates of parallel distributed association networks: Evidence for domain specialization and implications for evolution and development
  publication-title: Current Opinion in Behavioral Sciences
  doi: 10.1016/j.cobeha.2021.03.029
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  ident: 2025.04.21.649810v1.25
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 8
  start-page: 250
  issue: 1
  year: 2021
  ident: 2025.04.21.649810v1.31
  article-title: The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension
  publication-title: Scientific Data
  doi: 10.1038/s41597-021-01033-3
– volume: 7
  start-page: 108
  issue: 2
  year: 1998
  end-page: 118
  ident: 2025.04.21.649810v1.40
  article-title: Nonlinear aspects of the BOLD response in functional MRI
  publication-title: NeuroImage
  doi: 10.1006/nimg.1997.0316
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  end-page: 173
  ident: 2025.04.21.649810v1.12
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research, an International Journal
  doi: 10.1006/cbmr.1996.0014
– year: 2024
  ident: 2025.04.21.649810v1.17
  article-title: Organization of the Human Cerebral Cortex Estimated Within Individuals: Networks, Global Topography, and Function
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00308.2023
– volume: 14
  start-page: 817
  issue: 4
  year: 2001
  end-page: 826
  ident: 2025.04.21.649810v1.7
  article-title: Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0873
– volume: 6
  start-page: 152
  year: 2012
  ident: 2025.04.21.649810v1.32
  article-title: The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2012.00152
– volume: 39
  start-page: 41
  issue: 1
  year: 1998
  end-page: 52
  ident: 2025.04.21.649810v1.19
  article-title: Nonlinear event-related responses in fMRI
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.1910390109
– volume: 40
  start-page: 169
  year: 2021
  end-page: 177
  ident: 2025.04.21.649810v1.36
  article-title: Individual subject approaches to mapping sensory-biased and multiple-demand regions in human frontal cortex
  publication-title: Current Opinion in Behavioral Sciences
  doi: 10.1016/j.cobeha.2021.05.002
– year: 2017
  ident: 2025.04.21.649810v1.4
  article-title: Discovering Event Structure in Continuous Narrative Perception and Memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.041
– volume: 113
  start-page: E6679
  issue: 43
  year: 2016
  end-page: E6685
  ident: 2025.04.21.649810v1.26
  article-title: Fast fMRI can detect Oscillatory neural activity in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1608117113
– volume: 23
  start-page: 699
  issue: 8
  year: 2019
  end-page: 714
  ident: 2025.04.21.649810v1.37
  article-title: Naturalistic Stimuli in Neuroscience: Critically Acclaimed
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2019.05.004
– year: 2018
  ident: 2025.04.21.649810v1.27
  article-title: Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.06.056
– year: 2020
  ident: 2025.04.21.649810v1.10
  article-title: Beyond linearity in neuroimaging: Capturing nonlinear relationships with application to longitudinal studies
– volume: 453
  start-page: 869
  issue: 7197
  year: 2008
  end-page: 878
  ident: 2025.04.21.649810v1.29
  article-title: What we can do and what we cannot do with fMRI
  publication-title: Nature
  doi: 10.1038/nature06976
– volume: 47
  start-page: 1649
  issue: 4
  year: 2009
  end-page: 1658
  ident: 2025.04.21.649810v1.14
  article-title: Hemodynamic Nonlinearities Affect BOLD fMRI Response Timing and Amplitude
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.06.001
– volume: 303
  start-page: 1634
  issue: 5664
  year: 2004
  end-page: 1640
  ident: 2025.04.21.649810v1.23
  article-title: Intersubject Synchronization of Cortical Activity During Natural Vision
  publication-title: Science
  doi: 10.1126/science.1089506
– volume: 8
  start-page: 360
  issue: 4
  year: 1998
  end-page: 369
  ident: 2025.04.21.649810v1.1
  article-title: The Variability of Human, BOLD Hemodynamic Responses
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0369
– start-page: 329
  year: 1997
  end-page: 340
  ident: 2025.04.21.649810v1.13
  article-title: Selective averaging of individual trials using fMRI
  publication-title: NeuroImage
– volume: 19
  start-page: 1835
  issue: 4
  year: 2003
  end-page: 1842
  ident: 2025.04.21.649810v1.34
  article-title: People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind.”
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00230-1
– volume: 7
  start-page: 1
  year: 2016
  end-page: 13
  ident: 2025.04.21.649810v1.35
  article-title: Dynamical reconfiguration of the default mode network during narrative comprehension
  publication-title: Nature Communications
  doi: 10.1038/ncomms12141
– volume: 30
  start-page: 4361
  issue: 8
  year: 2020
  end-page: 4380
  ident: 2025.04.21.649810v1.2
  article-title: A Domain-General Cognitive Core Defined in Multimodally Parcellated Human Cortex
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhaa023
– volume: 9
  start-page: 1243
  issue: 10
  year: 2006
  end-page: 1245
  ident: 2025.04.21.649810v1.28
  article-title: When sustained attention impairs perception
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1761
– volume: 123
  start-page: 1144
  issue: 3
  year: 2020
  end-page: 1179
  ident: 2025.04.21.649810v1.15
  article-title: Parallel distributed networks dissociate episodic and social functions within the individual
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00529.2019
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  ident: 2025.04.21.649810v1.42
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00338.2011
– start-page: 1484
  year: 2004
  end-page: 1492
  ident: 2025.04.21.649810v1.21
  article-title: Default-Mode Activity during a Passive Sensory Task: Uncoupled From Deactivation But Impacting Activation
  publication-title: Journal of Cognitive Neuroscience
– volume: 16
  start-page: 4207
  issue: 13
  year: 1996
  end-page: 4221
  ident: 2025.04.21.649810v1.8
  article-title: Linear systems analysis of functional magnetic resonance imaging in human V1
  publication-title: Journal of Neuroscience
  doi: 10.1523/jneurosci.16-13-04207.1996
– volume: 2
  start-page: 1
  issue: 1
  year: 2008
  end-page: 26
  ident: 2025.04.21.649810v1.24
  article-title: Neurocinematics: The Neuroscience of Film
  publication-title: Projections
  doi: 10.3167/proj.2008.020102
– volume: 1235
  start-page: 73
  issue: C
  year: 2002
  end-page: 85
  ident: 2025.04.21.649810v1.5
  article-title: Dynamic nonlinearities in BOLD contrast: Neuronal or hemodynamic?
  publication-title: International Congress Series
  doi: 10.1016/S0531-5131(02)00174-7
– volume: 20
  start-page: 593
  issue: 10
  year: 2019
  end-page: 608
  ident: 2025.04.21.649810v1.9
  article-title: The brain’s default network: Updated anatomy, physiology and evolving insights
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/s41583-019-0212-7
– year: 2013
  ident: 2025.04.21.649810v1.39
  article-title: The WU-Minn Human Connectome Project: An overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 251
  start-page: 118940
  year: 2022
  ident: 2025.04.21.649810v1.38
  article-title: Weak task synchronization of default mode network in task based paradigms
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118940
– volume: 21
  start-page: 1639
  issue: 4
  year: 2004
  end-page: 1651
  ident: 2025.04.21.649810v1.22
  article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.11.029
SSID ssj0002961374
Score 1.7560742
SecondaryResourceType preprint
Snippet The sluggishness of the fMRI blood oxygenation level dependent (BOLD) signal has motivated the use of block or trial-based experimental designs that rely on...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Neuroscience
Title Temporal Synchronization Analysis: A Model-Free Method for Detecting Robust and Nonlinear Brain Activation in fMRI Data
URI https://www.biorxiv.org/content/10.1101/2025.04.21.649810
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lj9MwEICtqgWJG0_xWJCRuK0CjePEDjdYdgViqapSob1FtuOwkaqkcpts998ztpO0sByWA5eotfJQ5pu64_E8EHpD04jrQqmAhEoHlMc84DEpAliJEVlERMauAt-Pczab8YuLdD4aNX0uTLtiVcV3u3T9X1HDGMC2qbP_gHu4KQzAZ4AOR8AOx9uB98WmVsffryvlSt_6TMuh_ohPRrdN0FbBmdHwu3ZdpF3A4SdtNxVcSF4tm40PP5_5chrCgCYI12Gi74lmvSXFt8UXUJ6tOLRzZVkvdmU7aAe8dt2HARnbf2UwoLX0cZWlafL8cviTWNS-HvDXZnMpfpphfGlK10TZxecK2067PXRckNjuwZC94_KkXoFF7byXNmEJNP743Ot93QVAazcNEtCaAOyU-O8Tvms0YG9vK9aS8G1CU94Fyv5eR_vGOS0smifEbkyO0eTj6Wy-GJxzJAUrh9FuFxye8e7G1bBeAlEaEOWBPbK8jyZzsdbmARrp6iG66xuKXj9CVz18_Ad83MN_jz_gPXrs0WNAjwf02KPHgB4P6LFDj_foMXyz6LFF_xgtz06XJ5-DrrVGIOGFg4hGiueyYDqkgiVa05SFeR7KaaqkZEIIlbM8ZEoLARO-0KnkUZJwWmg6lZRHT9C4qiv9FOFEhUIpyXMKAsvDWNi4R52KCJYicLF-hl53csrWvn5KZmWZTWlGwszL8vktznmB7u2V6AiNt6bRL9Ed1W7LjXnVAfwFT1tlLg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Synchronization+Analysis%3A+A+Model-Free+Method+for+Detecting+Robust+and+Nonlinear+Brain+Activation+in+fMRI+Data&rft.jtitle=bioRxiv&rft.au=Fialoke%2C+Suruchi&rft.au=Deb%2C+Aniruddha&rft.au=Rode%2C+Kushagra&rft.au=Tripathi%2C+Vaibhav&rft.date=2025-04-24&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.04.21.649810&rft.externalDocID=2025.04.21.649810v1