Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study
Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN).Design Prospective open cohort study using routinely collected...
Uloženo v:
| Vydáno v: | BMJ Ročník 335; číslo 7611; s. 136 - 141 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
British Medical Journal Publishing Group
21.07.2007
British Medical Association BMJ Publishing Group LTD BMJ Publishing Group Ltd |
| Témata: | |
| ISSN: | 0959-8138, 1756-1833, 1468-5833, 1756-1833 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN).Design Prospective open cohort study using routinely collected data from general practice.Setting UK practices contributing to the QRESEARCH database.Participants The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices.Main outcome measures First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent.Results A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm.Conclusion QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a “home advantage.” Further validation in other populations is therefore required. |
|---|---|
| AbstractList | Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN).Design Prospective open cohort study using routinely collected data from general practice.Setting UK practices contributing to the QRESEARCH database.Participants The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices.Main outcome measures First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent.Results A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm.Conclusion QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a “home advantage.” Further validation in other populations is therefore required. Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN). Design Prospective open cohort study using routinely collected data from general practice. Setting UK practices contributing to the QRESEARCH database. Participants The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices. Main outcome measures First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent. Results A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. With QRISK 8.5% of patients aged 35-74 are at high risk (≥20% risk over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. With QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm. Conclusion QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a "home advantage." Further validation in other populations is therefore required. Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN). Design Prospective open cohort study using routinely collected data from general practice. Setting UK practices contributing to the QRESEARCH database. Participants The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices. Main outcome measures First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent. Results A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53â[euro][per thousand]668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm. Conclusion QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a "home advantage." Further validation in other populations is therefore required. To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN).OBJECTIVETo derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN).Prospective open cohort study using routinely collected data from general practice.DESIGNProspective open cohort study using routinely collected data from general practice.UK practices contributing to the QRESEARCH database.SETTINGUK practices contributing to the QRESEARCH database.The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices.PARTICIPANTSThe derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices.First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent.MAIN OUTCOME MEASURESFirst recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent.A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm.RESULTSA cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm.QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a "home advantage." Further validation in other populations is therefore required.CONCLUSIONQRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a "home advantage." Further validation in other populations is therefore required. To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham cardiovascular disease algorithm and a newly developed Scottish score (ASSIGN). Prospective open cohort study using routinely collected data from general practice. UK practices contributing to the QRESEARCH database. The derivation cohort consisted of 1.28 million patients, aged 35-74 years, registered at 318 practices between 1 January 1995 and 1 April 2007 and who were free of diabetes and existing cardiovascular disease. The validation cohort consisted of 0.61 million patients from 160 practices. First recorded diagnosis of cardiovascular disease (incident diagnosis between 1 January 1995 and 1 April 2007): myocardial infarction, coronary heart disease, stroke, and transient ischaemic attacks. Risk factors were age, sex, smoking status, systolic blood pressure, ratio of total serum cholesterol to high density lipoprotein, body mass index, family history of coronary heart disease in first degree relative aged less than 60, area measure of deprivation, and existing treatment with antihypertensive agent. A cardiovascular disease risk algorithm (QRISK) was developed in the derivation cohort. In the validation cohort the observed 10 year risk of a cardiovascular event was 6.60% (95% confidence interval 6.48% to 6.72%) in women and 9.28% (9.14% to 9.43%) in men. Overall the Framingham algorithm over-predicted cardiovascular disease risk at 10 years by 35%, ASSIGN by 36%, and QRISK by 0.4%. Measures of discrimination tended to be higher for QRISK than for the Framingham algorithm and it was better calibrated to the UK population than either the Framingham or ASSIGN models. Using QRISK 8.5% of patients aged 35-74 are at high risk (20% risk or higher over 10 years) compared with 13% when using the Framingham algorithm and 14% when using ASSIGN. Using QRISK 34% of women and 73% of men aged 64-75 would be at high risk compared with 24% and 86% according to the Framingham algorithm. UK estimates for 2005 based on QRISK give 3.2 million patients aged 35-74 at high risk, with the Framingham algorithm predicting 4.7 million and ASSIGN 5.1 million. Overall, 53 668 patients in the validation dataset (9% of the total) would be reclassified from high to low risk or vice versa using QRISK compared with the Framingham algorithm. QRISK performed at least as well as the Framingham model for discrimination and was better calibrated to the UK population than either the Framingham model or ASSIGN. QRISK is likely to provide more appropriate risk estimates to help identify high risk patients on the basis of age, sex, and social deprivation. It is therefore likely to be a more equitable tool to inform management decisions and help ensure treatments are directed towards those most likely to benefit. It includes additional variables which improve risk estimates for patients with a positive family history or those on antihypertensive treatment. However, since the validation was performed in a similar population to the population from which the algorithm was derived, it potentially has a "home advantage." Further validation in other populations is therefore required. |
| Author | Vinogradova, Yana Coupland, Carol Brindle, Peter Robson, John Hippisley-Cox, Julia May, Margaret |
| Author_xml | – sequence: 1 givenname: Julia surname: Hippisley-Cox fullname: Hippisley-Cox, Julia organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust – sequence: 2 givenname: Carol surname: Coupland fullname: Coupland, Carol organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust – sequence: 3 givenname: Yana surname: Vinogradova fullname: Vinogradova, Yana organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust – sequence: 4 givenname: John surname: Robson fullname: Robson, John organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust – sequence: 5 givenname: Margaret surname: May fullname: May, Margaret organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust – sequence: 6 givenname: Peter surname: Brindle fullname: Brindle, Peter organization: Avon Primary Care Research Collaborative, Bristol Primary Care Trust |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17615182$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuEzEUtVARDaFfgECWkFiR4Mf4MV0gofBolQrEo2wtj-20Tid2sD2BLvlzJpkSQRcVK8u655x77r3nITgIMTgAHmM0xZjyl81qOaU14XhaCSwRnzJ2D4xwxeWESUoPwAjVrJ5ITOUhOMp5iRAiVMiaswfgEAuOGZZkBH69cclvdPExQB0s3OjW2-EbF_DT59Mv8xdQw-B-QKOT9XGjs-lanaD12ensYPL5CmYTk4OLmGC5dPA8-OIsnPtwYePqGK5TzGtnit84GNcuQBMvYyowl85ePwL3F7rN7ujmHYPzd2-_zk4mZx_fn85en00agVmZGCuRlpY0FdcVw5iZqtKypk475pwRjW1ExTmiRlpGJSeSItEQgZCraFNjOgavBt1116ycNS6UpFu1Tn6l07WK2qt_K8Ffqou4UbgmjCDUCzy_EUjxe-dyUSufjWtbHVzsshJI8IruOt0NJEgQgneKz24Bl7FLod-CwkKIum_c33IMnv5tfO_4zxF7QD0ATL_nnNxCGV92N-zn8K3CSG0zo_rMqF1m1JAZxVjPpbe4e_k7WU8G1jKXmPYUgnjNENpuYDLUfS7u576u05XiggqmPnybKcFIfSIZUvMePx3w22b_Y-A3Tu3sLw |
| CitedBy_id | crossref_primary_10_1093_jamia_ocaf009 crossref_primary_10_1186_s12875_014_0196_3 crossref_primary_10_1038_s41467_020_18297_9 crossref_primary_10_1111_jdi_12809 crossref_primary_10_1002_bimj_201400004 crossref_primary_10_1097_HJH_0000000000000930 crossref_primary_10_1007_s00038_015_0679_6 crossref_primary_10_1136_hrt_2010_221085 crossref_primary_10_1051_matecconf_201712502071 crossref_primary_10_1186_1472_6823_12_12 crossref_primary_10_1136_bmjopen_2014_006044 crossref_primary_10_1016_j_amjcard_2014_05_061 crossref_primary_10_1016_j_jclinepi_2014_09_007 crossref_primary_10_1186_s12916_021_01916_7 crossref_primary_10_3390_pharmacy2010027 crossref_primary_10_33889_IJMEMS_2023_8_6_066 crossref_primary_10_1002_sim_6553 crossref_primary_10_1016_j_jash_2011_06_001 crossref_primary_10_1016_j_amjcard_2013_11_056 crossref_primary_10_1161_JAHA_124_036946 crossref_primary_10_1177_0961203311399817 crossref_primary_10_1186_s12889_019_8061_x crossref_primary_10_1007_s12170_012_0285_6 crossref_primary_10_3389_fcvm_2022_1025705 crossref_primary_10_1007_s12265_016_9687_z crossref_primary_10_1016_j_clinthera_2019_03_001 crossref_primary_10_1002_psb_2149 crossref_primary_10_2147_IJGM_S454888 crossref_primary_10_1017_S1357321700005444 crossref_primary_10_1093_eurheartj_ehw106 crossref_primary_10_1161_CIRCULATIONAHA_109_849166 crossref_primary_10_1097_JCN_0b013e31826b6822 crossref_primary_10_5334_gh_890 crossref_primary_10_1016_j_annepidem_2009_05_005 crossref_primary_10_1161_HYPERTENSIONAHA_115_06270 crossref_primary_10_1136_hrt_2007_134890 crossref_primary_10_1002_alz_70610 crossref_primary_10_1093_eurheartj_eht286 crossref_primary_10_1002_acr_20433 crossref_primary_10_1186_s41512_021_00103_9 crossref_primary_10_1111_j_1365_2125_2012_04293_x crossref_primary_10_1136_bmjopen_2016_014206 crossref_primary_10_1373_clinchem_2008_115923 crossref_primary_10_1080_20786204_2011_10874070 crossref_primary_10_1161_CIRCULATIONAHA_109_909309 crossref_primary_10_1016_j_ijcard_2016_10_093 crossref_primary_10_1136_bmjopen_2015_008717 crossref_primary_10_1186_s12911_021_01557_z crossref_primary_10_1161_CIRCOUTCOMES_115_002372 crossref_primary_10_1016_j_atherosclerosis_2014_09_032 crossref_primary_10_1016_j_clinthera_2014_01_008 crossref_primary_10_1038_ncpendmet0634 crossref_primary_10_1111_j_1365_2796_2008_02015_x crossref_primary_10_1111_j_1742_1241_2010_02457_x crossref_primary_10_15829_1728_8800_2023_3652 crossref_primary_10_1136_bmjopen_2016_013120 crossref_primary_10_1016_j_atherosclerosis_2016_06_036 crossref_primary_10_1007_s11899_020_00585_2 crossref_primary_10_1016_j_clinsp_2022_100013 crossref_primary_10_1111_j_1742_1241_2012_02908_x crossref_primary_10_1186_1471_2393_13_126 crossref_primary_10_3389_fcvm_2022_967097 crossref_primary_10_1007_BF03391652 crossref_primary_10_1016_j_ahj_2016_06_017 crossref_primary_10_1016_j_beem_2014_01_004 crossref_primary_10_1016_j_jclinepi_2021_09_008 crossref_primary_10_1016_j_yjmcc_2016_05_009 crossref_primary_10_1161_JAHA_121_022601 crossref_primary_10_1186_1471_2458_11_497 crossref_primary_10_1186_1471_2407_14_171 crossref_primary_10_1259_bjr_20170380 crossref_primary_10_1097_QAD_0000000000003462 crossref_primary_10_2196_47645 crossref_primary_10_1371_journal_pone_0189389 crossref_primary_10_1177_1479973119867952 crossref_primary_10_1016_j_lanwpc_2024_101089 crossref_primary_10_1016_j_rec_2022_10_009 crossref_primary_10_1111_hiv_12162 crossref_primary_10_1016_j_crad_2021_07_010 crossref_primary_10_5694_mja2_52052 crossref_primary_10_1007_s11886_021_01620_1 crossref_primary_10_32388_1SVUCI_2 crossref_primary_10_4018_ijrsda_2014010105 crossref_primary_10_1136_bmjopen_2019_035809 crossref_primary_10_1136_bmjopen_2021_058777 crossref_primary_10_1177_2047487312448994 crossref_primary_10_1038_s41584_020_0428_y crossref_primary_10_1177_2047487312448995 crossref_primary_10_1016_j_ypmed_2011_04_006 crossref_primary_10_1136_bmjopen_2014_007324 crossref_primary_10_1016_j_atherosclerosis_2016_05_037 crossref_primary_10_1136_bmjopen_2014_005025 crossref_primary_10_1016_j_schres_2014_07_022 crossref_primary_10_1161_STROKEAHA_111_000141 crossref_primary_10_1007_s10618_014_0386_6 crossref_primary_10_4162_nrp_2023_17_2_297 crossref_primary_10_1007_s00467_018_3932_4 crossref_primary_10_1515_cclm_2016_0984 crossref_primary_10_36472_msd_v12i6_1294 crossref_primary_10_1111_cid_12686 crossref_primary_10_1185_03007990802374633 crossref_primary_10_1136_svn_2023_002332 crossref_primary_10_3390_jcm10112252 crossref_primary_10_1093_pm_pny291 crossref_primary_10_1016_j_jcmg_2020_08_039 crossref_primary_10_1136_bmjopen_2014_005281 crossref_primary_10_1161_CIRCULATIONAHA_111_065490 crossref_primary_10_3390_genes12070991 crossref_primary_10_1016_j_jclinepi_2021_10_003 crossref_primary_10_1002_alz_12663 crossref_primary_10_1002_sim_4067 crossref_primary_10_1164_rccm_201011_1790OC crossref_primary_10_1007_s00592_023_02045_8 crossref_primary_10_1111_j_1744_4667_2012_00095_x crossref_primary_10_1007_s00330_021_07971_1 crossref_primary_10_1177_2047487316653709 crossref_primary_10_1016_j_pcad_2010_04_001 crossref_primary_10_1177_2047487313503609 crossref_primary_10_1109_TITB_2012_2205009 crossref_primary_10_1160_TH12_05_0332 crossref_primary_10_1016_j_jacc_2014_02_529 crossref_primary_10_1016_j_clbc_2025_08_015 crossref_primary_10_1016_j_cnur_2011_02_008 crossref_primary_10_1016_j_jjcc_2014_02_001 crossref_primary_10_1186_s41512_021_00092_9 crossref_primary_10_1097_HCO_0000000000000893 crossref_primary_10_1155_2013_272691 crossref_primary_10_1136_pgmj_2009_094771 crossref_primary_10_3390_biomedicines11123208 crossref_primary_10_3389_fnins_2022_975217 crossref_primary_10_1136_bmjopen_2015_010951 crossref_primary_10_1210_endrev_bnab037 crossref_primary_10_1007_s11886_011_0191_4 crossref_primary_10_1161_HCQ_0000000000000124 crossref_primary_10_1007_s11883_011_0220_1 crossref_primary_10_1016_j_jhealeco_2012_10_007 crossref_primary_10_1136_bmjopen_2011_000068 crossref_primary_10_1016_j_atherosclerosis_2010_10_034 crossref_primary_10_1093_qjmed_hcq122 crossref_primary_10_1177_1759720X14564562 crossref_primary_10_3389_fnagi_2021_685683 crossref_primary_10_1136_hrt_2010_221093 crossref_primary_10_1002_sim_6265 crossref_primary_10_1097_HCO_0b013e32830a95c0 crossref_primary_10_1136_heartjnl_2024_324650 crossref_primary_10_2196_jmir_6307 crossref_primary_10_1007_s12471_018_1200_7 crossref_primary_10_2217_fca_12_49 crossref_primary_10_1016_j_neubiorev_2020_11_021 crossref_primary_10_1016_j_aogh_2016_02_003 crossref_primary_10_4102_phcfm_v7i1_891 crossref_primary_10_1161_CIR_0000000000001355 crossref_primary_10_7759_cureus_50426 crossref_primary_10_1016_j_hlc_2015_10_007 crossref_primary_10_7717_peerj_8232 crossref_primary_10_1097_HCR_0000000000000148 crossref_primary_10_1161_CIRCULATIONAHA_116_025687 crossref_primary_10_1155_2012_560397 crossref_primary_10_1136_hrt_2008_150698 crossref_primary_10_1002_acr_22224 crossref_primary_10_1186_s12911_016_0343_y crossref_primary_10_1371_journal_pone_0106455 crossref_primary_10_3945_jn_110_133140 crossref_primary_10_1186_s40885_022_00227_0 crossref_primary_10_1186_s41512_018_0045_2 crossref_primary_10_1016_j_jacl_2017_08_002 crossref_primary_10_1258_jms_2012_012076 crossref_primary_10_1080_07853890903022819 crossref_primary_10_1111_anae_12489 crossref_primary_10_1161_CIRCULATIONAHA_118_038080 crossref_primary_10_1186_s12916_020_01568_z crossref_primary_10_1186_s12967_023_03899_w crossref_primary_10_1007_s40292_020_00417_7 crossref_primary_10_1016_j_cjca_2017_03_004 crossref_primary_10_1016_j_mehy_2008_07_014 crossref_primary_10_1186_s12874_021_01370_2 crossref_primary_10_1186_s12872_016_0462_5 crossref_primary_10_1016_j_ecoenv_2023_115371 crossref_primary_10_1016_j_envpol_2020_114860 crossref_primary_10_1161_CIRCINTERVENTIONS_109_924308 crossref_primary_10_1161_HYPERTENSIONAHA_115_04801 crossref_primary_10_1016_j_mcna_2011_11_003 crossref_primary_10_1136_bmjopen_2017_017711 crossref_primary_10_1093_eurheartj_ehx487 crossref_primary_10_1186_s13287_016_0321_4 crossref_primary_10_1007_s00125_008_1144_3 crossref_primary_10_1016_j_numecd_2024_103799 crossref_primary_10_1016_j_rec_2010_11_006 crossref_primary_10_1002_sim_4314 crossref_primary_10_1016_S0140_6736_14_60688_7 crossref_primary_10_2147_CIA_S519546 crossref_primary_10_1111_bjd_18154 crossref_primary_10_1161_HYP_0000000000000248 crossref_primary_10_1186_s12889_022_13944_w crossref_primary_10_1371_journal_pone_0089317 crossref_primary_10_1177_2047487318798059 crossref_primary_10_1186_1471_2261_14_27 crossref_primary_10_1016_j_archger_2024_105463 crossref_primary_10_1136_bmjopen_2014_004958 crossref_primary_10_1136_bmjopen_2014_005809 crossref_primary_10_1161_CIRCULATIONAHA_109_921072 crossref_primary_10_1016_j_socscimed_2018_06_011 crossref_primary_10_3390_app14167107 crossref_primary_10_1080_14739879_2019_1653227 crossref_primary_10_1007_s40273_022_01183_1 crossref_primary_10_1016_j_pec_2024_108231 crossref_primary_10_1111_j_1742_1241_2009_02218_x crossref_primary_10_1016_S0140_6736_12_60572_8 crossref_primary_10_1038_jhh_2013_3 crossref_primary_10_1136_hrt_2010_203364 crossref_primary_10_3390_ijms221910291 crossref_primary_10_1097_HCR_0b013e3181af6be5 crossref_primary_10_1007_s11739_012_0830_9 crossref_primary_10_1155_2020_9416803 crossref_primary_10_1111_j_1751_7141_2010_00080_x crossref_primary_10_3233_JAD_180365 crossref_primary_10_1093_ije_dyr087 crossref_primary_10_1097_BRS_0b013e31828264f9 crossref_primary_10_1016_j_amjmed_2012_01_014 crossref_primary_10_1161_JAHA_114_000954 crossref_primary_10_2459_JCM_0b013e32831fb0c2 crossref_primary_10_1155_2015_174821 crossref_primary_10_1136_heartjnl_2023_322928 crossref_primary_10_1017_S0954422413000024 crossref_primary_10_1186_1472_6947_12_3 crossref_primary_10_3389_fphar_2023_1334439 crossref_primary_10_1136_hrt_2010_199034 crossref_primary_10_1371_journal_pone_0114020 crossref_primary_10_1111_j_1440_1681_2008_04894_x crossref_primary_10_1177_2047487316673142 crossref_primary_10_1038_nrcardio_2009_163 crossref_primary_10_1177_0306312719862049 crossref_primary_10_2217_14796678_4_2_103 crossref_primary_10_1007_s12170_013_0332_y crossref_primary_10_1155_2014_748750 crossref_primary_10_1161_STROKEAHA_122_038809 crossref_primary_10_4103_JCPC_JCPC_12_17 crossref_primary_10_1016_j_jacc_2010_06_030 crossref_primary_10_1161_CIRCIMAGING_111_964528 crossref_primary_10_1161_CIRCGENETICS_110_957688 crossref_primary_10_1002_ehf2_14250 crossref_primary_10_2147_RMHP_S374339 crossref_primary_10_1186_1478_7954_10_20 crossref_primary_10_3389_fcvm_2022_882562 crossref_primary_10_1038_ejcn_2012_175 crossref_primary_10_1093_aje_kww162 crossref_primary_10_4158_EP09331_OR crossref_primary_10_1007_s40618_022_01898_0 crossref_primary_10_1186_s13148_021_01175_6 crossref_primary_10_1371_journal_pone_0235758 crossref_primary_10_1097_HCO_0b013e3283499f06 crossref_primary_10_1186_s12889_023_17332_w crossref_primary_10_1016_j_jclinepi_2021_01_008 crossref_primary_10_1371_journal_pone_0185402 crossref_primary_10_1016_j_ihj_2014_10_399 crossref_primary_10_1093_jamia_ocab068 crossref_primary_10_1136_hrt_2007_138040 crossref_primary_10_1007_s40292_017_0236_x crossref_primary_10_1016_j_ijcard_2012_03_017 crossref_primary_10_1186_s12889_016_3867_2 crossref_primary_10_1016_j_jmb_2018_05_037 crossref_primary_10_1016_j_athplu_2021_09_005 crossref_primary_10_1016_j_atherosclerosis_2020_08_014 crossref_primary_10_1111_opo_12967 crossref_primary_10_1097_JOM_0000000000001228 crossref_primary_10_1186_s12911_024_02603_2 crossref_primary_10_1016_j_atherosclerosis_2019_07_024 crossref_primary_10_1186_1472_6963_7_192 crossref_primary_10_1002_pds_1934 crossref_primary_10_1186_s41512_025_00198_4 crossref_primary_10_3389_fendo_2023_1283626 crossref_primary_10_1016_j_vhri_2014_03_003 crossref_primary_10_1016_j_amjcard_2013_02_049 crossref_primary_10_1016_j_ypmed_2013_12_031 crossref_primary_10_1161_HYPERTENSIONAHA_113_01586 crossref_primary_10_1002_dmrr_3835 crossref_primary_10_1007_s10654_023_00982_w crossref_primary_10_1016_j_jacadv_2024_101180 crossref_primary_10_1017_S0029665108007064 crossref_primary_10_1097_HJH_0000000000000987 crossref_primary_10_1136_heartjnl_2013_303698 crossref_primary_10_1002_sim_4362 crossref_primary_10_1016_j_eurpsy_2017_10_001 crossref_primary_10_1155_2013_786801 crossref_primary_10_1136_openhrt_2018_000821 crossref_primary_10_1002_mds_27836 crossref_primary_10_1136_bmjment_2025_301622 crossref_primary_10_1371_journal_pone_0140793 crossref_primary_10_1159_000529791 crossref_primary_10_1016_j_carpath_2012_03_001 crossref_primary_10_1016_S0120_5633_14_70258_X crossref_primary_10_1053_j_ajkd_2008_07_003 crossref_primary_10_1002_cdt3_90 crossref_primary_10_3389_fcvm_2022_1054959 crossref_primary_10_1097_MOL_0000000000000100 crossref_primary_10_1097_JCN_0b013e318213ef7f crossref_primary_10_1161_01_cir_0000437741_48606_98 crossref_primary_10_1089_bari_2014_0040 crossref_primary_10_3390_ijerph182212187 crossref_primary_10_1586_erc_13_26 crossref_primary_10_1371_journal_pone_0229576 crossref_primary_10_1186_s13063_019_3661_4 crossref_primary_10_1016_j_compbiomed_2022_106355 crossref_primary_10_1136_jnnp_2016_313642 crossref_primary_10_1111_anae_13061 crossref_primary_10_1161_CIRCGENETICS_108_806562 crossref_primary_10_1016_j_amjmed_2009_07_019 crossref_primary_10_1016_j_jacadv_2023_100258 crossref_primary_10_1186_1471_2458_13_539 crossref_primary_10_1002_mco2_220 crossref_primary_10_1016_j_juro_2012_12_107 crossref_primary_10_1177_1741826711424494 crossref_primary_10_1007_s12265_021_10163_3 crossref_primary_10_1136_hrt_2007_130849 crossref_primary_10_7759_cureus_86910 crossref_primary_10_1136_hrt_2008_150979 crossref_primary_10_1192_bjp_bp_117_203240 crossref_primary_10_1097_HCO_0b013e32832ec379 crossref_primary_10_1186_1471_2318_14_106 crossref_primary_10_1371_journal_pone_0222809 crossref_primary_10_1016_j_jshs_2025_101031 crossref_primary_10_3390_jpm12071180 crossref_primary_10_1136_rmdopen_2018_000771 crossref_primary_10_1161_STR_0b013e31825bcdac crossref_primary_10_1016_j_numecd_2024_10_008 crossref_primary_10_1177_1010539511423067 crossref_primary_10_1136_bmjmed_2024_001098 crossref_primary_10_1038_jhh_2009_34 crossref_primary_10_1016_j_jbi_2022_104010 crossref_primary_10_1161_CIRCGEN_119_002806 crossref_primary_10_1161_CIRCULATIONAHA_113_007595 crossref_primary_10_1016_j_cmpb_2021_106190 crossref_primary_10_1038_s41440_024_01641_7 crossref_primary_10_1371_journal_pone_0324736 crossref_primary_10_1371_journal_pmed_1000313 crossref_primary_10_2164_jandrol_110_011338 crossref_primary_10_1016_j_psym_2012_03_001 crossref_primary_10_1111_j_1365_2265_2008_03490_x crossref_primary_10_1111_j_1467_3010_2011_01889_x crossref_primary_10_1038_s41598_025_98215_5 crossref_primary_10_1016_S1957_2557_10_70080_8 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1093_fampra_cmq025 crossref_primary_10_7326_M14_0698 crossref_primary_10_1186_1471_2261_11_28 crossref_primary_10_1017_S0033291721001367 crossref_primary_10_1186_s12872_025_04579_x crossref_primary_10_1136_bmjopen_2017_018898 crossref_primary_10_1007_s12410_010_9049_1 crossref_primary_10_1016_j_jacc_2008_03_022 crossref_primary_10_1016_j_jacc_2025_08_001 crossref_primary_10_1186_1471_2296_9_52 crossref_primary_10_1002_sim_5935 crossref_primary_10_3109_0886022X_2010_493982 crossref_primary_10_1097_HPC_0b013e3181f00751 crossref_primary_10_1161_CIR_0000000000001191 crossref_primary_10_1093_bja_aes178 crossref_primary_10_3390_ijms26073071 crossref_primary_10_1111_1754_9485_13757 crossref_primary_10_3233_JAD_1803656 crossref_primary_10_1007_s00439_009_0767_x crossref_primary_10_1016_j_envint_2017_07_011 crossref_primary_10_1016_j_suc_2020_12_012 crossref_primary_10_1016_j_socscimed_2015_03_006 crossref_primary_10_1109_TIM_2022_3229704 crossref_primary_10_1136_openhrt_2014_000229 crossref_primary_10_1016_j_repc_2015_11_002 crossref_primary_10_1002_hsr2_70445 crossref_primary_10_1016_j_jdiacomp_2015_03_011 crossref_primary_10_1038_s41598_020_60786_w crossref_primary_10_1007_s40258_013_0031_3 crossref_primary_10_1093_eurheartj_eht539 crossref_primary_10_1186_s12889_015_2192_5 crossref_primary_10_1186_1471_2261_11_13 crossref_primary_10_1371_journal_pone_0126779 crossref_primary_10_1186_s12916_022_02684_8 crossref_primary_10_1111_dom_14235 crossref_primary_10_1097_HPC_0b013e3181b720c3 crossref_primary_10_1136_heartjnl_2013_304474 crossref_primary_10_1080_13685538_2018_1439911 crossref_primary_10_15829_1728_8800_2024_3903 crossref_primary_10_1161_CIRCULATIONAHA_108_816694 crossref_primary_10_1186_1471_2288_14_3 crossref_primary_10_1007_s12350_023_03288_2 crossref_primary_10_1038_nrcardio_2015_28 crossref_primary_10_1007_s00059_013_3881_4 crossref_primary_10_1177_20552076231187247 crossref_primary_10_1186_1472_6874_14_118 crossref_primary_10_1186_s13063_022_06990_7 crossref_primary_10_1080_14737159_2017_1368388 crossref_primary_10_1111_j_1742_1241_2008_01828_x crossref_primary_10_1136_bmjopen_2013_003482 crossref_primary_10_1007_s11606_010_1469_8 crossref_primary_10_1186_s12916_023_02728_7 crossref_primary_10_3109_10408363_2013_853025 crossref_primary_10_3389_fcvm_2024_1377299 crossref_primary_10_1136_ebn_11_3_91 crossref_primary_10_1002_clc_22930 crossref_primary_10_3109_00365548_2013_813064 crossref_primary_10_1016_j_amjcard_2008_12_040 crossref_primary_10_1136_openhrt_2015_000343 crossref_primary_10_1161_CIRCGENETICS_110_959114 crossref_primary_10_1161_HYPERTENSIONAHA_112_198812 crossref_primary_10_1016_j_bbi_2008_03_003 crossref_primary_10_1016_j_ihj_2014_12_001 crossref_primary_10_1097_EJA_0b013e3283499e3b crossref_primary_10_1007_s12350_019_01642_x crossref_primary_10_1177_0272989X241289336 crossref_primary_10_1016_j_carrev_2014_09_002 crossref_primary_10_1016_j_ecoenv_2021_112458 crossref_primary_10_1016_j_jacc_2009_07_047 crossref_primary_10_1038_s41467_022_34646_2 crossref_primary_10_1371_journal_pone_0073529 crossref_primary_10_1161_CIRCULATIONAHA_108_814251 crossref_primary_10_1161_CIRCULATIONAHA_116_022367 crossref_primary_10_1136_heartjnl_2016_310111 crossref_primary_10_1002_acr_25035 crossref_primary_10_1016_j_repce_2015_12_018 crossref_primary_10_1136_bmjopen_2024_091516 crossref_primary_10_1136_hrt_2010_220442 crossref_primary_10_1002_msj_21348 crossref_primary_10_21101_cejph_a4004 crossref_primary_10_1016_j_ijcard_2016_03_012 crossref_primary_10_2196_17257 crossref_primary_10_1111_1753_6405_12762 crossref_primary_10_1016_j_scib_2018_05_020 crossref_primary_10_1177_0003319721991410 crossref_primary_10_1186_s12874_019_0700_5 crossref_primary_10_12998_wjcc_v9_i20_5453 crossref_primary_10_1093_eurjpc_zwac079 crossref_primary_10_1097_PCC_0000000000002835 crossref_primary_10_1161_JAHA_121_022004 crossref_primary_10_1136_annrheumdis_2018_213894 crossref_primary_10_1136_bmjopen_2016_013650 crossref_primary_10_3109_09513590903367028 crossref_primary_10_1371_journal_pone_0303868 crossref_primary_10_1007_s40273_017_0578_1 crossref_primary_10_1186_s12931_019_1135_6 crossref_primary_10_1016_j_bbmt_2019_07_012 crossref_primary_10_1093_eurjpc_zwaf135 crossref_primary_10_7759_cureus_66341 crossref_primary_10_1136_heartjnl_2022_321231 crossref_primary_10_1016_j_jval_2012_12_006 crossref_primary_10_1016_j_jacasi_2023_07_014 crossref_primary_10_1111_apt_18459 crossref_primary_10_1080_17474086_2021_1968823 crossref_primary_10_1093_eurheartj_ehs243 crossref_primary_10_1161_CIR_0b013e31821daaf6 crossref_primary_10_4103_jrms_jrms_318_23 crossref_primary_10_1007_s00330_023_10569_4 crossref_primary_10_1016_S1473_3099_17_30447_4 crossref_primary_10_1002_pds_1686 crossref_primary_10_1161_CIR_0b013e31820faaf8 crossref_primary_10_1016_j_cjco_2025_01_006 crossref_primary_10_1007_s10654_012_9744_0 crossref_primary_10_1111_jcpp_13682 crossref_primary_10_1161_CIRCOUTCOMES_117_004197 crossref_primary_10_1136_ha_2009_001115 crossref_primary_10_1016_j_exger_2016_03_002 crossref_primary_10_1016_j_jclinepi_2017_09_014 crossref_primary_10_1371_journal_pone_0329461 crossref_primary_10_1161_HYPERTENSIONAHA_116_06548 crossref_primary_10_1016_j_jor_2021_03_001 crossref_primary_10_5402_2012_982417 crossref_primary_10_1016_j_cmpb_2024_108139 crossref_primary_10_1111_ijcp_13389 crossref_primary_10_1007_s00198_017_4103_3 crossref_primary_10_1155_2019_8392348 crossref_primary_10_1111_j_1742_1241_2009_02111_x crossref_primary_10_1007_s40292_016_0139_2 crossref_primary_10_1177_2047487320904513 crossref_primary_10_1016_j_bspc_2022_103904 crossref_primary_10_3390_jpm13060882 crossref_primary_10_1016_j_jacc_2011_01_008 crossref_primary_10_1097_JCN_0000000000001045 crossref_primary_10_1111_jch_14336 crossref_primary_10_1097_HJH_0000000000001061 crossref_primary_10_1155_2020_7025329 crossref_primary_10_1192_bjp_2025_10313 crossref_primary_10_1016_j_atherosclerosis_2010_07_028 crossref_primary_10_1093_ageing_aft095 crossref_primary_10_1111_jvim_15851 crossref_primary_10_1016_j_socscimed_2013_05_031 crossref_primary_10_1097_TIN_0000000000000188 crossref_primary_10_1371_journal_pone_0213007 crossref_primary_10_1016_j_canep_2013_04_002 crossref_primary_10_1016_j_jjcc_2011_11_005 crossref_primary_10_1161_CIRCULATIONAHA_114_013797 crossref_primary_10_1007_s00421_021_04667_8 crossref_primary_10_1177_1741826711410256 crossref_primary_10_1093_aje_kws204 crossref_primary_10_1371_journal_pone_0094344 crossref_primary_10_1371_journal_pmed_1002695 crossref_primary_10_1007_s11906_010_0143_1 crossref_primary_10_1161_JAHA_117_005676 crossref_primary_10_1177_1358863X12445102 crossref_primary_10_1007_s11154_014_9294_8 crossref_primary_10_1016_j_transproceed_2018_03_127 crossref_primary_10_1186_s12916_020_01581_2 crossref_primary_10_1093_jbmr_zjae089 crossref_primary_10_2147_JIR_S276986 crossref_primary_10_3390_jcm10102221 crossref_primary_10_1016_j_jacc_2009_07_020 crossref_primary_10_1177_0003319715585663 crossref_primary_10_1177_0037549718793214 crossref_primary_10_1371_journal_pone_0123112 crossref_primary_10_1155_2014_750579 crossref_primary_10_1177_1833358316687090 crossref_primary_10_1111_j_1365_2753_2011_01637_x crossref_primary_10_1186_1472_6947_8_49 crossref_primary_10_1007_s10557_015_6607_4 crossref_primary_10_1186_s12874_024_02268_5 crossref_primary_10_1371_journal_pone_0330368 crossref_primary_10_1093_cvr_cvz330 crossref_primary_10_1111_add_14381 crossref_primary_10_1186_1471_2288_13_146 crossref_primary_10_1016_j_dsx_2013_06_012 crossref_primary_10_1161_CIRCULATIONAHA_107_699579 crossref_primary_10_7759_cureus_45836 crossref_primary_10_1111_evj_14032 crossref_primary_10_1093_eurjpc_zwaf178 crossref_primary_10_1186_s12874_017_0330_8 crossref_primary_10_1016_j_maturitas_2022_01_012 crossref_primary_10_1111_acps_13212 crossref_primary_10_1371_journal_pone_0179102 crossref_primary_10_1093_pubmed_fdaf037 crossref_primary_10_1371_journal_pone_0020416 crossref_primary_10_1016_j_jdiacomp_2012_11_003 crossref_primary_10_2337_dc09_1444 crossref_primary_10_1371_journal_pone_0208839 crossref_primary_10_3390_ijerph192114447 crossref_primary_10_1136_bmjph_2024_001241 crossref_primary_10_1186_s12916_015_0304_9 crossref_primary_10_1093_brain_awt226 crossref_primary_10_1155_2019_6139253 crossref_primary_10_1016_j_jacl_2021_03_007 crossref_primary_10_1177_09622802241244608 crossref_primary_10_1007_s11906_019_1014_z crossref_primary_10_1002_phar_1127 crossref_primary_10_1016_j_measurement_2020_108551 crossref_primary_10_1016_j_jacc_2009_09_066 crossref_primary_10_1016_j_atherosclerosis_2010_06_019 crossref_primary_10_1111_j_1365_2125_2012_04219_x crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104415 crossref_primary_10_1007_s12350_021_02617_7 crossref_primary_10_3390_diagnostics13050857 crossref_primary_10_1016_j_jad_2021_12_030 crossref_primary_10_1024_0301_1526_a001178 crossref_primary_10_2165_00044011_200828050_00002 crossref_primary_10_1007_s00270_016_1492_1 crossref_primary_10_1080_13607863_2015_1023767 crossref_primary_10_1016_S2213_2600_15_00320_3 crossref_primary_10_1007_s12170_012_0225_5 crossref_primary_10_1002_hsr2_2009 crossref_primary_10_1016_j_jacc_2013_11_005 crossref_primary_10_1007_s10067_024_06996_3 crossref_primary_10_1016_j_jclinepi_2015_05_009 crossref_primary_10_1016_j_ijcard_2009_03_129 crossref_primary_10_1111_j_1742_1241_2008_01868_x crossref_primary_10_2188_jea_JE20080092 crossref_primary_10_2196_17548 crossref_primary_10_2188_jea_JE20120157 crossref_primary_10_1016_j_jacc_2011_02_005 crossref_primary_10_1136_bmjopen_2015_007825 crossref_primary_10_3389_fpsyt_2019_00174 crossref_primary_10_1161_CIRCULATIONAHA_109_852756 crossref_primary_10_1002_bimj_202100380 crossref_primary_10_1111_jch_14403 crossref_primary_10_1080_00365521_2018_1543447 crossref_primary_10_1177_0269881116645254 crossref_primary_10_1002_lary_27604 crossref_primary_10_1007_s40273_025_01520_0 crossref_primary_10_1186_s41512_024_00170_8 crossref_primary_10_1007_s12529_016_9583_6 crossref_primary_10_7717_peerj_17948 crossref_primary_10_3109_03009742_2011_585619 crossref_primary_10_1136_hrt_2007_140905 crossref_primary_10_1177_0003319710370960 crossref_primary_10_1186_1472_6963_11_70 crossref_primary_10_1016_j_ijmedinf_2023_105209 crossref_primary_10_1038_tpj_2008_11 crossref_primary_10_1186_s41512_025_00191_x crossref_primary_10_1016_j_cegh_2015_07_002 crossref_primary_10_1007_s40615_015_0196_6 crossref_primary_10_1093_brain_awr061 crossref_primary_10_1186_s12889_016_3928_6 crossref_primary_10_1111_j_1467_985X_2012_01050_x crossref_primary_10_1371_journal_pone_0186196 crossref_primary_10_1016_j_gheart_2013_01_001 crossref_primary_10_1016_j_jclinepi_2021_12_017 crossref_primary_10_1007_s11548_021_02335_y crossref_primary_10_1161_STROKEAHA_124_048875 crossref_primary_10_1136_heartjnl_2011_301478 crossref_primary_10_1186_s41512_020_00090_3 |
| ContentType | Journal Article |
| Copyright | BMJ Publishing Group Ltd 2007 2007 BMJ Publishing Group Ltd Copyright: 2007 (c) BMJ Publishing Group Ltd 2007 BMJ Publishing Group Ltd 2007 2007 BMJ Publishing Group Ltd |
| Copyright_xml | – notice: BMJ Publishing Group Ltd 2007 – notice: 2007 BMJ Publishing Group Ltd – notice: Copyright: 2007 (c) BMJ Publishing Group Ltd 2007 – notice: BMJ Publishing Group Ltd 2007 2007 BMJ Publishing Group Ltd |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88I 8AF 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AN0 ASE AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FPQ FYUFA GHDGH GNUQQ GUQSH HCIFZ K6X K9. LK8 M2O M2P M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7U1 C1K 7X8 5PM |
| DOI | 10.1136/bmj.39261.471806.55 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database British Nursing Index ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection BMJ Journals ProQuest One ProQuest Central British Nursing Index (BNI) (1985 to Present) Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection British Nursing Index ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest research library Science Database Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Risk Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition British Nursing Index with Full Text British Nursing Index ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition BMJ Journals ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Risk Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic Risk Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1468-5833 1756-1833 |
| EndPage | 141 |
| ExternalDocumentID | PMC1925200 4006978181 17615182 10_1136_bmj_39261_471806_55 20695001 ark_67375_NVC_7529H850_K bmj |
| Genre | Validation Study Multicenter Study Journal Article |
| GeographicLocations | United Kingdom United Kingdom--UK British Isles |
| GeographicLocations_xml | – name: United Kingdom – name: United Kingdom--UK – name: British Isles |
| GroupedDBID | .GJ 23N 2WC 39C 3O- 4.4 40O 53G 5GY 7RV 7X7 88I 8AF 8F7 8FE 8FH 8FI 8FJ 8G5 AACGO AAKAS AANCE AAWJN ABBHK ABIVO ABJNI ABPLY ABTLG ABUWG ABVAJ ABXSQ ACGFS ACGOD ACHIC ACMFJ ACOAB ACPRK ACQSR ADBBV ADCEG ADQXQ ADULT ADZCM AEUPB AEXZC AFKRA AGFXO AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AZFZN AZQEC BAWUL BBNVY BENPR BHPHI BPHCQ BTHHO C45 CAG CCPQU COF CS3 DCCCD DIK DWQXO EBS EJD EX3 F5P FEDTE FYUFA GNUQQ GUQSH H13 HAJ HCIFZ HMCUK HQ3 HTVGU HVGLF HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST L7B LK8 M2O M2P M7P NAPCQ NTWIH NXWIF O9- OVD PHGZT PQQKQ PROAC R53 RHI RMJ RV8 SA0 TEORI UHU UKHRP VVN WHG WOQ WOW YFH YQY 0R~ ADACV BSCLL DOOOF JSODD RHF PHGZM AAYXX AFFHD AN0 CITATION IAG IBB IMI PJZUB PPXIY PQGLB ADIXU CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK ASE FPQ K6X K9. MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U 7U1 C1K 7X8 5PM |
| ID | FETCH-LOGICAL-b715t-cd80a8d2b46a45115c44a893eae5eec7bdb746603c8d538628307b2700e43b913 |
| IEDL.DBID | 7RV |
| ISICitedReferencesCount | 722 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000248428100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-8138 1756-1833 |
| IngestDate | Tue Nov 04 01:59:26 EST 2025 Wed Oct 01 14:18:15 EDT 2025 Tue Oct 07 09:27:23 EDT 2025 Mon Sep 08 14:13:31 EDT 2025 Wed Feb 19 02:08:51 EST 2025 Tue Nov 18 22:17:18 EST 2025 Sat Nov 29 03:44:21 EST 2025 Thu Jun 19 16:02:57 EDT 2025 Wed Oct 30 09:29:47 EDT 2024 Thu Apr 24 23:04:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7611 |
| Language | English |
| License | http://www.bmj.org/licenses/tdm/1.0/terms-and-conditions.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b715t-cd80a8d2b46a45115c44a893eae5eec7bdb746603c8d538628307b2700e43b913 |
| Notes | PMID:17615182 ark:/67375/NVC-7529H850-K istex:39B8DF69048A38D7A419231A98E141CD694D51E5 Correspondence to: J Hippisley-Cox julia.hippisley-cox@nottingham.ac.uk href:bmj-335-136.pdf local:bmj;335/7611/136 ArticleID:hipj488692 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://www.bmj.com/content/bmj/335/7611/136.full.pdf |
| PMID | 17615182 |
| PQID | 1777992583 |
| PQPubID | 2040978 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1925200 proquest_miscellaneous_70764391 proquest_miscellaneous_20722100 proquest_journals_1777992583 pubmed_primary_17615182 crossref_citationtrail_10_1136_bmj_39261_471806_55 crossref_primary_10_1136_bmj_39261_471806_55 jstor_primary_20695001 istex_primary_ark_67375_NVC_7529H850_K bmj_primary_10_1136_bmj_39261_471806_55 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-07-21 |
| PublicationDateYYYYMMDD | 2007-07-21 |
| PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-21 day: 21 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMJ |
| PublicationTitleAlternate | BMJ |
| PublicationYear | 2007 |
| Publisher | British Medical Journal Publishing Group British Medical Association BMJ Publishing Group LTD BMJ Publishing Group Ltd |
| Publisher_xml | – name: British Medical Journal Publishing Group – name: British Medical Association – name: BMJ Publishing Group LTD – name: BMJ Publishing Group Ltd |
| References | 1991; 121 2006; 92 2004; 255 1993; 106 2003; 327 2005; 330 2004; 291 2000; 356 1999; 28 2002; 56 2004; 23 2004; 4 2005; 5 2003; 24 1994; 25 2006; 6 2005; 91 2007; 61 2007; 2 1996; 16 1998; 97 2005; 55 2003; 20 17616541 - BMJ. 2007 Jul 21;335(7611):107-8 18171012 - ACP J Club. 2008 Jan-Feb;148(1):25 18556279 - BMJ. 2008 Jun 14;336(7657):1323-4 |
| References_xml | – volume: 20 start-page: 25 year: 2003 publication-title: Health Stats Q – volume: 291 start-page: 2204 year: 2004 publication-title: JAMA – volume: 92 start-page: 752 year: 2006 publication-title: Heart – volume: 5 start-page: 527 year: 2005 publication-title: Stata J – volume: 4 start-page: 227 year: 2004 publication-title: Stata J – volume: 16 start-page: 321 year: 1996 publication-title: Pharmacotherapy – volume: 97 start-page: 1837 year: 1998 publication-title: Circulation – volume: 255 start-page: 229 year: 2004 publication-title: J Intern Med – volume: 55 start-page: 838 year: 2005 publication-title: Br J Gen Pract – volume: 56 start-page: 28 year: 2002 publication-title: J Clin Epidemiol – volume: 2 start-page: 172 year: 2007 publication-title: Heart – volume: 91 start-page: 1 year: 2005 publication-title: Heart – volume: 25 start-page: 40 year: 1994 publication-title: Stroke – volume: 330 start-page: 1059 year: 2005 publication-title: BMJ – volume: 92 start-page: 307 year: 2006 publication-title: Heart – volume: 61 start-page: 115 year: 2007 publication-title: J Epidemiol Community Health – volume: 24 start-page: 1601 year: 2003 publication-title: Eur Heart J – volume: 92 start-page: 1752 year: 2006 publication-title: Heart – volume: 330 start-page: 1366 year: 2005 publication-title: BMJ – volume: 106 start-page: 133 year: 1993 publication-title: NZ Med J – volume: 327 start-page: 1267 year: 2003 publication-title: BMJ – volume: 23 start-page: 723 year: 2004 publication-title: Stats Med – volume: 121 start-page: 293 year: 1991 publication-title: Am Heart J – volume: 356 start-page: 1093 year: 2000 publication-title: Lancet – volume: 327 start-page: 1 year: 2003 publication-title: BMJ – volume: 6 start-page: 1 year: 2006 publication-title: Stata J – volume: 28 start-page: 964 year: 1999 publication-title: Int J Epidemiol – reference: 17616541 - BMJ. 2007 Jul 21;335(7611):107-8 – reference: 18171012 - ACP J Club. 2008 Jan-Feb;148(1):25 – reference: 18556279 - BMJ. 2008 Jun 14;336(7657):1323-4 |
| SSID | ssj0002378965 ssj0002378964 |
| Score | 2.486993 |
| Snippet | Objective To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham... To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham... OBJECTIVE: To derive a new cardiovascular disease risk score (QRISK) for the United Kingdom and to validate its performance against the established Framingham... |
| SourceID | pubmedcentral proquest pubmed crossref jstor istex bmj |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 136 |
| SubjectTerms | Adult Aged Algorithms Body mass index Cardiovascular disease Cardiovascular diseases Cardiovascular Diseases - etiology Cardiovascular Diseases - mortality Cardiovascular Diseases - prevention & control Cohort Studies Computers Confidence intervals Datasets Disease models Disease risk Estimates Family medical history Female Gender discrimination General practice Health disparities Health outcomes Health risk assessment Humans Male Men Middle Aged Patients Population Predisposing factors Primary care Prospective Studies Public health Risk Assessment Risk Factors Studies Systolic blood pressure United Kingdom - epidemiology |
| Title | Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study |
| URI | http://bmj.com/content/335/7611/136.full https://api.istex.fr/ark:/67375/NVC-7529H850-K/fulltext.pdf https://www.jstor.org/stable/20695001 https://www.ncbi.nlm.nih.gov/pubmed/17615182 https://www.proquest.com/docview/1777992583 https://www.proquest.com/docview/20722100 https://www.proquest.com/docview/70764391 https://pubmed.ncbi.nlm.nih.gov/PMC1925200 |
| Volume | 335 |
| WOSCitedRecordID | wos000248428100034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M7P dateStart: 19940108 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20080626 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M7P dateStart: 19880702 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20080626 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: 7X7 dateStart: 19880702 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: 7X7 dateStart: 19940108 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: 7RV dateStart: 19940108 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1468-5833 dateEnd: 20080626 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: BENPR dateStart: 19880702 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: BENPR dateStart: 19940108 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M2O dateStart: 19940108 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Research Library customDbUrl: eissn: 1468-5833 dateEnd: 20080626 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M2O dateStart: 19880702 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20080626 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M2P dateStart: 19880702 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1468-5833 dateEnd: 20250928 omitProxy: false ssIdentifier: ssj0002378965 issn: 0959-8138 databaseCode: M2P dateStart: 19940108 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgRQgJcRkMAmP4AcHLssVJ7OPwgmBsGppWSmFT3yzbcUWBpaPtEK_8c3ycyyiCCYkXS02ctu75enxu_g4hTwwvmM2hjG0ibJzrnMVyrG3MhStzFLtOdGg2Af2-HI2KQRNwmzdlla1ODIq6nFqMkW8zACiKlMvsxenXGLtGYXa1aaFxmfQY7t0ezzA87mIsaQayCN0km2hXJhviIZaJbXPyyXv83oPYQgWdiK1w3M9fXdqievhrf2-rFf9kh_5eTvnL_rR3839XdovcaCxT-rKG0m1yyVWr5Ophk3tfJdfrCB-tDy7dIT9ee_DWAV2qq5J6yE7qBk10Oqbvhm_eH2xSTb3ZTu1S0SttkkIUy9rpHHk0qTedqTdFaW0CU-y0Uk5PnlO_lPYsKMVGXxQb-s4WNLDi3iVHe7sfdvbjpqFDbIDxRWxLmWhZpiYXGnnRuM1z7Q0mpx13zoIpDeRCJJmVpVfEAsnJwGBq3OWZKVi2RlaqaeXuE2oTA8K5McPKAW61AcuZ05JxkztjTUSeeUmq05qyQwVXJxMKrwWZq1rmivOIpK20lW140bE9x5eLH9rsHvqnz3gaYNTN1bPPWFEHXPWPdxTwtNiXPFEHEVkLOOsmpokouDclIrLegkc1WmauzpETkcfdba8fMOmjKzc9m_s3gNS79cnfZ0AC4fx1RO7VOD5fEaC9K9OIwBLCuwnITb58p5p8DBzl3nFAQq8HF3_th-RaGytP2TpZWczO3CNyxX5bTOazjfBnxnEEYZQbpPdqtz8Y-leH6dswDnCEwU_4NlUg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgES4lEoBAr1gcel2cZObCdICKGWqqttVzwK2puxHa9YoNmyu-Vx5A_xG_HkVRZBxaUHromT3dgz4xnPzPcB3DM8ozaReWgjYcNEJzRMh9qGXLg8wWXXkS7JJmS_nw4G2fMF-NH0wmBZZWMTS0Odjy2ekW9QKWWWMZ7GTw4_hcgahdnVhkKjEoue-_bFh2zTx90tv773Gdt-tr-5E9asAqGRlM9Cm6eRTnNmEqERnIvbJNF-13baceesNLmRiRBRbNPcWwOBCFnSYH7WJbHJaOzfewaWvB2XWEImB7I902GxTLOSvbI-XYvTGuiIxmLDHLzveG9E0A5uCJHolO2F_urclriEq_u1qY78k9_7e_nmL_vh9uX_bSavwKXa8yZPK1W5CguuWIZze3VtwTJcrE4wSdWYdQ2-b3nlrA6siS5y4lVyVBFQkfGQvHjZfdVbJ5r4sITYuaJeUie9CJbtkynihBIfGhDvapPKxSfIJJOPDx4RP3VNrytBIjOChMWTGSlRf6_D61OZkBVYLMaFuwnERkYK54YUKyO41UZaTp1OKTeJM9YE8NBLjjqsIElUGcrFQuG1UsZUJWOK8wBYI13K1rjvSD_y8eSH1tuH_uk3HpRi247Vkw9YMSi56r_ZVJKzbCflkeoFsFLKdTuQRSLj3lUKYLURVlVb0ak6ltQA1trb3v5hUksXbnw09S-QjNEo-vsIGcmyvzyAG5XeHH-RRH8-ZQHIOY1qByD2-vydYvSuxGD3gREClt06-W-vwfmd_b1dtdvt927DhSYvwOgqLM4mR-4OnLWfZ6Pp5G5pSAi8PW19-wniRqoi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDU1IiI_BIDCYH_h4WdrYie0ECSG0Uq0qqwoMtLdgO64YsHS0HR-P_Fv8dficpKMIJl72wGvipI19d77z3f1-APc0z6hJZBGaSJgwUQkN05EyIRe2SHDZVaQ82YQcDNL9_Wy4BD-aXhgsq2xsojfUxdjgGXmbSimzjPE0bo_qsohhp_vk6FOIDFKYaW3oNCoR6dtvX1z4Nn3c67i1vs9Y99ne9k5YMwyEWlI-C02RRiotmE6EQqAubpJEuR3cKsutNVIXWiZCRLFJC2cZBKJlSY25WpvEOqOxe-85WJEJ56hdu2w4P99hsUwzz2RZn7TFaQ16RGPR1ofvW84zEbSFm0MkWr7V0F1d2B5XcKW_NpWSf_KBfy_l_GVv7F7-n2f1ClyqPXLytFKhq7BkyzVY3a1rDtbgYnWySaqGrWvwveOUtjrIJqosiFPVg4qYioxH5MXL3qv-FlHEhSvELBT7kjoZRrCcn0wRP5S4kIE4F5xUrj9BhplifPiIuGlsemAJEpwRJDKezIhHA74Or89kQtZhuRyX9iYQE2kprB1RrJjgRmlpOLUqpVwnVhsdwEMnRflRBVWS-xAvFjle8_KWV_KWcx4AayQtNzUePNKSfDz9oa35Q__0Gw-8CM_HqskHrCSUPB-82c4lZ9lOyqO8H8C6l_H5QBaJjDsXKoCNRnDz2rpO8xOpDWBzftvZRUx2qdKOj6fuBZIxGkV_HyEj6fvOA7hR6dDJF0n081MWgFzQrvkAxGRfvFMevPPY7C5gQiCzW6f_7U1YdWqWP-8N-rfhQpMuYHQDlmeTY3sHzpvPs4Pp5K63KQTenrW6_QRcK7Lv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derivation+and+validation+of+QRISK%2C+a+new+cardiovascular+disease+risk+score+for+the+United+Kingdom%3A+prospective+open+cohort+study&rft.jtitle=BMJ.+British+medical+journal+%28Clinical+research+ed.%29&rft.au=Hippisley-Cox%2C+Julia&rft.au=Coupland%2C+Carol&rft.au=Vinogradova%2C+Yana&rft.au=Robson%2C+John&rft.date=2007-07-21&rft.pub=British+Medical+Association&rft.issn=0959-8138&rft.eissn=1756-1833&rft.volume=335&rft.issue=7611&rft.spage=136&rft.epage=141&rft_id=info:doi/10.1136%2Fbmj.39261.471806.55&rft.externalDocID=20695001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-8138&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-8138&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-8138&client=summon |