Differential coping strategies exerted by biofilm and planktonic cells of the beneficial bacterium B. subtilis in response to the protozoan predator Entamoeba histolytica
The human protozoan parasite Entamoeba histolytica causes amebiasis and interacts with both beneficial and harmful members of the microbiome. In previous studies, it was shown that E. histolytica can break down pre-established biofilms of B. subtilis in a time- and dose-dependent manner. Inhibiting...
Saved in:
| Published in: | bioRxiv |
|---|---|
| Main Authors: | , , , |
| Format: | Paper |
| Language: | English |
| Published: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
17.11.2024
Cold Spring Harbor Laboratory |
| Edition: | 1.1 |
| Subjects: | |
| ISSN: | 2692-8205, 2692-8205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The human protozoan parasite Entamoeba histolytica causes amebiasis and interacts with both beneficial and harmful members of the microbiome. In previous studies, it was shown that E. histolytica can break down pre-established biofilms of B. subtilis in a time- and dose-dependent manner. Inhibiting parasitic cysteine proteases impairs biofilm degradation. However, it is still unknown whether bacteria can sense this process and respond to the degradation of the biofilms. Here, our research demonstrates a multi-layered response of probiotic bacteria to the parasite, which differs between planktonic bacteria and pre-established biofilms. Sensing the activity of cysteine proteases from E. histolytica, the bacteria activate the general stress response and, to a lesser extent, the cell wall stress response, making the surviving biofilm members more resistant to mild stressors. On the other hand, planktonic cells exposed to the predators' lysate deactivate the expression of genes associated with biofilm formation while inducing their motility to avoid predation. Overall, our results indicate that bacteria have evolved to recognize amoeba predators. Furthermore, the partially digested biofilm cells may have unexpected disadvantages over bacteria that did not encounter a predator. These findings may be useful in developing more efficient probiotic strains that are resilient to amoebiasis.Competing Interest StatementThe authors have declared no competing interest. |
|---|---|
| AbstractList | The human protozoan parasite Entamoeba histolytica causes amebiasis and interacts with both beneficial and harmful members of the microbiome. In previous studies, it was shown that E. histolytica can break down pre-established biofilms of B. subtilis in a time- and dose-dependent manner. Inhibiting parasitic cysteine proteases impairs biofilm degradation. However, it is still unknown whether bacteria can sense this process and respond to the degradation of the biofilms.
Here, our research demonstrates a multi-layered response of probiotic bacteria to the parasite, which differs between planktonic bacteria and pre-established biofilms. Sensing the activity of cysteine proteases from E. histolytica, the bacteria activate the general stress response and, to a lesser extent, the cell wall stress response, making the surviving biofilm members more resistant to mild stressors. On the other hand, planktonic cells exposed to the predators’ lysate deactivate the expression of genes associated with biofilm formation while inducing their motility to avoid predation. Overall, our results indicate that bacteria have evolved to recognize amoeba predators. Furthermore, the partially digested biofilm cells may have unexpected disadvantages over bacteria that did not encounter a predator. These findings may be useful in developing more efficient probiotic strains that are resilient to amoebiasis. The human protozoan parasite Entamoeba histolytica causes amebiasis and interacts with both beneficial and harmful members of the microbiome. In previous studies, it was shown that E. histolytica can break down pre-established biofilms of B. subtilis in a time- and dose-dependent manner. Inhibiting parasitic cysteine proteases impairs biofilm degradation. However, it is still unknown whether bacteria can sense this process and respond to the degradation of the biofilms. Here, our research demonstrates a multi-layered response of probiotic bacteria to the parasite, which differs between planktonic bacteria and pre-established biofilms. Sensing the activity of cysteine proteases from E. histolytica, the bacteria activate the general stress response and, to a lesser extent, the cell wall stress response, making the surviving biofilm members more resistant to mild stressors. On the other hand, planktonic cells exposed to the predators' lysate deactivate the expression of genes associated with biofilm formation while inducing their motility to avoid predation. Overall, our results indicate that bacteria have evolved to recognize amoeba predators. Furthermore, the partially digested biofilm cells may have unexpected disadvantages over bacteria that did not encounter a predator. These findings may be useful in developing more efficient probiotic strains that are resilient to amoebiasis.Competing Interest StatementThe authors have declared no competing interest. |
| Author | Zanditenas, Eva Ankri, Serge Kolodkin-Gal, Ilana Prem Anand Murugan |
| Author_xml | – sequence: 1 givenname: Ilana surname: Kolodkin-Gal fullname: Kolodkin-Gal, Ilana – sequence: 2 fullname: Prem Anand Murugan – sequence: 3 givenname: Eva surname: Zanditenas fullname: Zanditenas, Eva – sequence: 4 givenname: Serge surname: Ankri fullname: Ankri, Serge |
| BookMark | eNpNkM1OwzAQhC1UJErpA3BbiQuXFNtJ3OQIpfxIlbj0HtnOpnVJ7WC7qOWReEpSyoHTzmFmtPNdkoF1Fgm5ZnTCGGV3nPKsVxMmJoKnZZGfkSEXJU8KTvPBP31BxiFsKKW8FCydZkPy_WiaBj3aaGQL2nXGriBELyOuDAbAPfqINagDKOMa025B2hq6Vtr36KzRoLFtA7gG4hpBocXG6GOXkjqiN7stPEwg7FQ0rQlgLHgMnbMBIbrfTOdddF9O2l5hLaPzMLdRbh0qCWsTomsP0Wh5Rc4b2QYc_90RWT7Nl7OXZPH2_Dq7XyRKMJagVlkhRTlVVOi60UoVGeY9ISVyJTnFgnGaFQJpmeW56klMeVOXVNIsq2mq0xG5PdX2e_3efFadN1vpD9WRcsVYxUR1otxbb07WfsLHDkOsNm7nbf9clTJe8nRaMpb-AIjFgeM |
| Cites_doi | 10.1126/scisignal.aaw8905 10.1111/1462-2920.14526 10.1016/0035-9203(78)90144-x 10.1101/gad.1645008 10.1007/978-3-319-46503-6_1 10.1016/j.mib.2016.02.002 10.1128/IAI.70.6.3208-3215.2002 10.1073/pnas.191384198 10.1128/MMBR.00041-08 10.1038/s41579-021-00540-9 10.1128/AEM.00885-14 10.1056/NEJMra022710348/16/1565 10.1128/JB.02516-14 10.1128/mBio.00035-10 10.1111/j.1365-2958.2004.04440.x 10.1016/j.ijheh.2013.07.007 10.1099/00221287-129-8-2621 10.1080/21505594.2023.2289775 10.1073/pnas.0910560107 10.1111/j.1365-2958.2011.07653.x 10.1038/s41522-023-00444-x 10.1038/s41522-018-0051-8 10.1111/j.1365-2958.2012.08094.x 10.1111/j.1365-2958.2005.05019.x 10.1111/mmi.14657 10.1038/s41467-020-15758-z 10.1038/nrmicro2960 10.1038/s41467-021-27904-2 10.1007/s004380051072 10.1016/j.tim.2020.03.016 10.1128/JB.01363-13 10.1038/s41522-023-00437-w 10.1073/pnas.2118107119 |
| ContentType | Paper |
| Copyright | 2024. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2024.11.16.623985v1 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2024.11.16.623985v1 – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2024.11.16.623985 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2024.11.16.623985v1 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI FX. |
| ID | FETCH-LOGICAL-b611-ecb48a697b06cdfcbb84e5202b65ba20e8120486e09455b02972fd90a044d03c3 |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:49:28 EST 2025 Fri Jul 25 09:16:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b611-ecb48a697b06cdfcbb84e5202b65ba20e8120486e09455b02972fd90a044d03c3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-8464-5660 |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.11.16.623985 |
| PQID | 3129237911 |
| PQPubID | 2050091 |
| PageCount | 17 |
| ParticipantIDs | biorxiv_primary_2024_11_16_623985 proquest_journals_3129237911 |
| PublicationCentury | 2000 |
| PublicationDate | 20241117 |
| PublicationDateYYYYMMDD | 2024-11-17 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241117 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Keren-Paz, Brumfeld, Oppenheimer-Shaanan, Kolodkin-Gal (2024.11.16.623985v1.15) 2018; 4 Branda, Gonzalez-Pastor, Ben-Yehuda, Losick, Kolter (2024.11.16.623985v1.22) 2001; 98 Maan, Itkin, Malitsky, Friedman, Kolodkin-Gal (2024.11.16.623985v1.23) 2022; 13 Rigothier, Khun, Tavares, Cardona, Huerre, Guillen (2024.11.16.623985v1.19) 2002; 70 Azulay, Spaeker, Ghrayeb, Wilsch-Brauninger, Scoppola, Burghammer, Zizak, Bertinetti, Politi, Chai (2024.11.16.623985v1.6) 2022; 119 Steinberg, Kolodkin-Gal (2024.11.16.623985v1.32) 2015; 197 Vlamakis, Aguilar, Losick, Kolter (2024.11.16.623985v1.13) 2008; 22 Steinberg, Keren-Paz, Hou, Doron, Yanuka-Golub, Olender, Hadar, Rosenberg, Jain, Camara-Almiron (2024.11.16.623985v1.12) 2020; 13 Petersohn, Engelmann, Setlow, Hecker (2024.11.16.623985v1.25) 1999; 262 Kobayashi, Iwano (2024.11.16.623985v1.10) 2012; 85 Karygianni, Ren, Koo, Thurnheer (2024.11.16.623985v1.33) 2020; 28 Chu, Kearns, Branda, Kolter, Losick (2024.11.16.623985v1.31) 2006; 59 Waters, Robles-Martinez, Nicholson (2024.11.16.623985v1.24) 2014; 80 Romero, Aguilar, Losick, Kolter (2024.11.16.623985v1.5) 2010; 107 Camara-Almiron, Navarro, Diaz-Martinez, Magno-Perez-Bryan, Molina-Santiago, Pearson, de Vicente, Perez-Garcia, Romero (2024.11.16.623985v1.9) 2020; 11 Zanditenas, Ankri (2024.11.16.623985v1.18) 2024; 15 Arnaouteli, Bamford, Stanley-Wall, Kovacs (2024.11.16.623985v1.11) 2021; 19 Aguilar, Vlamakis, Guzman, Losick, Kolter (2024.11.16.623985v1.14) 2010; 1 Vlamakis, Chai, Beauregard, Losick, Kolter (2024.11.16.623985v1.3) 2013; 11 Zanditenas, Trebicz-Geffen, Kolli, Dominguez-Garcia, Farhi, Linde, Romero, Chapman, Kolodkin-Gal, Ankri (2024.11.16.623985v1.17) 2023; 9 Kearns, Chu, Branda, Kolter, Losick (2024.11.16.623985v1.30) 2005; 55 Bucher, Keren-Paz, Hausser, Olender, Cytryn, Kolodkin-Gal (2024.11.16.623985v1.29) 2019; 21 Helmann (2024.11.16.623985v1.27) 2016; 30 Romero, Vlamakis, Losick, Kolter (2024.11.16.623985v1.26) 2011; 80 Romero, Vlamakis, Losick, Kolter (2024.11.16.623985v1.7) 2014; 196 Diamond, Harlow, Cunnick (2024.11.16.623985v1.21) 1978; 72 Karatan, Watnick (2024.11.16.623985v1.4) 2009; 73 Dupuy, Berne, Herbelin, Binet, Berthelot, Rodier, Soreau, Hechard (2024.11.16.623985v1.20) 2014; 217 Camara-Almiron, Dominguez-Garcia, El Mammeri, Lends, Habenstein, de Vicente, Loquet, Romero (2024.11.16.623985v1.8) 2023; 9 Pane-Farre, Quin, Lewis, Marles-Wright (2024.11.16.623985v1.16) 2017; 83 Haque, Huston, Hughes, Houpt, Petri (2024.11.16.623985v1.1) 2003; 348 Guillen (2024.11.16.623985v1.2) 2021; 115 Imanaka, Oshihara, Himeno, Aiba (2024.11.16.623985v1.28) 1983; 129 |
| References_xml | – volume: 13 year: 2020 ident: 2024.11.16.623985v1.12 article-title: The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms publication-title: Science signaling doi: 10.1126/scisignal.aaw8905 – volume: 21 start-page: 1068 year: 2019 end-page: 1085 ident: 2024.11.16.623985v1.29 article-title: An active beta-lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species publication-title: Environmental microbiology doi: 10.1111/1462-2920.14526 – volume: 72 start-page: 431 year: 1978 end-page: 432 ident: 2024.11.16.623985v1.21 article-title: A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba publication-title: Trans R Soc Trop Med Hyg doi: 10.1016/0035-9203(78)90144-x – volume: 22 start-page: 945 year: 2008 end-page: 953 ident: 2024.11.16.623985v1.13 article-title: Control of cell fate by the formation of an architecturally complex bacterial community publication-title: Genes & development doi: 10.1101/gad.1645008 – volume: 83 start-page: 1 year: 2017 end-page: 41 ident: 2024.11.16.623985v1.16 article-title: Structure and Function of the Stressosome Signalling Hub publication-title: Subcell Biochem doi: 10.1007/978-3-319-46503-6_1 – volume: 30 start-page: 122 year: 2016 end-page: 132 ident: 2024.11.16.623985v1.27 article-title: Bacillus subtilis extracytoplasmic function (ECF) sigma factors and defense of the cell envelope publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.02.002 – volume: 70 start-page: 3208 year: 2002 end-page: 3215 ident: 2024.11.16.623985v1.19 article-title: Fate of Entamoeba histolytica during establishment of amoebic liver abscess analyzed by quantitative radioimaging and histology publication-title: Infect Immun doi: 10.1128/IAI.70.6.3208-3215.2002 – volume: 98 start-page: 11621 year: 2001 end-page: 11626 ident: 2024.11.16.623985v1.22 article-title: Fruiting body formation by Bacillus subtilis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.191384198 – volume: 73 start-page: 310 year: 2009 end-page: 347 ident: 2024.11.16.623985v1.4 article-title: Signals, regulatory networks, and materials that build and break bacterial biofilms publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00041-08 – volume: 19 start-page: 600 year: 2021 end-page: 614 ident: 2024.11.16.623985v1.11 article-title: Bacillus subtilis biofilm formation and social interactions publication-title: Nature reviews. Microbiology doi: 10.1038/s41579-021-00540-9 – volume: 80 start-page: 4788 year: 2014 end-page: 4794 ident: 2024.11.16.623985v1.24 article-title: Exposure of Bacillus subtilis to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response publication-title: Applied and environmental microbiology doi: 10.1128/AEM.00885-14 – volume: 348 start-page: 1565 year: 2003 end-page: 1573 ident: 2024.11.16.623985v1.1 article-title: Amebiasis publication-title: N Engl J Med doi: 10.1056/NEJMra022710348/16/1565 – volume: 197 start-page: 2092 year: 2015 end-page: 2103 ident: 2024.11.16.623985v1.32 article-title: The Matrix Reloaded: Probing the Extracellular Matrix Synchronizes Bacterial Communities publication-title: J Bacteriol doi: 10.1128/JB.02516-14 – volume: 1 year: 2010 ident: 2024.11.16.623985v1.14 article-title: KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms publication-title: mBio doi: 10.1128/mBio.00035-10 – volume: 55 start-page: 739 year: 2005 end-page: 749 ident: 2024.11.16.623985v1.30 article-title: A master regulator for biofilm formation by Bacillus subtilis publication-title: Molecular microbiology doi: 10.1111/j.1365-2958.2004.04440.x – volume: 217 start-page: 335 year: 2014 end-page: 339 ident: 2024.11.16.623985v1.20 article-title: Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants publication-title: Int J Hyg Environ Health doi: 10.1016/j.ijheh.2013.07.007 – volume: 129 start-page: 2621 year: 1983 end-page: 2628 ident: 2024.11.16.623985v1.28 article-title: Comparative studies on extracellular penicillinases of the same structural gene, penP, expressed in Bacillus licheniformis and Bacillus subtilis publication-title: J Gen Microbiol doi: 10.1099/00221287-129-8-2621 – volume: 15 start-page: 2289775 year: 2024 ident: 2024.11.16.623985v1.18 article-title: Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance publication-title: Virulence doi: 10.1080/21505594.2023.2289775 – volume: 107 start-page: 2230 year: 2010 end-page: 2234 ident: 2024.11.16.623985v1.5 article-title: Amyloid fibers provide structural integrity to Bacillus subtilis biofilms publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0910560107 – volume: 80 start-page: 1155 year: 2011 end-page: 1168 ident: 2024.11.16.623985v1.26 article-title: An accessory protein required for anchoring and assembly of amyloid fibres in B publication-title: subtilis biofilms. Molecular microbiology doi: 10.1111/j.1365-2958.2011.07653.x – volume: 9 start-page: 77 year: 2023 ident: 2024.11.16.623985v1.17 article-title: Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity publication-title: NPJ biofilms and microbiomes doi: 10.1038/s41522-023-00444-x – volume: 4 start-page: 8 year: 2018 ident: 2024.11.16.623985v1.15 article-title: Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms publication-title: NPJ biofilms and microbiomes doi: 10.1038/s41522-018-0051-8 – volume: 85 start-page: 51 year: 2012 end-page: 66 ident: 2024.11.16.623985v1.10 article-title: BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms publication-title: Molecular microbiology doi: 10.1111/j.1365-2958.2012.08094.x – volume: 59 start-page: 1216 year: 2006 end-page: 1228 ident: 2024.11.16.623985v1.31 article-title: Targets of the master regulator of biofilm formation in Bacillus subtilis publication-title: Molecular microbiology doi: 10.1111/j.1365-2958.2005.05019.x – volume: 115 start-page: 901 year: 2021 end-page: 915 ident: 2024.11.16.623985v1.2 article-title: Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells publication-title: Molecular microbiology doi: 10.1111/mmi.14657 – volume: 11 start-page: 1859 year: 2020 ident: 2024.11.16.623985v1.9 article-title: Dual functionality of the amyloid protein TasA in Bacillus physiology and fitness on the phylloplane publication-title: Nature communications doi: 10.1038/s41467-020-15758-z – volume: 11 start-page: 157 year: 2013 end-page: 168 ident: 2024.11.16.623985v1.3 article-title: Sticking together: building a biofilm the Bacillus subtilis way publication-title: Nature reviews. Microbiology doi: 10.1038/nrmicro2960 – volume: 13 start-page: 431 year: 2022 ident: 2024.11.16.623985v1.23 article-title: Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors publication-title: Nature communications doi: 10.1038/s41467-021-27904-2 – volume: 262 start-page: 173 year: 1999 end-page: 179 ident: 2024.11.16.623985v1.25 article-title: The katX gene of Bacillus subtilis is under dual control of sigmaB and sigmaF publication-title: Mol Gen Genet doi: 10.1007/s004380051072 – volume: 28 start-page: 668 year: 2020 end-page: 681 ident: 2024.11.16.623985v1.33 article-title: Biofilm Matrixome: Extracellular Components in Structured Microbial Communities publication-title: Trends in microbiology doi: 10.1016/j.tim.2020.03.016 – volume: 196 start-page: 1505 year: 2014 end-page: 1513 ident: 2024.11.16.623985v1.7 article-title: Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly publication-title: J Bacteriol doi: 10.1128/JB.01363-13 – volume: 9 start-page: 68 year: 2023 ident: 2024.11.16.623985v1.8 article-title: Molecular characterization of the N-terminal half of TasA during amyloid-like assembly and its contribution to Bacillus subtilis biofilm formation publication-title: NPJ biofilms and microbiomes doi: 10.1038/s41522-023-00437-w – volume: 119 year: 2022 ident: 2024.11.16.623985v1.6 article-title: Multiscale X-ray study of Bacillus subtilis biofilms reveals interlinked structural hierarchy and elemental heterogeneity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2118107119 |
| SSID | ssj0002961374 |
| Score | 1.7404422 |
| SecondaryResourceType | preprint |
| Snippet | The human protozoan parasite Entamoeba histolytica causes amebiasis and interacts with both beneficial and harmful members of the microbiome. In previous... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Amebiasis Amoeba Bacteria Biodegradation Biofilms Cell walls Cysteine Entamoeba histolytica Microbiology Microbiomes Planktonic cells Predation Predators Probiotics |
| Title | Differential coping strategies exerted by biofilm and planktonic cells of the beneficial bacterium B. subtilis in response to the protozoan predator Entamoeba histolytica |
| URI | https://www.proquest.com/docview/3129237911 https://www.biorxiv.org/content/10.1101/2024.11.16.623985 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKCxI3fsXCsjIS4lKlpKnjJNdCF1YqJVqKVLhEceKiaNskpGnV8ki8Ci_FjJ2fSpUQHLhEjqvGluezPR7PzEfIS1AxmMuXwrBl6BmMu9IQQyEMaUpLOiziUFBkE85s5i4Wnt_p_KpjYXYrJ03d_d7L_6uooQ6EjaGz_yDu5qNQAWUQOjxB7PD8K8G_rShPykSl_si1waDOCKE4lkqtdooE-bo1R0a-CtObUtHhoC1_U_sOCFgLqyQTQid23q7740F_sxVlsko2Oh5G-dnKWo_F3A_ZjyxE7y8Z46m-P0nLcJ1JEeoEx6tDWfsIVYox9OV6n-ya9R_WZGQKM94pQoL-FXSv2UD8Qq4xmwq6iGyL7bcW4F8xSAdOATpKDU4JrZXjRofUf8Jo02NTh8Uw5k9HdmqPo2wFOriyd2KIE8yR_lTPFHRHOHZZgdXT4h4s9Zapr8zlad3p3qE4C7BdKA-GfMAxN6LdbpS1c8DsY3D5eToN5pPF_FX-3UAKM7zqr_hcbpGe5die1SW98WTmXzcmP8sD3UnlBW86Ut2zQ9OvTxqGExmMfQFjf6InKOVnfo_0_DCXxX3SkekDckezlx4ekp_HSKMaabRFGq2QRsWBVkijIB7aIo0qpNFsSQE1tEUabZBGxwNaI40mKa2RRstM_adBGq2RRhuk0SOkPSLzy8n8zXujov4wBAehy0gwN-SeI0wexctICJdJG0ZIcFuElilBLcVckdL0mG0LJGCzlrFnhiZjsTmKRo9JN81S-YRQJsPhUnBuYwx1PESvgJAJxzMl86RjyjPyohrlINf5XQKUBJyMgyEPtCTOyHk9_kE10zfBCDRla-SAsvD0zz8_I3dbMJ-Tblls5XNyO9qVyaa4qEBygU7HPrz5Vx_8L78BxY6uZg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+coping+strategies+exerted+by+biofilm+and+planktonic+cells+of+the+beneficial+bacterium+B.+subtilis+in+response+to+the+protozoan+predator+Entamoeba+histolytica&rft.jtitle=bioRxiv&rft.au=Kolodkin-Gal%2C+Ilana&rft.au=Prem+Anand+Murugan&rft.au=Zanditenas%2C+Eva&rft.au=Ankri%2C+Serge&rft.date=2024-11-17&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.11.16.623985&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |