Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue
The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal micro...
Gespeichert in:
| Veröffentlicht in: | Current drug targets Jg. 14; H. 11; S. 1225 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United Arab Emirates
01.10.2013
|
| Schlagworte: | |
| ISSN: | 1873-5592, 1873-5592 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders. |
|---|---|
| AbstractList | The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders. The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders.The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key features in the pathology of MDD. Astrocytes are the most numerous and versatile of all types of glial cells. They are crucial to the neuronal microenvironment by regulating glucose metabolism, neurotransmitter uptake (particularly for glutamate), synaptic development and maturation and the blood brain barrier. Pathology of astrocytes has been consistently noted in MDD as well as in rodent models of depressive-like behavior. This review summarizes evidence from human postmortem tissue showing alterations in the expression of protein and mRNA for astrocyte markers such as glial fibrillary acidic protein (GFAP), gap junction proteins (connexin 40 and 43), the water channel aquaporin-4 (AQP4), a calcium-binding protein S100B and glutamatergic markers including the excitatory amino acid transporters 1 and 2 (EAAT1, EAAT2) and glutamine synthetase. Moreover, preclinical studies are presented that demonstrate the involvement of GFAP and astrocytes in animal models of stress and depressive-like behavior and the influence of different classes of antidepressant medications on astrocytes. In light of the various astrocyte deficits noted in MDD, astrocytes may be novel targets for the action of antidepressant medications. Possible functional consequences of altered expression of astrocytic markers in MDD are also discussed. Finally, the unique pattern of cell pathology in MDD, characterized by prominent reductions in the density of astrocytes and in the expression of their markers without obvious neuronal loss, is contrasted with that found in other neuropsychiatric and neurodegenerative disorders. |
| Author | Stockmeier, Craig A Rajkowska, Grazyna |
| Author_xml | – sequence: 1 givenname: Grazyna surname: Rajkowska fullname: Rajkowska, Grazyna email: grajkowska@umc.edu organization: Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State St., Box 127, Jackson, MS 39216-4505, USA. grajkowska@umc.edu – sequence: 2 givenname: Craig A surname: Stockmeier fullname: Stockmeier, Craig A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23469922$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAYhIMouq7-A5EcvVT7Jk2aeFsWv2DBix6lJM3b3cqmqUkq7L93wRU8zcA8M4c5J8dDGJCQKyhvGdTVHXClK1ECAIdKa12CkEdkBqrmhRCaHf_zp-SM8UpqzdiMfCxSjqHdZaSjyZuwDesd7QfqzWeI1OEYMaX-G6nrU4gO4_0-Tf16kxPtYvB0M3kz0DGk7EPM6KmNZt_PfUoTXpCTzmwTXh50Tt4fH96Wz8Xq9elluVgVViiVC3BYWiiF6rpOqlZAK6ytOVqLkjlruspJ5STnrDNaAFphoJZGamMVMxWyObn53R1j-Jow5cb3qcXt1gwYptRAxaWQvOblHr0-oJP16Jox9t7EXfN3CfsBDuRlnA |
| CitedBy_id | crossref_primary_10_1038_s41598_021_98210_6 crossref_primary_10_1038_mp_2016_73 crossref_primary_10_1016_j_isci_2024_109787 crossref_primary_10_1042_EBC20220082 crossref_primary_10_1074_jbc_AC119_011190 crossref_primary_10_1111_cns_12222 crossref_primary_10_1038_s41398_019_0483_9 crossref_primary_10_1002_jnr_24611 crossref_primary_10_1038_mp_2017_49 crossref_primary_10_3390_cells13131144 crossref_primary_10_1016_j_bbii_2024_100081 crossref_primary_10_1097_YPG_0000000000000297 crossref_primary_10_1016_j_bbii_2025_100124 crossref_primary_10_1007_s12035_024_04205_5 crossref_primary_10_1016_j_neulet_2018_07_026 crossref_primary_10_3390_pharmaceutics14040846 crossref_primary_10_1016_j_neulet_2014_07_035 crossref_primary_10_3389_fnana_2025_1553056 crossref_primary_10_3390_biom10060947 crossref_primary_10_3389_fnbeh_2023_1239024 crossref_primary_10_3389_fncel_2015_00521 crossref_primary_10_1007_s00424_019_02310_2 crossref_primary_10_1016_j_pbb_2014_09_014 crossref_primary_10_1016_j_euroneuro_2020_03_015 crossref_primary_10_1016_j_tins_2024_08_015 crossref_primary_10_1016_j_bbi_2020_04_016 crossref_primary_10_1177_1073858413510208 crossref_primary_10_1016_j_jad_2013_11_025 crossref_primary_10_1159_000476035 crossref_primary_10_3390_ijms25179673 crossref_primary_10_1016_j_mehy_2019_109523 crossref_primary_10_1007_s00726_015_1936_y crossref_primary_10_1080_02699052_2022_2145362 crossref_primary_10_1016_j_physbeh_2016_04_007 crossref_primary_10_3389_fpsyt_2020_545823 crossref_primary_10_1111_bph_12614 crossref_primary_10_1016_j_pnpbp_2025_111455 crossref_primary_10_1016_j_bbadis_2021_166098 crossref_primary_10_1016_j_bbi_2019_07_012 crossref_primary_10_3389_fncel_2024_1521398 crossref_primary_10_3390_microorganisms13010067 crossref_primary_10_4252_wjsc_v17_i7_106194 crossref_primary_10_1016_j_phrs_2021_105909 crossref_primary_10_5498_wjp_v8_i2_51 crossref_primary_10_1016_j_neuropharm_2017_12_003 crossref_primary_10_3389_fnmol_2019_00136 crossref_primary_10_1016_j_ejphar_2024_176868 crossref_primary_10_1016_j_redox_2016_08_006 crossref_primary_10_1016_j_bbi_2021_05_007 crossref_primary_10_1007_s11064_014_1403_2 crossref_primary_10_1016_j_neuropharm_2018_06_029 crossref_primary_10_1007_s00221_015_4226_8 crossref_primary_10_1016_j_ejphar_2024_176693 crossref_primary_10_1002_smll_202502699 crossref_primary_10_1111_ejn_14900 crossref_primary_10_1093_hmg_ddw144 crossref_primary_10_1016_j_pnpbp_2015_08_005 crossref_primary_10_1016_j_nbd_2015_03_025 crossref_primary_10_1038_s41598_022_22688_x crossref_primary_10_3389_fnbeh_2020_00057 crossref_primary_10_1038_s41398_020_01000_3 crossref_primary_10_1177_1178646920978243 crossref_primary_10_1016_j_bcp_2022_114963 crossref_primary_10_1038_s41386_023_01617_0 crossref_primary_10_3390_ijms25020963 crossref_primary_10_1016_j_neuropharm_2017_11_013 crossref_primary_10_1016_j_bbih_2020_100143 crossref_primary_10_1016_j_bbr_2014_07_019 crossref_primary_10_1038_s41398_019_0493_7 crossref_primary_10_1038_s41398_021_01216_x crossref_primary_10_1016_j_bbr_2019_01_015 crossref_primary_10_3390_cells10061382 crossref_primary_10_3390_ijms22116138 crossref_primary_10_1002_jnr_23459 crossref_primary_10_1016_j_bbadis_2020_165884 crossref_primary_10_1038_s41419_019_1813_9 crossref_primary_10_1007_s12035_025_05013_1 crossref_primary_10_1016_j_yfrne_2022_100989 crossref_primary_10_1016_S1734_1140_13_71518_4 crossref_primary_10_1093_brain_awaa405 crossref_primary_10_1016_j_ijpharm_2023_123284 crossref_primary_10_1179_1476830514Y_0000000135 crossref_primary_10_1242_jcs_258430 crossref_primary_10_1016_j_pbb_2014_11_012 crossref_primary_10_1016_j_actbio_2020_12_013 crossref_primary_10_1016_j_neubiorev_2017_09_014 crossref_primary_10_1016_j_yfrne_2017_12_004 crossref_primary_10_1016_j_bpsc_2025_09_003 crossref_primary_10_1016_j_neuropharm_2019_107776 crossref_primary_10_1016_j_bbrc_2016_08_088 crossref_primary_10_1007_s00018_015_1937_8 crossref_primary_10_3390_jcm11010186 crossref_primary_10_1002_jnr_24989 crossref_primary_10_3390_ijms24086985 crossref_primary_10_1038_s41419_023_05839_4 crossref_primary_10_1016_j_neuropharm_2022_109252 crossref_primary_10_1371_journal_pone_0195726 crossref_primary_10_1016_j_bpsc_2019_04_003 crossref_primary_10_1002_dneu_22846 crossref_primary_10_1016_j_biopsych_2021_04_004 crossref_primary_10_1016_j_physbeh_2023_114353 crossref_primary_10_1080_15622975_2021_2013042 crossref_primary_10_1016_j_neuroscience_2014_11_035 crossref_primary_10_1016_j_neuroscience_2014_04_003 crossref_primary_10_3389_fnmol_2019_00331 crossref_primary_10_3389_fpsyt_2024_1449202 crossref_primary_10_1016_j_jpsychires_2022_12_004 crossref_primary_10_1016_j_phrs_2021_105957 crossref_primary_10_3390_ijms241813902 crossref_primary_10_1134_S207908642006002X crossref_primary_10_1007_s12035_021_02672_8 crossref_primary_10_1038_s41380_019_0589_8 crossref_primary_10_1016_j_neuropharm_2022_109383 crossref_primary_10_1073_pnas_2305772120 crossref_primary_10_1016_j_expneurol_2023_114501 crossref_primary_10_1038_s41392_023_01628_9 crossref_primary_10_3389_fnbeh_2021_780190 crossref_primary_10_3390_cells11193135 crossref_primary_10_3390_ijms22105343 crossref_primary_10_1016_j_neuroimage_2016_08_013 crossref_primary_10_1038_s41380_019_0433_1 crossref_primary_10_1007_s11010_021_04236_9 crossref_primary_10_1016_j_neuron_2019_03_013 crossref_primary_10_1016_j_nsa_2024_105406 crossref_primary_10_1016_j_bbi_2019_06_015 crossref_primary_10_1016_j_nbd_2018_10_013 crossref_primary_10_1016_j_jad_2023_12_068 crossref_primary_10_3390_metabo14080405 crossref_primary_10_1038_mp_2016_130 crossref_primary_10_1007_s12035_016_0148_0 crossref_primary_10_1177_0269881116661074 crossref_primary_10_1002_advs_202101181 crossref_primary_10_1002_glia_23143 crossref_primary_10_3390_ijms17081306 crossref_primary_10_1016_j_mehy_2013_11_016 crossref_primary_10_3389_fnbeh_2015_00025 crossref_primary_10_3390_ijms26167949 crossref_primary_10_1038_s41398_018_0183_x crossref_primary_10_1111_cpr_13295 crossref_primary_10_1016_j_euroneuro_2016_03_006 crossref_primary_10_1016_j_jchemneu_2015_10_008 crossref_primary_10_1038_npjschz_2015_28 crossref_primary_10_1093_cercor_bhaa174 crossref_primary_10_1016_j_conb_2017_10_025 crossref_primary_10_1016_j_mrfmmm_2014_12_005 crossref_primary_10_1007_s11064_022_03714_w crossref_primary_10_1038_s41582_025_01116_4 crossref_primary_10_3389_fnmol_2018_00407 crossref_primary_10_3390_ijms23094999 crossref_primary_10_1016_j_neuroscience_2016_11_038 crossref_primary_10_1016_j_jad_2022_01_038 crossref_primary_10_2147_NDT_S390053 crossref_primary_10_1155_2017_1960584 crossref_primary_10_1007_s12035_025_05152_5 crossref_primary_10_1016_S2215_0366_18_30048_8 crossref_primary_10_3390_molecules27031066 crossref_primary_10_1038_s41386_025_02200_5 crossref_primary_10_3389_fpsyt_2021_636174 crossref_primary_10_1002_glia_24573 crossref_primary_10_1111_jnc_70080 crossref_primary_10_1111_cns_70600 crossref_primary_10_1016_j_neuron_2025_05_023 crossref_primary_10_1038_npp_2013_297 crossref_primary_10_1016_j_pnpbp_2016_07_007 crossref_primary_10_2174_0929867325666180327103530 crossref_primary_10_1016_j_neuroscience_2015_12_044 crossref_primary_10_1016_j_phymed_2021_153792 crossref_primary_10_1007_s12217_023_10070_z crossref_primary_10_1002_advs_202205486 crossref_primary_10_1016_j_jpsychires_2017_12_011 crossref_primary_10_1016_j_jep_2021_114466 crossref_primary_10_1146_annurev_pharmtox_010617_052823 crossref_primary_10_1016_j_biopsych_2014_09_012 crossref_primary_10_1038_s41380_022_01657_w crossref_primary_10_1002_glia_23593 crossref_primary_10_1002_glia_24443 crossref_primary_10_1002_jnr_24803 crossref_primary_10_3389_fnagi_2024_1361847 crossref_primary_10_1093_ijnp_pyac016 crossref_primary_10_1007_s11064_020_03212_x crossref_primary_10_1212_WNL_0000000000213874 crossref_primary_10_3389_fncel_2015_00273 crossref_primary_10_1007_s11055_025_01777_0 crossref_primary_10_2147_IJN_S477482 crossref_primary_10_3389_fpsyt_2022_858675 crossref_primary_10_3389_fphys_2021_825816 crossref_primary_10_1124_jpet_115_225664 crossref_primary_10_1016_j_bpsgos_2021_10_002 crossref_primary_10_1016_j_nbd_2024_106417 crossref_primary_10_1016_j_pnpbp_2020_109908 crossref_primary_10_1007_s00441_014_1814_z crossref_primary_10_1016_j_pnpbp_2020_110086 crossref_primary_10_1016_j_bbi_2019_05_007 crossref_primary_10_1111_apha_13440 crossref_primary_10_3390_neuroglia6030024 crossref_primary_10_1093_ijnp_pyab052 crossref_primary_10_1007_s00441_022_03735_5 crossref_primary_10_1176_appi_ajp_2020_20081224 crossref_primary_10_1111_bpa_12537 crossref_primary_10_3389_fncel_2017_00116 crossref_primary_10_3390_ijms23031904 crossref_primary_10_3389_fpsyt_2024_1358578 crossref_primary_10_3390_molecules28134914 crossref_primary_10_1038_s41598_019_47459_z crossref_primary_10_1016_j_neuron_2022_01_033 crossref_primary_10_3389_fncel_2015_00495 crossref_primary_10_1016_j_biopsych_2017_05_013 crossref_primary_10_1016_j_drudis_2023_103518 crossref_primary_10_1016_j_euroneuro_2020_01_001 crossref_primary_10_1080_17512433_2025_2515866 crossref_primary_10_1016_j_bbi_2021_08_232 crossref_primary_10_1016_j_euroneuro_2019_09_004 crossref_primary_10_1016_j_phymed_2024_155387 crossref_primary_10_3389_fcell_2021_753279 crossref_primary_10_3389_fncel_2016_00008 crossref_primary_10_1016_j_yebeh_2017_12_038 crossref_primary_10_1007_s11064_025_04483_y crossref_primary_10_1080_17460441_2019_1575360 crossref_primary_10_3389_fpsyt_2019_00501 crossref_primary_10_1016_j_biopsych_2024_07_017 crossref_primary_10_1016_j_ajog_2019_06_013 crossref_primary_10_1503_jpn_220202 crossref_primary_10_1111_ejn_14547 crossref_primary_10_1134_S1819712421010074 crossref_primary_10_1073_pnas_2008004117 crossref_primary_10_3389_fncel_2015_00076 crossref_primary_10_1016_j_cellsig_2022_110359 crossref_primary_10_3389_fneur_2023_1254290 crossref_primary_10_1016_j_nbd_2022_105922 crossref_primary_10_1016_j_rpsmen_2022_06_008 crossref_primary_10_1016_j_jveb_2021_07_003 crossref_primary_10_1016_j_psychres_2020_113387 crossref_primary_10_1080_15592294_2020_1827718 crossref_primary_10_1016_j_bbr_2023_114729 crossref_primary_10_1097_WNR_0000000000001854 crossref_primary_10_1007_s00441_018_2849_3 crossref_primary_10_1007_s11064_020_03225_6 crossref_primary_10_1007_s00401_015_1513_1 crossref_primary_10_1038_s41598_021_97758_7 crossref_primary_10_1371_journal_pone_0115439 crossref_primary_10_1093_cercor_bhad166 crossref_primary_10_3389_fnbeh_2018_00240 crossref_primary_10_1016_j_pneurobio_2017_03_005 crossref_primary_10_3389_fncel_2017_00150 crossref_primary_10_1016_j_jad_2018_08_015 crossref_primary_10_1016_j_pneurobio_2025_102786 crossref_primary_10_1038_s41401_020_00576_2 crossref_primary_10_1007_s40473_025_00308_y crossref_primary_10_1186_1742_2094_10_142 crossref_primary_10_1016_j_nbd_2022_105926 crossref_primary_10_3389_fphar_2024_1424834 crossref_primary_10_1038_s41386_018_0105_x crossref_primary_10_4014_jmb_2412_12026 crossref_primary_10_1177_1759091417711512 crossref_primary_10_1038_s41401_022_00861_2 crossref_primary_10_54108_10115 crossref_primary_10_1016_j_cpet_2020_12_003 crossref_primary_10_1007_s12035_024_03912_3 crossref_primary_10_1016_j_biopha_2021_111556 crossref_primary_10_1038_s41392_024_01738_y crossref_primary_10_3389_fnins_2016_00492 crossref_primary_10_1038_s41380_021_01122_0 crossref_primary_10_1038_s41467_022_32556_x crossref_primary_10_3390_brainsci14060558 crossref_primary_10_1016_j_pneurobio_2025_102798 crossref_primary_10_1016_j_neures_2022_09_015 crossref_primary_10_1051_jbio_2020008 crossref_primary_10_1007_s00401_013_1223_5 crossref_primary_10_3390_brainsci12081024 crossref_primary_10_1155_2016_8056370 crossref_primary_10_3389_fncel_2015_00061 crossref_primary_10_1016_j_phrs_2024_107566 crossref_primary_10_1016_j_rpsm_2021_09_002 crossref_primary_10_1038_tp_2016_212 crossref_primary_10_3390_cells10102628 crossref_primary_10_1186_s12877_018_0836_x crossref_primary_10_1016_j_neuroscience_2015_01_007 crossref_primary_10_3389_fpsyt_2022_863734 crossref_primary_10_1016_j_jpsychires_2021_12_039 crossref_primary_10_1016_j_drudis_2023_103697 crossref_primary_10_1038_s41467_025_57924_1 crossref_primary_10_1016_j_bbrc_2024_149550 crossref_primary_10_1038_mp_2016_179 crossref_primary_10_1210_en_2016_1929 crossref_primary_10_1016_j_heliyon_2023_e18288 crossref_primary_10_1111_pcn_13596 crossref_primary_10_1016_j_isci_2023_106488 crossref_primary_10_3389_fncel_2019_00503 crossref_primary_10_1016_j_jep_2025_120218 crossref_primary_10_3390_ijms21176197 crossref_primary_10_1515_revneuro_2016_0063 crossref_primary_10_1186_s12974_015_0266_z crossref_primary_10_1016_j_ghres_2024_100004 crossref_primary_10_1016_j_bbi_2024_06_008 crossref_primary_10_1074_jbc_M114_622415 crossref_primary_10_1007_s12035_016_0082_1 crossref_primary_10_1016_j_neuroscience_2019_10_032 crossref_primary_10_3389_fnins_2023_1217451 crossref_primary_10_1016_j_neuroscience_2014_09_012 crossref_primary_10_3390_jcm11195914 crossref_primary_10_1002_bies_202400004 crossref_primary_10_1016_j_bpsgos_2023_04_003 crossref_primary_10_1111_acps_12730 crossref_primary_10_1016_j_jad_2023_06_028 crossref_primary_10_1016_j_pnpbp_2020_110139 crossref_primary_10_3389_fnint_2015_00067 crossref_primary_10_1016_j_neuroscience_2018_07_015 crossref_primary_10_1172_JCI99366 crossref_primary_10_1038_mp_2014_21 crossref_primary_10_1038_s41380_019_0505_2 crossref_primary_10_3390_ijms25126357 crossref_primary_10_1016_j_nicl_2022_103049 crossref_primary_10_1016_j_pnpbp_2015_04_004 crossref_primary_10_1016_j_tins_2023_01_005 crossref_primary_10_1007_s12035_018_1396_y crossref_primary_10_3389_fnins_2018_00547 crossref_primary_10_1016_j_bbi_2017_09_016 crossref_primary_10_1093_ije_dyu273 crossref_primary_10_1016_j_neuropharm_2017_01_031 crossref_primary_10_1016_j_neubiorev_2016_10_031 crossref_primary_10_1039_D3FO02651E crossref_primary_10_3390_life11060573 crossref_primary_10_1586_14737175_2015_1095094 crossref_primary_10_1038_s41386_019_0325_8 crossref_primary_10_1002_hbm_26485 crossref_primary_10_1002_kjm2_70091 crossref_primary_10_1371_journal_pone_0111110 crossref_primary_10_1007_s00406_021_01377_2 crossref_primary_10_3233_NIB_160109 crossref_primary_10_1111_ejn_15234 crossref_primary_10_1176_appi_ajp_2015_15020162 crossref_primary_10_3390_metabo15070485 crossref_primary_10_1016_j_phrs_2023_106833 crossref_primary_10_3389_fncel_2025_1538026 crossref_primary_10_1016_j_bbr_2025_115553 crossref_primary_10_1016_j_joim_2025_09_003 crossref_primary_10_1016_j_neubiorev_2020_07_039 crossref_primary_10_1038_s41380_020_00930_0 crossref_primary_10_1007_s12640_013_9423_2 crossref_primary_10_1111_gbb_12475 crossref_primary_10_2174_0929867327666200610175037 crossref_primary_10_1093_ijnp_pyz005 crossref_primary_10_1016_j_bcp_2017_02_010 crossref_primary_10_1016_j_pneurobio_2015_09_003 crossref_primary_10_1038_s41386_022_01338_w crossref_primary_10_1007_s11302_020_09752_9 crossref_primary_10_1016_j_neuropharm_2020_108158 crossref_primary_10_1111_pcn_13545 crossref_primary_10_1016_j_jpsychires_2024_01_007 crossref_primary_10_1016_j_eplepsyres_2015_05_005 crossref_primary_10_1016_j_jneuroim_2020_577367 crossref_primary_10_1016_j_pnpbp_2017_10_002 crossref_primary_10_1007_s00401_018_1902_3 crossref_primary_10_1016_j_jpsychires_2024_01_004 crossref_primary_10_1007_s12035_015_9182_6 crossref_primary_10_1097_FBP_0000000000000788 crossref_primary_10_1016_j_neubiorev_2023_105292 crossref_primary_10_1016_j_jaac_2015_01_019 crossref_primary_10_1016_j_jad_2021_08_098 crossref_primary_10_1016_j_pbb_2018_12_007 crossref_primary_10_1016_j_addicn_2022_100047 crossref_primary_10_3389_fphar_2022_1008249 crossref_primary_10_1093_ijnp_pyw071 crossref_primary_10_1016_j_neuron_2018_08_031 crossref_primary_10_1016_j_neubiorev_2017_02_004 crossref_primary_10_3390_nu16132049 crossref_primary_10_1177_0004867418796955 crossref_primary_10_1016_j_pnpbp_2018_08_008 crossref_primary_10_3389_fnins_2021_773404 crossref_primary_10_1038_npp_2016_199 crossref_primary_10_1016_j_jad_2024_08_217 crossref_primary_10_1002_hbm_26439 crossref_primary_10_3390_jpm11070597 crossref_primary_10_1155_2017_1719050 crossref_primary_10_3389_fnbeh_2022_987697 crossref_primary_10_3109_15622975_2014_952776 crossref_primary_10_1016_j_neulet_2018_06_033 crossref_primary_10_1016_j_bpsc_2016_11_006 crossref_primary_10_1176_appi_ajp_2014_14010067 crossref_primary_10_3389_fpsyt_2024_1470642 crossref_primary_10_3389_fpsyt_2021_546801 crossref_primary_10_1016_j_coph_2015_09_011 crossref_primary_10_1038_npp_2016_180 crossref_primary_10_3389_fnana_2016_00107 crossref_primary_10_3390_ijms252413658 crossref_primary_10_1016_j_neurol_2015_07_002 crossref_primary_10_1111_gbb_12649 crossref_primary_10_1038_mp_2013_182 crossref_primary_10_3389_fnmol_2018_00056 crossref_primary_10_3389_fnins_2023_1146946 crossref_primary_10_3389_fphys_2014_00193 crossref_primary_10_1038_s41398_024_03186_2 crossref_primary_10_1080_14737175_2018_1458612 crossref_primary_10_1177_2470547019850166 crossref_primary_10_1016_j_neuropharm_2015_08_005 crossref_primary_10_1039_C6FO00685J crossref_primary_10_2174_011570159X353752250227113751 crossref_primary_10_3390_ijms232113227 crossref_primary_10_1186_s13020_021_00519_x crossref_primary_10_1093_jnen_nlz113 crossref_primary_10_1016_j_jad_2025_04_064 crossref_primary_10_1016_j_neuropharm_2019_107914 crossref_primary_10_1016_j_neulet_2018_11_010 crossref_primary_10_1155_2021_8888841 crossref_primary_10_3389_fnins_2023_1223145 crossref_primary_10_1016_j_bbi_2022_12_014 crossref_primary_10_1016_j_brainresbull_2022_02_020 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.2174/13894501113149990156 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1873-5592 |
| ExternalDocumentID | 23469922 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: RR17701 – fundername: NCRR NIH HHS grantid: P20 RR017701 – fundername: NIGMS NIH HHS grantid: P30 GM103328 |
| GroupedDBID | CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-b588t-1de0b1058fff68c51c5bb73ebbe62dbaf4d68d6332fa951eb5a176a69ab82a4e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 456 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324805500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1873-5592 |
| IngestDate | Fri Jul 11 02:46:00 EDT 2025 Sat Nov 02 12:17:31 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b588t-1de0b1058fff68c51c5bb73ebbe62dbaf4d68d6332fa951eb5a176a69ab82a4e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 23469922 |
| PQID | 1436563730 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1436563730 pubmed_primary_23469922 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United Arab Emirates |
| PublicationPlace_xml | – name: United Arab Emirates |
| PublicationTitle | Current drug targets |
| PublicationTitleAlternate | Curr Drug Targets |
| PublicationYear | 2013 |
| Score | 2.568567 |
| SecondaryResourceType | review_article |
| Snippet | The present paper reviews astrocyte pathology in major depressive disorder (MDD) and proposes that reductions in astrocytes and related markers are key... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1225 |
| SubjectTerms | Aquaporin 4 - physiology Astrocytes - pathology Astrocytes - physiology Biomarkers - analysis Brain - metabolism Brain - pathology Connexins - physiology Depressive Disorder, Major - etiology Depressive Disorder, Major - pathology Glial Fibrillary Acidic Protein - physiology Humans Neurotransmitter Agents - physiology |
| Title | Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23469922 https://www.proquest.com/docview/1436563730 |
| Volume | 14 |
| WOSCitedRecordID | wos000324805500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDiA1_riwhey26TJk29yCIuHnTZg8JepCRNAgq267Yu-O-dSbt4EgQvvbQNZTrJfPP8CLnyXtgCOQAZOF9RIqyOMBkUSZ5ypmPLbBGGuD6kk4mazbJpF3Cru7LK1ZkYDmpbFRgjH4BdB-gBKwxv5h8RskZhdrWj0FgnPQ5QBku60lnoflMpjwAss7ZbDnH3AFNyiQjc6jHifGwi_h1XBvsy3vnvl-2S7Q5Z0lGrCntkzZX75GVUN2CivhpHkXs4xNDpa0nf9Vu1oKsy2KWjtpvCeQ13a3TYa4qdJzRw-NF5VTfvoSyXGuSUoE34XwfkeXz3dHsfdYwKkRFKNVFs3dAAolLee6kKERfCmJQ7Y5xk1mifWKms5Jx5DdDLGaHjVGqZaaOYThw7JBtlVbpjQmOVWXheC6ZlAj6HtgDTOQN7KLR3VvTJ5UpaOWgspiF06arPOv-RV58ctSLP5-1ojZxxcNczxk7-8PYp2WLITREq685Iz8N-dedks1iCDBYXQRXgOpk-fgMzZMDb |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocyte+pathology+in+major+depressive+disorder%3A+insights+from+human+postmortem+brain+tissue&rft.jtitle=Current+drug+targets&rft.au=Rajkowska%2C+Grazyna&rft.au=Stockmeier%2C+Craig+A&rft.date=2013-10-01&rft.issn=1873-5592&rft.eissn=1873-5592&rft.volume=14&rft.issue=11&rft.spage=1225&rft_id=info:doi/10.2174%2F13894501113149990156&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1873-5592&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1873-5592&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1873-5592&client=summon |