In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions

MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. H...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current genomics Ročník 14; číslo 2; s. 127
Hlavní autoři: Dweep, Harsh, Sticht, Carsten, Gretz, Norbert
Médium: Journal Article
Jazyk:angličtina
Vydáno: United Arab Emirates 01.04.2013
Témata:
ISSN:1389-2029
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.
AbstractList MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.
MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.
Author Dweep, Harsh
Gretz, Norbert
Sticht, Carsten
Author_xml – sequence: 1
  givenname: Harsh
  surname: Dweep
  fullname: Dweep, Harsh
  organization: Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
– sequence: 2
  givenname: Carsten
  surname: Sticht
  fullname: Sticht, Carsten
– sequence: 3
  givenname: Norbert
  surname: Gretz
  fullname: Gretz, Norbert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24082822$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtOwzAURL0oog_4AiTkJZvAteM69rJUPCpVgGhZhyS-bo0Su9jpgr-HCFiNdOZoFjMlIx88EnLB4JqzQtywXGkOXDOWMwEcAOYjMhloNuAxmab0AT-FKuCUjLkAxRXnE_K-8tnGta4JdNHuQnT9vkvUhkj7PdJNExG98zsaLH0JKbm6Rdq5JobXpwW9dd4M5cb1mGjlDd3u0UW68j3Gquld8OmMnNiqTXj-lzPydn-3XT5m6-eH1XKxzuq55H1mFEdZV3nBrDYgtWKsMBZVrg0yUYAtTGVNgUKYOlcC67kFK6UVEqDRRvIZufrdPcTwecTUl51LDbZt5TEcU8mEyHOtJQzq5Z96rDs05SG6ropf5f8r_BvcQmSP
CitedBy_id crossref_primary_10_1186_s12885_020_07331_0
crossref_primary_10_1186_s12967_021_02708_6
crossref_primary_10_1016_j_genrep_2019_100551
crossref_primary_10_3390_plants14030410
crossref_primary_10_3390_v17030399
crossref_primary_10_1186_1471_2105_15_174
crossref_primary_10_1016_j_leukres_2021_106643
crossref_primary_10_1016_j_intimp_2022_109318
crossref_primary_10_3389_fmicb_2016_00206
crossref_primary_10_1016_j_jab_2015_04_002
crossref_primary_10_1016_j_molmed_2014_05_006
crossref_primary_10_1016_j_ejmg_2023_104752
crossref_primary_10_1007_s12539_017_0223_x
crossref_primary_10_3389_fmolb_2025_1520101
crossref_primary_10_1093_nar_gkw1185
crossref_primary_10_12688_f1000research_10138_2
crossref_primary_10_12688_f1000research_10138_1
crossref_primary_10_1002_jso_25163
crossref_primary_10_1038_cddis_2014_389
crossref_primary_10_1093_nar_gkv1478
crossref_primary_10_4168_aair_2020_12_1_4
crossref_primary_10_1016_j_intimp_2020_107204
crossref_primary_10_1093_schbul_sbv139
crossref_primary_10_1016_j_biochi_2019_09_005
crossref_primary_10_1038_srep11106
crossref_primary_10_1016_j_biopha_2016_08_043
crossref_primary_10_1186_s12935_021_02002_x
crossref_primary_10_1016_j_ajpath_2014_12_022
crossref_primary_10_1016_j_icte_2021_03_001
crossref_primary_10_1007_s13277_014_2395_x
crossref_primary_10_1186_s12885_020_07088_6
crossref_primary_10_1186_s12943_018_0765_5
crossref_primary_10_3390_ijerph18115741
crossref_primary_10_1016_j_bbagrm_2018_02_001
crossref_primary_10_3390_cells12091339
crossref_primary_10_1016_j_compbiolchem_2019_107127
crossref_primary_10_1016_j_jbiotec_2016_03_028
crossref_primary_10_1016_j_envexpbot_2014_05_011
crossref_primary_10_1016_j_cbd_2020_100750
crossref_primary_10_3390_horticulturae9070808
crossref_primary_10_3389_fgene_2023_1235315
crossref_primary_10_3389_fgene_2018_00088
crossref_primary_10_3390_ijms24021628
crossref_primary_10_4137_CIN_S39369
crossref_primary_10_1016_j_ijbiomac_2021_04_089
crossref_primary_10_1016_j_prp_2024_155147
crossref_primary_10_1093_mutage_geu014
crossref_primary_10_1016_j_ins_2014_09_016
crossref_primary_10_1007_s13205_025_04401_7
crossref_primary_10_1016_j_virusres_2020_198275
ContentType Journal Article
DBID NPM
7X8
DOI 10.2174/1389202911314020005
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 24082822
Genre Journal Article
GroupedDBID ---
.5.
0R~
29F
2WC
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AOIJS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GH2
GX1
HYE
HZ~
IPNFZ
KCGFV
NPM
O9-
OK1
P2P
RIG
RPM
TR2
7X8
AFHZU
ID FETCH-LOGICAL-b562t-d82e6ba371f9d0698117dfe839de1470f7dafd7e44db384eb5f0f66f4600c9d62
IEDL.DBID 7X8
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317103900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-2029
IngestDate Fri Jul 11 08:53:18 EDT 2025
Thu Jan 02 23:11:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Promoter
microRNAs
UTR
CDS
Database
Prediction algorithm
Target prediction
miRWalk
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b562t-d82e6ba371f9d0698117dfe839de1470f7dafd7e44db384eb5f0f66f4600c9d62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.eurekaselect.com/article/49545
PMID 24082822
PQID 1443399606
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1443399606
pubmed_primary_24082822
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Current genomics
PublicationTitleAlternate Curr Genomics
PublicationYear 2013
References 18344688 - Cell Cycle. 2008 Mar 15;7(6):759-64
18542052 - Nat Biotechnol. 2008 Aug;26(8):941-6
18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53
16736023 - Nat Genet. 2006 Jun;38 Suppl:S8-13
16978421 - BMC Bioinformatics. 2006 Sep 18;7:411
17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
22135297 - Nucleic Acids Res. 2012 Jan;40(Database issue):D222-9
21286309 - Curr Genomics. 2010 Aug;11(5):311-25
19536157 - Nature. 2009 Jul 23;460(7254):479-86
18653886 - Science. 2008 Jul 25;321(5888):537-41
21037258 - Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7
11896390 - Nat Genet. 2002 Apr;30(4):363-4
16141076 - Science. 2005 Sep 2;309(5740):1577-81
17360662 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432-7
15738385 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4006-9
15652478 - Cell. 2005 Jan 14;120(1):21-4
17923084 - Cell. 2007 Oct 5;131(1):25-8
12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31
15372042 - Nature. 2004 Sep 16;431(7006):350-5
18426918 - RNA. 2008 Jun;14(6):1012-7
17893677 - Nat Genet. 2007 Oct;39(10):1278-84
21984948 - PLoS One. 2011;6(9):e25787
17204650 - Science. 2007 Jan 5;315(5808):97-100
19765283 - BMC Bioinformatics. 2009 Sep 18;10:295
21695135 - PLoS One. 2011;6(6):e20746
19336450 - Genome Res. 2009 Jul;19(7):1175-83
15014042 - Genes Dev. 2004 Mar 1;18(5):504-11
17085592 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17337-42
15131085 - Genes Dev. 2004 May 15;18(10):1165-78
21441354 - Mol Biol Evol. 2011 Sep;28(9):2421-4
17108354 - Nucleic Acids Res. 2007 Jan;35(Database issue):D149-55
15685193 - Nature. 2005 Feb 17;433(7027):769-73
22139918 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1016-22
15610730 - Mol Cell. 2004 Dec 22;16(6):861-5
23326503 - PLoS One. 2013;8(1):e53780
21605702 - J Biomed Inform. 2011 Oct;44(5):839-47
20620952 - Mol Cell. 2010 Jun 25;38(6):789-802
16458514 - Curr Biol. 2006 Mar 7;16(5):460-71
10329189 - J Mol Biol. 1999 May 21;288(5):911-40
12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
20888440 - N Biotechnol. 2010 Dec 31;27(6):734-8
19721809 - Curr Genomics. 2009 Mar;10(1):35-41
14744438 - Cell. 2004 Jan 23;116(2):281-97
22333591 - Cell Cycle. 2012 Mar 1;11(5):922-33
20799968 - Genome Biol. 2010;11(8):R90
18232104 - Pac Symp Biocomput. 2008;:64-74
18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10
18645597 - Curr Genomics. 2007 Jun;8(4):229-33
17535905 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9667-72
18852463 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16230-5
17592038 - RNA. 2007 Aug;13(8):1198-204
17135348 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18957-62
20547158 - FEBS Lett. 2010 Jul 16;584(14):3198-202
21966251 - Curr Genomics. 2011 Apr;12(2):130-7
21062822 - Nucleic Acids Res. 2011 Jan;39(Database issue):D158-62
14709173 - Genome Biol. 2003;5(1):R1
22321448 - BMC Res Notes. 2012 Feb 09;5:91
16141061 - Science. 2005 Sep 2;309(5740):1519-24
22223877 - J Am Soc Nephrol. 2012 Mar;23 (3):458-69
22343717 - Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7
15383676 - RNA. 2004 Oct;10(10):1507-17
8252621 - Cell. 1993 Dec 3;75(5):843-54
15854907 - Curr Biol. 2005 Apr 26;15(8):743-9
18806776 - Nature. 2008 Oct 23;455(7216):1124-8
16337999 - Cell. 2005 Dec 16;123(6):1133-46
18227514 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1608-13
14697198 - Cell. 2003 Dec 26;115(7):787-98
21532838 - Curr Genomics. 2010 Nov;11(7):537-61
18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104
20371350 - Cell. 2010 Apr 2;141(1):129-41
15806104 - Nat Genet. 2005 May;37(5):495-500
18955434 - Genome Res. 2009 Jan;19(1):92-105
17532529 - Drug Discov Today. 2007 Jun;12(11-12):452-8
15035981 - Cell. 2004 Mar 19;116(6):779-93
15652477 - Cell. 2005 Jan 14;120(1):15-20
18923704 - PLoS One. 2008;3(10):e3420
22549745 - Mol Neurobiol. 2012 Jun;45(3):520-35
15735639 - Nature. 2005 Mar 17;434(7031):338-45
21448463 - PLoS One. 2011 Mar 23;6(3):e18115
18472421 - Curr Biol. 2008 May 20;18(10):758-62
21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9
22371183 - Haematologica. 2012 Aug;97(8):1218-24
18197166 - Nat Rev Genet. 2008 Feb;9(2):102-14
15502875 - PLoS Biol. 2004 Nov;2(11):e363
16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34
16009126 - Cell. 2005 Jul 15;122(1):6-7
22319602 - PLoS One. 2012;7(2):e31021
19440450 - Curr Genomics. 2008 Apr;9(2):97-109
20089154 - Genome Biol. 2010 Jan 20;11(1):R6
18029362 - Nucleic Acids Res. 2008 Jan;36(Database issue):D165-9
18668040 - Nature. 2008 Sep 4;455(7209):58-63
16990141 - Cell. 2006 Sep 22;126(6):1203-17
References_xml – reference: 16141061 - Science. 2005 Sep 2;309(5740):1519-24
– reference: 18029362 - Nucleic Acids Res. 2008 Jan;36(Database issue):D165-9
– reference: 16978421 - BMC Bioinformatics. 2006 Sep 18;7:411
– reference: 21062822 - Nucleic Acids Res. 2011 Jan;39(Database issue):D158-62
– reference: 22223877 - J Am Soc Nephrol. 2012 Mar;23 (3):458-69
– reference: 14709173 - Genome Biol. 2003;5(1):R1
– reference: 18653886 - Science. 2008 Jul 25;321(5888):537-41
– reference: 15014042 - Genes Dev. 2004 Mar 1;18(5):504-11
– reference: 10329189 - J Mol Biol. 1999 May 21;288(5):911-40
– reference: 18542052 - Nat Biotechnol. 2008 Aug;26(8):941-6
– reference: 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53
– reference: 22549745 - Mol Neurobiol. 2012 Jun;45(3):520-35
– reference: 21605702 - J Biomed Inform. 2011 Oct;44(5):839-47
– reference: 17204650 - Science. 2007 Jan 5;315(5808):97-100
– reference: 15652478 - Cell. 2005 Jan 14;120(1):21-4
– reference: 15383676 - RNA. 2004 Oct;10(10):1507-17
– reference: 18227514 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1608-13
– reference: 19440450 - Curr Genomics. 2008 Apr;9(2):97-109
– reference: 20799968 - Genome Biol. 2010;11(8):R90
– reference: 22319602 - PLoS One. 2012;7(2):e31021
– reference: 19721809 - Curr Genomics. 2009 Mar;10(1):35-41
– reference: 21037258 - Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7
– reference: 17923084 - Cell. 2007 Oct 5;131(1):25-8
– reference: 19536157 - Nature. 2009 Jul 23;460(7254):479-86
– reference: 15372042 - Nature. 2004 Sep 16;431(7006):350-5
– reference: 16736023 - Nat Genet. 2006 Jun;38 Suppl:S8-13
– reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41
– reference: 20620952 - Mol Cell. 2010 Jun 25;38(6):789-802
– reference: 22321448 - BMC Res Notes. 2012 Feb 09;5:91
– reference: 18232104 - Pac Symp Biocomput. 2008;:64-74
– reference: 21695135 - PLoS One. 2011;6(6):e20746
– reference: 18923704 - PLoS One. 2008;3(10):e3420
– reference: 22343717 - Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7
– reference: 16337999 - Cell. 2005 Dec 16;123(6):1133-46
– reference: 22135297 - Nucleic Acids Res. 2012 Jan;40(Database issue):D222-9
– reference: 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9
– reference: 20547158 - FEBS Lett. 2010 Jul 16;584(14):3198-202
– reference: 20089154 - Genome Biol. 2010 Jan 20;11(1):R6
– reference: 17108354 - Nucleic Acids Res. 2007 Jan;35(Database issue):D149-55
– reference: 15610730 - Mol Cell. 2004 Dec 22;16(6):861-5
– reference: 20888440 - N Biotechnol. 2010 Dec 31;27(6):734-8
– reference: 18472421 - Curr Biol. 2008 May 20;18(10):758-62
– reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105
– reference: 19336450 - Genome Res. 2009 Jul;19(7):1175-83
– reference: 15652477 - Cell. 2005 Jan 14;120(1):15-20
– reference: 14697198 - Cell. 2003 Dec 26;115(7):787-98
– reference: 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34
– reference: 18668040 - Nature. 2008 Sep 4;455(7209):58-63
– reference: 21448463 - PLoS One. 2011 Mar 23;6(3):e18115
– reference: 22371183 - Haematologica. 2012 Aug;97(8):1218-24
– reference: 17532529 - Drug Discov Today. 2007 Jun;12(11-12):452-8
– reference: 15131085 - Genes Dev. 2004 May 15;18(10):1165-78
– reference: 21532838 - Curr Genomics. 2010 Nov;11(7):537-61
– reference: 18955434 - Genome Res. 2009 Jan;19(1):92-105
– reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17
– reference: 21286309 - Curr Genomics. 2010 Aug;11(5):311-25
– reference: 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104
– reference: 17135348 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18957-62
– reference: 15035981 - Cell. 2004 Mar 19;116(6):779-93
– reference: 16141076 - Science. 2005 Sep 2;309(5740):1577-81
– reference: 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10
– reference: 22333591 - Cell Cycle. 2012 Mar 1;11(5):922-33
– reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84
– reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363
– reference: 12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
– reference: 16458514 - Curr Biol. 2006 Mar 7;16(5):460-71
– reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97
– reference: 22139918 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1016-22
– reference: 21984948 - PLoS One. 2011;6(9):e25787
– reference: 18426918 - RNA. 2008 Jun;14(6):1012-7
– reference: 17360662 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432-7
– reference: 18645597 - Curr Genomics. 2007 Jun;8(4):229-33
– reference: 18852463 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16230-5
– reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45
– reference: 17085592 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17337-42
– reference: 15738385 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4006-9
– reference: 15854907 - Curr Biol. 2005 Apr 26;15(8):743-9
– reference: 21966251 - Curr Genomics. 2011 Apr;12(2):130-7
– reference: 16009126 - Cell. 2005 Jul 15;122(1):6-7
– reference: 21441354 - Mol Biol Evol. 2011 Sep;28(9):2421-4
– reference: 23326503 - PLoS One. 2013;8(1):e53780
– reference: 19765283 - BMC Bioinformatics. 2009 Sep 18;10:295
– reference: 17535905 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9667-72
– reference: 15685193 - Nature. 2005 Feb 17;433(7027):769-73
– reference: 18806776 - Nature. 2008 Oct 23;455(7216):1124-8
– reference: 8252621 - Cell. 1993 Dec 3;75(5):843-54
– reference: 18344688 - Cell Cycle. 2008 Mar 15;7(6):759-64
– reference: 15806104 - Nat Genet. 2005 May;37(5):495-500
– reference: 18197166 - Nat Rev Genet. 2008 Feb;9(2):102-14
– reference: 17592038 - RNA. 2007 Aug;13(8):1198-204
– reference: 12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31
– reference: 11896390 - Nat Genet. 2002 Apr;30(4):363-4
SSID ssj0020870
Score 2.2418127
SecondaryResourceType review_article
Snippet MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 127
Title In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/24082822
https://www.proquest.com/docview/1443399606
Volume 14
WOSCitedRecordID wos000317103900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8MwGMCDOgUvvh_zRQSvZWmbJc1Jpjj0YBluwm6zaRIdbO20U_C_9_vaTk-C4KWHQEgJX5Lf9ybkArSewDAdeJorhwqK8JLUpJ5LrAil0oDIumw2IeM4Gg5Vrza4FXVY5eJOLC9qk6doI28B-IchlhIRl7NXD7tGoXe1bqGxTBohoAxKtRx-exECFskqSxgjeVigqqpDCOEtHMMh3w99VKEYa__OmOVb0938719ukY2aMmmnEottsmSzHbJW9Z383CVPd5nXH09ACGhn8gzz5y_TggK-UsBB2k8xFgeeNJo72svx0EwsnWLk3kPcoVfjMhGG9mHJgiaZoQN0NtDStlilSRR75LF7M7i-9epWC54GAJp7Jgqs0EkofacMEwrTT42zQE_G-lwyJ03ijLScGx1G3Oq2Y04Ix4GXUmVEsE9Wsjyzh4Sm2rcGqDLRQvJU-do6xbSvIg7oEWreJOeLrRuBKKN_Isls_l6MfjavSQ6q_R_NqpobI6zEhhGvR3-YfUzWg7JpBcbXnJCGg4NsT8lq-jEfF29npYzAN-7dfwGZzsV5
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Silico+Algorithms+for+the+Screening+of+Possible+microRNA+Binding+Sites+and+Their+Interactions&rft.jtitle=Current+genomics&rft.au=Dweep%2C+Harsh&rft.au=Sticht%2C+Carsten&rft.au=Gretz%2C+Norbert&rft.date=2013-04-01&rft.issn=1389-2029&rft.volume=14&rft.issue=2&rft.spage=127&rft_id=info:doi/10.2174%2F1389202911314020005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon