In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions
MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. H...
Gespeichert in:
| Veröffentlicht in: | Current genomics Jg. 14; H. 2; S. 127 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United Arab Emirates
01.04.2013
|
| Schlagworte: | |
| ISSN: | 1389-2029 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed.MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed. MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by base-pairing with the transcripts of their targets i.e. protein-coding genes, leading to down-regulation or repression of the target genes. However, target gene activation has also been described. miRNAs are involved in diverse regulatory pathways, including control of developmental timing, apoptosis, cell proliferation, cell differentiation, modulation of immune response to macrophages, and organ development and are associated with many diseases, such as cancer. Computational prediction of miRNA targets is much more challenging in animals than in plants, because animal miRNAs often perform imperfect base-pairing with their target sites, unlike plant miRNAs which almost always bind their targets with near perfect complementarity. In the past years, a large number of target prediction programs and databases on experimentally validated information have been developed for animal miRNAs to fulfil the need of experimental scientists conducting miRNA research. In this review we first succinctly describe the prediction criteria (rules or principles) adapted by prediction algorithms to generate possible miRNA binding site interactions and introduce most relevant algorithms, and databases. We then summarize their applications with the help of some previously published studies. We further provide experimentally validated functional binding sites outside 3'-UTR region of target mRNAs and the resources which offer such predictions. Finally, the issue of experimental validation of miRNA binding sites will be briefly discussed. |
| Author | Dweep, Harsh Gretz, Norbert Sticht, Carsten |
| Author_xml | – sequence: 1 givenname: Harsh surname: Dweep fullname: Dweep, Harsh organization: Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany – sequence: 2 givenname: Carsten surname: Sticht fullname: Sticht, Carsten – sequence: 3 givenname: Norbert surname: Gretz fullname: Gretz, Norbert |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24082822$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kMtOwzAURL0oog_4AiTkJZvAteM69rJUPCpVgGhZhyS-bo0Su9jpgr-HCFiNdOZoFjMlIx88EnLB4JqzQtywXGkOXDOWMwEcAOYjMhloNuAxmab0AT-FKuCUjLkAxRXnE_K-8tnGta4JdNHuQnT9vkvUhkj7PdJNExG98zsaLH0JKbm6Rdq5JobXpwW9dd4M5cb1mGjlDd3u0UW68j3Gquld8OmMnNiqTXj-lzPydn-3XT5m6-eH1XKxzuq55H1mFEdZV3nBrDYgtWKsMBZVrg0yUYAtTGVNgUKYOlcC67kFK6UVEqDRRvIZufrdPcTwecTUl51LDbZt5TEcU8mEyHOtJQzq5Z96rDs05SG6ropf5f8r_BvcQmSP |
| CitedBy_id | crossref_primary_10_1186_s12885_020_07331_0 crossref_primary_10_1186_s12967_021_02708_6 crossref_primary_10_1016_j_genrep_2019_100551 crossref_primary_10_3390_plants14030410 crossref_primary_10_3390_v17030399 crossref_primary_10_1186_1471_2105_15_174 crossref_primary_10_1016_j_leukres_2021_106643 crossref_primary_10_1016_j_intimp_2022_109318 crossref_primary_10_3389_fmicb_2016_00206 crossref_primary_10_1016_j_jab_2015_04_002 crossref_primary_10_1016_j_molmed_2014_05_006 crossref_primary_10_1016_j_ejmg_2023_104752 crossref_primary_10_1007_s12539_017_0223_x crossref_primary_10_3389_fmolb_2025_1520101 crossref_primary_10_1093_nar_gkw1185 crossref_primary_10_12688_f1000research_10138_2 crossref_primary_10_12688_f1000research_10138_1 crossref_primary_10_1002_jso_25163 crossref_primary_10_1038_cddis_2014_389 crossref_primary_10_1093_nar_gkv1478 crossref_primary_10_4168_aair_2020_12_1_4 crossref_primary_10_1016_j_intimp_2020_107204 crossref_primary_10_1093_schbul_sbv139 crossref_primary_10_1016_j_biochi_2019_09_005 crossref_primary_10_1038_srep11106 crossref_primary_10_1016_j_biopha_2016_08_043 crossref_primary_10_1186_s12935_021_02002_x crossref_primary_10_1016_j_ajpath_2014_12_022 crossref_primary_10_1016_j_icte_2021_03_001 crossref_primary_10_1007_s13277_014_2395_x crossref_primary_10_1186_s12885_020_07088_6 crossref_primary_10_1186_s12943_018_0765_5 crossref_primary_10_3390_ijerph18115741 crossref_primary_10_1016_j_bbagrm_2018_02_001 crossref_primary_10_3390_cells12091339 crossref_primary_10_1016_j_compbiolchem_2019_107127 crossref_primary_10_1016_j_jbiotec_2016_03_028 crossref_primary_10_1016_j_envexpbot_2014_05_011 crossref_primary_10_1016_j_cbd_2020_100750 crossref_primary_10_3390_horticulturae9070808 crossref_primary_10_3389_fgene_2023_1235315 crossref_primary_10_3389_fgene_2018_00088 crossref_primary_10_3390_ijms24021628 crossref_primary_10_4137_CIN_S39369 crossref_primary_10_1016_j_ijbiomac_2021_04_089 crossref_primary_10_1016_j_prp_2024_155147 crossref_primary_10_1093_mutage_geu014 crossref_primary_10_1016_j_ins_2014_09_016 crossref_primary_10_1007_s13205_025_04401_7 crossref_primary_10_1016_j_virusres_2020_198275 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.2174/1389202911314020005 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| ExternalDocumentID | 24082822 |
| Genre | Journal Article |
| GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV NPM O9- OK1 P2P RIG RPM TR2 7X8 AFHZU |
| ID | FETCH-LOGICAL-b562t-d82e6ba371f9d0698117dfe839de1470f7dafd7e44db384eb5f0f66f4600c9d62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317103900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-2029 |
| IngestDate | Fri Jul 11 08:53:18 EDT 2025 Thu Jan 02 23:11:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Promoter microRNAs UTR CDS Database Prediction algorithm Target prediction miRWalk |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b562t-d82e6ba371f9d0698117dfe839de1470f7dafd7e44db384eb5f0f66f4600c9d62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.eurekaselect.com/article/49545 |
| PMID | 24082822 |
| PQID | 1443399606 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1443399606 pubmed_primary_24082822 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-01 |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United Arab Emirates |
| PublicationPlace_xml | – name: United Arab Emirates |
| PublicationTitle | Current genomics |
| PublicationTitleAlternate | Curr Genomics |
| PublicationYear | 2013 |
| References | 18344688 - Cell Cycle. 2008 Mar 15;7(6):759-64 18542052 - Nat Biotechnol. 2008 Aug;26(8):941-6 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53 16736023 - Nat Genet. 2006 Jun;38 Suppl:S8-13 16978421 - BMC Bioinformatics. 2006 Sep 18;7:411 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 22135297 - Nucleic Acids Res. 2012 Jan;40(Database issue):D222-9 21286309 - Curr Genomics. 2010 Aug;11(5):311-25 19536157 - Nature. 2009 Jul 23;460(7254):479-86 18653886 - Science. 2008 Jul 25;321(5888):537-41 21037258 - Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7 11896390 - Nat Genet. 2002 Apr;30(4):363-4 16141076 - Science. 2005 Sep 2;309(5740):1577-81 17360662 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432-7 15738385 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4006-9 15652478 - Cell. 2005 Jan 14;120(1):21-4 17923084 - Cell. 2007 Oct 5;131(1):25-8 12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31 15372042 - Nature. 2004 Sep 16;431(7006):350-5 18426918 - RNA. 2008 Jun;14(6):1012-7 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 21984948 - PLoS One. 2011;6(9):e25787 17204650 - Science. 2007 Jan 5;315(5808):97-100 19765283 - BMC Bioinformatics. 2009 Sep 18;10:295 21695135 - PLoS One. 2011;6(6):e20746 19336450 - Genome Res. 2009 Jul;19(7):1175-83 15014042 - Genes Dev. 2004 Mar 1;18(5):504-11 17085592 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17337-42 15131085 - Genes Dev. 2004 May 15;18(10):1165-78 21441354 - Mol Biol Evol. 2011 Sep;28(9):2421-4 17108354 - Nucleic Acids Res. 2007 Jan;35(Database issue):D149-55 15685193 - Nature. 2005 Feb 17;433(7027):769-73 22139918 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1016-22 15610730 - Mol Cell. 2004 Dec 22;16(6):861-5 23326503 - PLoS One. 2013;8(1):e53780 21605702 - J Biomed Inform. 2011 Oct;44(5):839-47 20620952 - Mol Cell. 2010 Jun 25;38(6):789-802 16458514 - Curr Biol. 2006 Mar 7;16(5):460-71 10329189 - J Mol Biol. 1999 May 21;288(5):911-40 12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 20888440 - N Biotechnol. 2010 Dec 31;27(6):734-8 19721809 - Curr Genomics. 2009 Mar;10(1):35-41 14744438 - Cell. 2004 Jan 23;116(2):281-97 22333591 - Cell Cycle. 2012 Mar 1;11(5):922-33 20799968 - Genome Biol. 2010;11(8):R90 18232104 - Pac Symp Biocomput. 2008;:64-74 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10 18645597 - Curr Genomics. 2007 Jun;8(4):229-33 17535905 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9667-72 18852463 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16230-5 17592038 - RNA. 2007 Aug;13(8):1198-204 17135348 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18957-62 20547158 - FEBS Lett. 2010 Jul 16;584(14):3198-202 21966251 - Curr Genomics. 2011 Apr;12(2):130-7 21062822 - Nucleic Acids Res. 2011 Jan;39(Database issue):D158-62 14709173 - Genome Biol. 2003;5(1):R1 22321448 - BMC Res Notes. 2012 Feb 09;5:91 16141061 - Science. 2005 Sep 2;309(5740):1519-24 22223877 - J Am Soc Nephrol. 2012 Mar;23 (3):458-69 22343717 - Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7 15383676 - RNA. 2004 Oct;10(10):1507-17 8252621 - Cell. 1993 Dec 3;75(5):843-54 15854907 - Curr Biol. 2005 Apr 26;15(8):743-9 18806776 - Nature. 2008 Oct 23;455(7216):1124-8 16337999 - Cell. 2005 Dec 16;123(6):1133-46 18227514 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1608-13 14697198 - Cell. 2003 Dec 26;115(7):787-98 21532838 - Curr Genomics. 2010 Nov;11(7):537-61 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104 20371350 - Cell. 2010 Apr 2;141(1):129-41 15806104 - Nat Genet. 2005 May;37(5):495-500 18955434 - Genome Res. 2009 Jan;19(1):92-105 17532529 - Drug Discov Today. 2007 Jun;12(11-12):452-8 15035981 - Cell. 2004 Mar 19;116(6):779-93 15652477 - Cell. 2005 Jan 14;120(1):15-20 18923704 - PLoS One. 2008;3(10):e3420 22549745 - Mol Neurobiol. 2012 Jun;45(3):520-35 15735639 - Nature. 2005 Mar 17;434(7031):338-45 21448463 - PLoS One. 2011 Mar 23;6(3):e18115 18472421 - Curr Biol. 2008 May 20;18(10):758-62 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9 22371183 - Haematologica. 2012 Aug;97(8):1218-24 18197166 - Nat Rev Genet. 2008 Feb;9(2):102-14 15502875 - PLoS Biol. 2004 Nov;2(11):e363 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34 16009126 - Cell. 2005 Jul 15;122(1):6-7 22319602 - PLoS One. 2012;7(2):e31021 19440450 - Curr Genomics. 2008 Apr;9(2):97-109 20089154 - Genome Biol. 2010 Jan 20;11(1):R6 18029362 - Nucleic Acids Res. 2008 Jan;36(Database issue):D165-9 18668040 - Nature. 2008 Sep 4;455(7209):58-63 16990141 - Cell. 2006 Sep 22;126(6):1203-17 |
| References_xml | – reference: 16141061 - Science. 2005 Sep 2;309(5740):1519-24 – reference: 18029362 - Nucleic Acids Res. 2008 Jan;36(Database issue):D165-9 – reference: 16978421 - BMC Bioinformatics. 2006 Sep 18;7:411 – reference: 21062822 - Nucleic Acids Res. 2011 Jan;39(Database issue):D158-62 – reference: 22223877 - J Am Soc Nephrol. 2012 Mar;23 (3):458-69 – reference: 14709173 - Genome Biol. 2003;5(1):R1 – reference: 18653886 - Science. 2008 Jul 25;321(5888):537-41 – reference: 15014042 - Genes Dev. 2004 Mar 1;18(5):504-11 – reference: 10329189 - J Mol Biol. 1999 May 21;288(5):911-40 – reference: 18542052 - Nat Biotechnol. 2008 Aug;26(8):941-6 – reference: 18158296 - Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53 – reference: 22549745 - Mol Neurobiol. 2012 Jun;45(3):520-35 – reference: 21605702 - J Biomed Inform. 2011 Oct;44(5):839-47 – reference: 17204650 - Science. 2007 Jan 5;315(5808):97-100 – reference: 15652478 - Cell. 2005 Jan 14;120(1):21-4 – reference: 15383676 - RNA. 2004 Oct;10(10):1507-17 – reference: 18227514 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1608-13 – reference: 19440450 - Curr Genomics. 2008 Apr;9(2):97-109 – reference: 20799968 - Genome Biol. 2010;11(8):R90 – reference: 22319602 - PLoS One. 2012;7(2):e31021 – reference: 19721809 - Curr Genomics. 2009 Mar;10(1):35-41 – reference: 21037258 - Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7 – reference: 17923084 - Cell. 2007 Oct 5;131(1):25-8 – reference: 19536157 - Nature. 2009 Jul 23;460(7254):479-86 – reference: 15372042 - Nature. 2004 Sep 16;431(7006):350-5 – reference: 16736023 - Nat Genet. 2006 Jun;38 Suppl:S8-13 – reference: 20371350 - Cell. 2010 Apr 2;141(1):129-41 – reference: 20620952 - Mol Cell. 2010 Jun 25;38(6):789-802 – reference: 22321448 - BMC Res Notes. 2012 Feb 09;5:91 – reference: 18232104 - Pac Symp Biocomput. 2008;:64-74 – reference: 21695135 - PLoS One. 2011;6(6):e20746 – reference: 18923704 - PLoS One. 2008;3(10):e3420 – reference: 22343717 - Nat Struct Mol Biol. 2012 Feb 12;19(3):321-7 – reference: 16337999 - Cell. 2005 Dec 16;123(6):1133-46 – reference: 22135297 - Nucleic Acids Res. 2012 Jan;40(Database issue):D222-9 – reference: 21071411 - Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9 – reference: 20547158 - FEBS Lett. 2010 Jul 16;584(14):3198-202 – reference: 20089154 - Genome Biol. 2010 Jan 20;11(1):R6 – reference: 17108354 - Nucleic Acids Res. 2007 Jan;35(Database issue):D149-55 – reference: 15610730 - Mol Cell. 2004 Dec 22;16(6):861-5 – reference: 20888440 - N Biotechnol. 2010 Dec 31;27(6):734-8 – reference: 18472421 - Curr Biol. 2008 May 20;18(10):758-62 – reference: 17612493 - Mol Cell. 2007 Jul 6;27(1):91-105 – reference: 19336450 - Genome Res. 2009 Jul;19(7):1175-83 – reference: 15652477 - Cell. 2005 Jan 14;120(1):15-20 – reference: 14697198 - Cell. 2003 Dec 26;115(7):787-98 – reference: 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34 – reference: 18668040 - Nature. 2008 Sep 4;455(7209):58-63 – reference: 21448463 - PLoS One. 2011 Mar 23;6(3):e18115 – reference: 22371183 - Haematologica. 2012 Aug;97(8):1218-24 – reference: 17532529 - Drug Discov Today. 2007 Jun;12(11-12):452-8 – reference: 15131085 - Genes Dev. 2004 May 15;18(10):1165-78 – reference: 21532838 - Curr Genomics. 2010 Nov;11(7):537-61 – reference: 18955434 - Genome Res. 2009 Jan;19(1):92-105 – reference: 16990141 - Cell. 2006 Sep 22;126(6):1203-17 – reference: 21286309 - Curr Genomics. 2010 Aug;11(5):311-25 – reference: 18927107 - Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104 – reference: 17135348 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18957-62 – reference: 15035981 - Cell. 2004 Mar 19;116(6):779-93 – reference: 16141076 - Science. 2005 Sep 2;309(5740):1577-81 – reference: 18996891 - Nucleic Acids Res. 2009 Jan;37(Database issue):D105-10 – reference: 22333591 - Cell Cycle. 2012 Mar 1;11(5):922-33 – reference: 17893677 - Nat Genet. 2007 Oct;39(10):1278-84 – reference: 15502875 - PLoS Biol. 2004 Nov;2(11):e363 – reference: 12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 – reference: 16458514 - Curr Biol. 2006 Mar 7;16(5):460-71 – reference: 14744438 - Cell. 2004 Jan 23;116(2):281-97 – reference: 22139918 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1016-22 – reference: 21984948 - PLoS One. 2011;6(9):e25787 – reference: 18426918 - RNA. 2008 Jun;14(6):1012-7 – reference: 17360662 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3432-7 – reference: 18645597 - Curr Genomics. 2007 Jun;8(4):229-33 – reference: 18852463 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16230-5 – reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45 – reference: 17085592 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17337-42 – reference: 15738385 - Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4006-9 – reference: 15854907 - Curr Biol. 2005 Apr 26;15(8):743-9 – reference: 21966251 - Curr Genomics. 2011 Apr;12(2):130-7 – reference: 16009126 - Cell. 2005 Jul 15;122(1):6-7 – reference: 21441354 - Mol Biol Evol. 2011 Sep;28(9):2421-4 – reference: 23326503 - PLoS One. 2013;8(1):e53780 – reference: 19765283 - BMC Bioinformatics. 2009 Sep 18;10:295 – reference: 17535905 - Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9667-72 – reference: 15685193 - Nature. 2005 Feb 17;433(7027):769-73 – reference: 18806776 - Nature. 2008 Oct 23;455(7216):1124-8 – reference: 8252621 - Cell. 1993 Dec 3;75(5):843-54 – reference: 18344688 - Cell Cycle. 2008 Mar 15;7(6):759-64 – reference: 15806104 - Nat Genet. 2005 May;37(5):495-500 – reference: 18197166 - Nat Rev Genet. 2008 Feb;9(2):102-14 – reference: 17592038 - RNA. 2007 Aug;13(8):1198-204 – reference: 12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31 – reference: 11896390 - Nat Genet. 2002 Apr;30(4):363-4 |
| SSID | ssj0020870 |
| Score | 2.2418127 |
| SecondaryResourceType | review_article |
| Snippet | MicroRNAs (miRNAs) comprise a recently discovered class of small, non-coding RNA molecules of 21-25 nucleotides in length that regulate the gene expression by... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 127 |
| Title | In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24082822 https://www.proquest.com/docview/1443399606 |
| Volume | 14 |
| WOSCitedRecordID | wos000317103900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCDOgUvfn_MLyJ4DUvTtGlPMsWhoGW4KbvNtkl0sLXTTsH_3vfaTk-C4KWHQEh5fUl-fZ-EnCVKaCALybw0FQz41rAkVCmTjhZWhDq2pSn78VZFUTAYhN3a4FbUYZXzM7E8qHWeoo28BeDvulhKxD-fvjLsGoXe1bqFxiJpuIAyqNVq8O1FEDxQVZYwRvJwEVZVhxDCWziGQ47jOvgLxbn3O2OWd01n_b9vuUHWasqk7UotNsmCybbIStV38nObPN1krDcagxLQ9vgZ5s9eJgUFfKWAg7SXYiwOXGk0t7Sb46YZGzrByL37qE0vRmUiDO3BkgWNM0376GygpW2xSpModshD56p_ec3qVgssAQCaMR0I4yexqxwbau6HmH6qrQF60saRilsFX00rI6VO3ECaxLPc-r6VwEtpqH2xS5ayPDP7hHJldACawYEEJEBxaHTMg9ikwnhYmqdJTueiG4Iqo38izkz-Xgx_hNcke5X8h9Oq5sYQK7FhxOvBH2YfklVRNq3A-Joj0rCwkc0xWU4_ZqPi7aTUEXhG3bsvEDvFaQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-Silico+Algorithms+for+the+Screening+of+Possible+microRNA+Binding+Sites+and+Their+Interactions&rft.jtitle=Current+genomics&rft.au=Dweep%2C+Harsh&rft.au=Sticht%2C+Carsten&rft.au=Gretz%2C+Norbert&rft.date=2013-04-01&rft.issn=1389-2029&rft.volume=14&rft.issue=2&rft.spage=127&rft_id=info:doi/10.2174%2F1389202911314020005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |