Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients

Background/aimsHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the En...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:British journal of ophthalmology Ročník 105; číslo 5; s. 723 - 728
Hlavní autoři: Heydon, Peter, Egan, Catherine, Bolter, Louis, Chambers, Ryan, Anderson, John, Aldington, Steve, Stratton, Irene M, Scanlon, Peter Henry, Webster, Laura, Mann, Samantha, du Chemin, Alain, Owen, Christopher G, Tufail, Adnan, Rudnicka, Alicja Regina
Médium: Journal Article
Jazyk:angličtina
Vydáno: England BMJ Publishing Group LTD 01.05.2021
BMJ Publishing Group
Témata:
ISSN:0007-1161, 1468-2079, 1468-2079
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background/aimsHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard.MethodsRetinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard.ResultsSensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy.ConclusionThe algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.
AbstractList Human grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard.BACKGROUND/AIMSHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard.Retinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard.METHODSRetinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard.Sensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy.RESULTSSensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy.The algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.CONCLUSIONThe algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.
Background/aimsHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard.MethodsRetinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard.ResultsSensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy.ConclusionThe algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.
Background/aimsHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard.MethodsRetinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard.ResultsSensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy.ConclusionThe algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.
Human grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of diabetes. We evaluate the performance of an automated artificial intelligence (AI) algorithm to triage retinal images from the English Diabetic Eye Screening Programme (DESP) into test-positive/technical failure versus test-negative, using human grading following a standard national protocol as the reference standard. Retinal images from 30 405 consecutive screening episodes from three English DESPs were manually graded following a standard national protocol and by an automated process with machine learning enabled software, EyeArt v2.1. Screening performance (sensitivity, specificity) and diagnostic accuracy (95% CIs) were determined using human grades as the reference standard. Sensitivity (95% CIs) of EyeArt was 95.7% (94.8% to 96.5%) for referable retinopathy (human graded ungradable, referable maculopathy, moderate-to-severe non-proliferative or proliferative). This comprises sensitivities of 98.3% (97.3% to 98.9%) for mild-to-moderate non-proliferative retinopathy with referable maculopathy, 100% (98.7%,100%) for moderate-to-severe non-proliferative retinopathy and 100% (97.9%,100%) for proliferative disease. EyeArt agreed with the human grade of no retinopathy (specificity) in 68% (67% to 69%), with a specificity of 54.0% (53.4% to 54.5%) when combined with non-referable retinopathy. The algorithm demonstrated safe levels of sensitivity for high-risk retinopathy in a real-world screening service, with specificity that could halve the workload for human graders. AI machine learning and deep learning algorithms such as this can provide clinically equivalent, rapid detection of retinopathy, particularly in settings where a trained workforce is unavailable or where large-scale and rapid results are needed.
Author Bolter, Louis
Mann, Samantha
Stratton, Irene M
Scanlon, Peter Henry
Tufail, Adnan
Aldington, Steve
Rudnicka, Alicja Regina
Owen, Christopher G
du Chemin, Alain
Anderson, John
Chambers, Ryan
Heydon, Peter
Webster, Laura
Egan, Catherine
AuthorAffiliation 3 Homerton University Hospital NHS Trust , London , UK
5 Guy’s and Saint Thomas’ NHS Foundation Trust , London , UK
6 Population Health Research Institute, St George’s, University of London , London , UK
1 Moorfields Biomedical Research Centre, Moorfields Eye Hospital , London , UK
2 Institute of Ophthalmology, UCL , London , UK
4 Gloucestershire Hospitals NHS Foundation Trust , Cheltenham , UK
AuthorAffiliation_xml – name: 5 Guy’s and Saint Thomas’ NHS Foundation Trust , London , UK
– name: 3 Homerton University Hospital NHS Trust , London , UK
– name: 2 Institute of Ophthalmology, UCL , London , UK
– name: 1 Moorfields Biomedical Research Centre, Moorfields Eye Hospital , London , UK
– name: 4 Gloucestershire Hospitals NHS Foundation Trust , Cheltenham , UK
– name: 6 Population Health Research Institute, St George’s, University of London , London , UK
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0001-7029-4188
  surname: Heydon
  fullname: Heydon, Peter
  email: arudnick@sgul.ac.uk
  organization: Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
– sequence: 2
  givenname: Catherine
  surname: Egan
  fullname: Egan, Catherine
  email: arudnick@sgul.ac.uk
  organization: Institute of Ophthalmology, UCL, London, UK
– sequence: 3
  givenname: Louis
  surname: Bolter
  fullname: Bolter, Louis
  email: arudnick@sgul.ac.uk
  organization: Homerton University Hospital NHS Trust, London, UK
– sequence: 4
  givenname: Ryan
  surname: Chambers
  fullname: Chambers, Ryan
  email: arudnick@sgul.ac.uk
  organization: Homerton University Hospital NHS Trust, London, UK
– sequence: 5
  givenname: John
  surname: Anderson
  fullname: Anderson, John
  email: arudnick@sgul.ac.uk
  organization: Homerton University Hospital NHS Trust, London, UK
– sequence: 6
  givenname: Steve
  surname: Aldington
  fullname: Aldington, Steve
  email: arudnick@sgul.ac.uk
  organization: Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
– sequence: 7
  givenname: Irene M
  surname: Stratton
  fullname: Stratton, Irene M
  email: arudnick@sgul.ac.uk
  organization: Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
– sequence: 8
  givenname: Peter Henry
  orcidid: 0000-0001-8513-710X
  surname: Scanlon
  fullname: Scanlon, Peter Henry
  email: arudnick@sgul.ac.uk
  organization: Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
– sequence: 9
  givenname: Laura
  surname: Webster
  fullname: Webster, Laura
  email: arudnick@sgul.ac.uk
  organization: Guy’s and Saint Thomas’ NHS Foundation Trust, London, UK
– sequence: 10
  givenname: Samantha
  surname: Mann
  fullname: Mann, Samantha
  email: arudnick@sgul.ac.uk
  organization: Guy’s and Saint Thomas’ NHS Foundation Trust, London, UK
– sequence: 11
  givenname: Alain
  surname: du Chemin
  fullname: du Chemin, Alain
  email: arudnick@sgul.ac.uk
  organization: Guy’s and Saint Thomas’ NHS Foundation Trust, London, UK
– sequence: 12
  givenname: Christopher G
  orcidid: 0000-0003-1135-5977
  surname: Owen
  fullname: Owen, Christopher G
  email: arudnick@sgul.ac.uk
  organization: Population Health Research Institute, St George’s, University of London, London, UK
– sequence: 13
  givenname: Adnan
  surname: Tufail
  fullname: Tufail, Adnan
  email: arudnick@sgul.ac.uk
  organization: Institute of Ophthalmology, UCL, London, UK
– sequence: 14
  givenname: Alicja Regina
  orcidid: 0000-0003-0369-8574
  surname: Rudnicka
  fullname: Rudnicka, Alicja Regina
  email: arudnick@sgul.ac.uk
  organization: Population Health Research Institute, St George’s, University of London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32606081$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAQtVAR3RZ-AVniwiVgO4njXJBQRQGpEkhwt8bOZNcrx14cZ6V-Ab_Bt_Bl9bItlJ56seWZN2_eeN4ZOQkxICGUszec1_Kt2cbdJm_AT9FXgglW1Vy2ffOErHgjVQl1_QlZMca6inPJT8nZPG_LU0jePSOntZBMMsVX5OfXFOcd2uz2SHEPfoHsYqBxpBAopOxGZx146kJG790ag8UKAxiPAwW_jsnlzUTHmCgsOU6QS3xwYDA7S1M5Q9xB3lzT2SbE4ML6QF6z37-KHlpSDkOen5OnI_gZX9ze5-Tb5YfvF5-qqy8fP1-8v6pM04tcDaaDtjZW9HYclVVtVys7CuzN0I-ybQRC147cDIDD2ABCbRBb26uG8U7U5-TdkXW3mAkHWzon8HqX3ATpWkdw-v9McBu9jnutWNcJLgvB61uCFH8sOGc9udmWj4GAcZm1aHjfcKkUK9BXD6DbuKRQhtOi5VJ2nDNVUC_vK_or5W5D_yTbsqg54aity392VAQ6rznTB0vo-5bQB0vooyUKgXpAcNfjEaX1sdRM28dX3QB9odbD
CitedBy_id crossref_primary_10_1038_s41433_024_03085_2
crossref_primary_10_3390_jcm14145150
crossref_primary_10_1016_j_ajo_2024_02_012
crossref_primary_10_1007_s11042_023_14963_4
crossref_primary_10_2196_53741
crossref_primary_10_1089_tmj_2022_0113
crossref_primary_10_1007_s11596_021_2474_3
crossref_primary_10_1038_s41746_024_01032_9
crossref_primary_10_4103_tjo_TJO_D_24_00064
crossref_primary_10_1007_s00125_021_05617_x
crossref_primary_10_4103_ijo_IJO_1569_22
crossref_primary_10_1016_j_landig_2024_12_004
crossref_primary_10_1038_s41433_023_02717_3
crossref_primary_10_1111_aos_17591
crossref_primary_10_1007_s00592_022_01941_9
crossref_primary_10_1136_bmjopen_2023_075558
crossref_primary_10_1186_s12938_025_01336_1
crossref_primary_10_3389_fendo_2022_1079217
crossref_primary_10_3390_jcm14134810
crossref_primary_10_5662_wjm_v15_i4_107166
crossref_primary_10_1038_s41598_023_38610_y
crossref_primary_10_2337_dci23_0032
crossref_primary_10_1186_s13098_024_01447_0
crossref_primary_10_1038_s41598_021_94178_5
crossref_primary_10_1186_s40942_024_00547_3
crossref_primary_10_1111_opo_13435
crossref_primary_10_3389_fendo_2022_1032144
crossref_primary_10_5114_amsad_183420
crossref_primary_10_1080_07853890_2024_2352018
crossref_primary_10_1002_ima_23213
crossref_primary_10_1007_s12530_022_09427_3
crossref_primary_10_1093_jamia_ocad094
crossref_primary_10_3389_fcell_2024_1473176
crossref_primary_10_3389_fdgth_2025_1608266
crossref_primary_10_1136_bjo_2023_324097
crossref_primary_10_3389_fpubh_2022_1025271
crossref_primary_10_1007_s40123_023_00688_y
crossref_primary_10_1177_24741264241247602
crossref_primary_10_1177_09691413221144382
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1002_pdi_2505
crossref_primary_10_3390_jcm11174945
crossref_primary_10_4103_ojo_ojo_27_22
crossref_primary_10_1016_j_cjca_2024_07_028
crossref_primary_10_1007_s40123_024_01086_8
crossref_primary_10_1038_s43856_024_00590_z
crossref_primary_10_1080_09286586_2024_2434738
crossref_primary_10_4103_sjopt_sjopt_153_23
crossref_primary_10_2196_52073
crossref_primary_10_3389_fmed_2025_1567159
crossref_primary_10_1111_ceo_14173
crossref_primary_10_1111_dme_15055
crossref_primary_10_3389_fcell_2025_1576465
crossref_primary_10_3390_ijtm1030020
crossref_primary_10_1136_bmjophth_2023_001491
crossref_primary_10_1177_11795514241235514
crossref_primary_10_1186_s12886_024_03306_y
crossref_primary_10_2147_OPTH_S267521
crossref_primary_10_2196_50568
crossref_primary_10_1177_11206721211023725
crossref_primary_10_1007_s11892_022_01467_y
crossref_primary_10_1177_19322968231194644
crossref_primary_10_1001_jamaophthalmol_2022_1175
crossref_primary_10_1016_j_compbiomed_2021_104599
crossref_primary_10_1136_bjo_2023_323395
crossref_primary_10_3928_1081597X_20240131_01
crossref_primary_10_1167_iovs_65_10_10
crossref_primary_10_1038_s41433_022_02217_w
crossref_primary_10_1016_j_xops_2025_100707
crossref_primary_10_1007_s40123_023_00691_3
crossref_primary_10_1007_s00125_025_06379_6
crossref_primary_10_2337_dci24_0001
crossref_primary_10_4103_ijo_IJO_1075_21
crossref_primary_10_1016_j_diabres_2024_111964
crossref_primary_10_1016_j_bspc_2024_106885
crossref_primary_10_1080_00051144_2023_2251231
crossref_primary_10_1007_s42600_023_00320_9
crossref_primary_10_1016_j_asoc_2022_109462
crossref_primary_10_1089_tmj_2022_0489
crossref_primary_10_1177_19322968211042665
crossref_primary_10_2196_52506
crossref_primary_10_3390_jcm11206199
crossref_primary_10_1001_jamaophthalmol_2023_4508
crossref_primary_10_3390_jcm12041284
crossref_primary_10_7759_cureus_55745
crossref_primary_10_1136_bmj_n1872
crossref_primary_10_3390_medicina60020243
crossref_primary_10_1136_bmjopen_2024_094343
crossref_primary_10_1038_s41433_022_02190_4
Cites_doi 10.1089/dia.2019.0164
10.1007/s11892-019-1189-3
10.1016/j.ophtha.2016.11.014
10.1038/s41746-018-0040–6
10.1159/000486284
10.1177/1932296816628546
10.1016/j.ophtha.2017.08.046
10.1001/jama.298.8.902
10.1111/dme.13053
10.1038/s41591-018-0107-6
10.3310/hta20920
10.1001/jama.2016.17216
10.1016/S0161-6420(13)38014-2
10.1038/s41591-018-0107-6
10.1001/jama.298.8.902
10.1111/dme.13053
10.1016/j.ophtha.2017.08.046
10.1001/jama.2016.17216
10.3310/hta20220
10.1007/s11892-019-1189-3
10.1177/1932296816628546
10.1016/S0161-6420(13)38014-2
10.1016/j.ophtha.2016.11.014
10.1038/s41746-018-0040-6
10.1159/000486284
10.1089/dia.2019.0164
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
Copyright_xml – notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
DBID 9YT
ACMMV
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1136/bjophthalmol-2020-316594
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest One Academic Middle East (New)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1468-2079
EndPage 728
ExternalDocumentID PMC8077216
32606081
10_1136_bjophthalmol_2020_316594
bjophthalmol
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: NIHR200152
GroupedDBID ---
-~X
.55
.GJ
.VT
0R~
18M
23N
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
8FI
8FJ
8R4
8R5
9YT
AAHLL
AAKAS
AAOJX
AAWJN
ABAAH
ABJNI
ABKDF
ABMQD
ABTFR
ABUWG
ABVAJ
ACCCW
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACMMV
ACNCT
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FYUFA
H13
HAJ
HMCUK
HYE
HZ~
IAO
IEA
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
W8F
WH7
WOQ
X7M
XOL
YFH
YQY
ZGI
AAFWJ
AAYXX
ACQHZ
AERUA
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-b492t-db7a53bc29cff8c85738cf2e9bd9f6542ea75f1bdaedf4aea3bee5c98401723
IEDL.DBID 7X7
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642451300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1161
1468-2079
IngestDate Tue Nov 04 01:55:31 EST 2025
Sun Nov 09 12:06:49 EST 2025
Tue Oct 07 07:26:40 EDT 2025
Thu Apr 03 07:01:52 EDT 2025
Sat Nov 29 03:06:06 EST 2025
Tue Nov 18 20:23:07 EST 2025
Thu Apr 24 23:09:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Treatment Medical
Clinical Trial
Telemedicine
Imaging
Diagnostic tests/Investigation
Retina
Degeneration
Medical Education
Epidemiology
Public health
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b492t-db7a53bc29cff8c85738cf2e9bd9f6542ea75f1bdaedf4aea3bee5c98401723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0369-8574
0000-0001-7029-4188
0000-0001-8513-710X
0000-0003-1135-5977
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8077216
PMID 32606081
PQID 2516671108
PQPubID 2041039
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8077216
proquest_miscellaneous_2419416880
proquest_journals_2516671108
pubmed_primary_32606081
crossref_citationtrail_10_1136_bjophthalmol_2020_316594
crossref_primary_10_1136_bjophthalmol_2020_316594
bmj_primary_10_1136_bjophthalmol_2020_316594
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationTitle British journal of ophthalmology
PublicationTitleAlternate Br J Ophthalmol
PublicationYear 2021
Publisher BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Lee, Taylor, Kalpathy-Cramer 2017; 124
De Fauw, Ledsam, Romera-Paredes 2018; 24
Norgaard, Grauslund 2018; 60
Tufail, Rudisill, Egan 2017; 124
1991; 98
Gulshan, Peng, Coram 2016; 316
Zachariah, Wykes, Yorston 2015; 28
Lam, Yi, Guo 2018; 2017
Tufail, Kapetanakis, Salas-Vega 2016; 20
Bhaskaranand, Ramachandra, Bhat 2019; 21
Bhaskaranand, Ramachandra, Bhat 2016; 10
Abramoff, Lavin, Birch 2018; 1
Mohamed, Gillies, Wong 2007; 298
Oke, Stratton, Aldington 2016; 33
Bellemo, Lim, Rim 2019; 19
Oke (2021042208101370000_105.5.723.11) 2016; 33
2021042208101370000_105.5.723.9
Zachariah (2021042208101370000_105.5.723.15) 2015; 28
Lam (2021042208101370000_105.5.723.21) 2018; 2017
De Fauw (2021042208101370000_105.5.723.22) 2018; 24
2021042208101370000_105.5.723.19
2021042208101370000_105.5.723.18
Lee (2021042208101370000_105.5.723.3) 2017; 124
2021042208101370000_105.5.723.14
2021042208101370000_105.5.723.16
Bhaskaranand (2021042208101370000_105.5.723.17) 2019; 21
2021042208101370000_105.5.723.10
Bellemo (2021042208101370000_105.5.723.12) 2019; 19
2021042208101370000_105.5.723.13
2021042208101370000_105.5.723.23
2021042208101370000_105.5.723.7
2021042208101370000_105.5.723.8
2021042208101370000_105.5.723.5
2021042208101370000_105.5.723.20
2021042208101370000_105.5.723.6
2021042208101370000_105.5.723.4
2021042208101370000_105.5.723.1
2021042208101370000_105.5.723.2
References_xml – volume: 21
  start-page: 635
  year: 2019
  article-title: The value of automated diabetic retinopathy screening with the EyeArt system: a study of more than 100,000 consecutive encounters from people with diabetes
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2019.0164
– volume: 28
  start-page: s22
  year: 2015
  article-title: The Scottish Diabetic Retinopathy Screening programme
  publication-title: Community Eye Health
– volume: 19
  start-page: 72
  year: 2019
  article-title: Artificial intelligence screening for diabetic retinopathy: the real-world emerging application
  publication-title: Curr Diab Rep
  doi: 10.1007/s11892-019-1189-3
– volume: 124
  start-page: 343
  year: 2017
  article-title: Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.11.014
– volume: 1
  year: 2018
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: npj Digit Med
  doi: 10.1038/s41746-018-0040–6
– volume: 60
  start-page: 9
  year: 2018
  article-title: Automated screening for diabetic retinopathy - a systematic review
  publication-title: Ophthalmic Res
  doi: 10.1159/000486284
– volume: 10
  start-page: 254
  year: 2016
  article-title: Automated diabetic retinopathy screening and monitoring using retinal fundus image analysis
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/1932296816628546
– volume: 124
  start-page: 1726
  year: 2017
  article-title: Machine learning has arrived!
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.08.046
– volume: 298
  start-page: 902
  year: 2007
  article-title: Management of diabetic retinopathy: a systematic review
  publication-title: JAMA
  doi: 10.1001/jama.298.8.902
– volume: 33
  start-page: 896
  year: 2016
  article-title: The use of statistical methodology to determine the accuracy of grading within a diabetic retinopathy screening programme
  publication-title: Diabet Med
  doi: 10.1111/dme.13053
– volume: 24
  start-page: 1342
  year: 2018
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– volume: 20
  start-page: 1
  year: 2016
  article-title: An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness
  publication-title: Health Technol Assess
  doi: 10.3310/hta20920
– volume: 316
  start-page: 2402
  year: 2016
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 2017
  start-page: 147
  year: 2018
  article-title: Automated detection of diabetic retinopathy using deep learning
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 98
  start-page: 823
  year: 1991
  article-title: Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12.
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(13)38014-2
– ident: 2021042208101370000_105.5.723.9
– ident: 2021042208101370000_105.5.723.7
– ident: 2021042208101370000_105.5.723.8
– volume: 24
  start-page: 1342
  year: 2018
  ident: 2021042208101370000_105.5.723.22
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– ident: 2021042208101370000_105.5.723.1
  doi: 10.1001/jama.298.8.902
– volume: 33
  start-page: 896
  year: 2016
  ident: 2021042208101370000_105.5.723.11
  article-title: The use of statistical methodology to determine the accuracy of grading within a diabetic retinopathy screening programme
  publication-title: Diabet Med
  doi: 10.1111/dme.13053
– volume: 124
  start-page: 1726
  year: 2017
  ident: 2021042208101370000_105.5.723.3
  article-title: Machine learning has arrived!
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.08.046
– ident: 2021042208101370000_105.5.723.14
– ident: 2021042208101370000_105.5.723.2
– ident: 2021042208101370000_105.5.723.16
  doi: 10.1001/jama.2016.17216
– ident: 2021042208101370000_105.5.723.5
  doi: 10.3310/hta20220
– volume: 19
  start-page: 72
  year: 2019
  ident: 2021042208101370000_105.5.723.12
  article-title: Artificial intelligence screening for diabetic retinopathy: the real-world emerging application
  publication-title: Curr Diab Rep
  doi: 10.1007/s11892-019-1189-3
– ident: 2021042208101370000_105.5.723.18
– ident: 2021042208101370000_105.5.723.19
– volume: 2017
  start-page: 147
  year: 2018
  ident: 2021042208101370000_105.5.723.21
  article-title: Automated detection of diabetic retinopathy using deep learning
  publication-title: AMIA Jt Summits Transl Sci Proc
– ident: 2021042208101370000_105.5.723.4
  doi: 10.1177/1932296816628546
– volume: 28
  start-page: s22
  year: 2015
  ident: 2021042208101370000_105.5.723.15
  article-title: The Scottish Diabetic Retinopathy Screening programme
  publication-title: Community Eye Health
– ident: 2021042208101370000_105.5.723.10
  doi: 10.1016/S0161-6420(13)38014-2
– ident: 2021042208101370000_105.5.723.23
– ident: 2021042208101370000_105.5.723.6
  doi: 10.1016/j.ophtha.2016.11.014
– ident: 2021042208101370000_105.5.723.20
  doi: 10.1038/s41746-018-0040-6
– ident: 2021042208101370000_105.5.723.13
  doi: 10.1159/000486284
– volume: 21
  start-page: 635
  year: 2019
  ident: 2021042208101370000_105.5.723.17
  article-title: The value of automated diabetic retinopathy screening with the EyeArt system: a study of more than 100,000 consecutive encounters from people with diabetes
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2019.0164
SSID ssj0002617
Score 2.6447072
SecondaryResourceType review_article
Snippet Background/aimsHuman grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing...
Human grading of digital images from diabetic retinopathy (DR) screening programmes represents a significant challenge, due to the increasing prevalence of...
SourceID pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 723
SubjectTerms Algorithms
Artificial intelligence
Automation
Clinical Science
Cost analysis
Diabetes
Diabetic retinopathy
Epidemiology
Machine learning
Medical diagnosis
Patient care planning
Public health
Software upgrading
Telemedicine
Title Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients
URI https://bjo.bmj.com/content/105/5/723.full
https://www.ncbi.nlm.nih.gov/pubmed/32606081
https://www.proquest.com/docview/2516671108
https://www.proquest.com/docview/2419416880
https://pubmed.ncbi.nlm.nih.gov/PMC8077216
Volume 105
WOSCitedRecordID wos000642451300021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250609
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: 7X7
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250609
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: BENPR
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuwghIR7Lq7CsjMQRa9M6ieMTArQrDlBVwKG3yHZs2lWblDZF4g_wu5lxHtuChFbikkPsxElmMv7GnvkG4JUnjjevBI9TY3hsYsVVYTMulM2KxGJLFBKFP8rxOJtO1aRdcNu0YZWdTQyGuqgsrZGf4TycppKC1t-svnOqGkW7q20JjQM4orLZpOdy2jtcgW28gb-SDxHadJE8Ij0zl9VqVs_0YlktUFNCGnGaUOniA7O83J-k_kKefwZQ7sxIF_f-913uw90Wi7K3jfI8gBuuPIZbn9rd9mO406zpsSZV6SH8mqyrLjOTXdGEs8ozXTLSwYaOgs13eD65C9lZBdOLb_gM9WzJECczva0rBMt4vln9xWEon7KsqETyT4bGDB1snFbp5iJi-HFZSwG7eQRfLs6_vv_A2zoOHEU_qnlhpE6EsSNlvc9slkiRWT9yyhTKU8Esp2Xih6bQrvCxdloY5xKr0PdEeCUew2FZle4psDiJrEF8aqh2eVxgVxnryAkhvUI3NRnAaxRevmp4OvLg34g035V1TrLOG1kPQHZSzm3LiE6FORbXuHLYX3n90U46ZchbO7HJrzRhAC_7ZvzDadtGl67aYp94qBA2o6EdwJNG7_pBEXxHKaI6fJU9jew7EHv4fks5nwUW8SySRNz07N-P9RxujyiKJ4R4nsBhvd66F3DT_qjnm_Vp-N3CMTuFo3fn48nn31OpOZA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQES4lFegQKLBLeu6nhtr_eAEAKqVk2jSvSQE9buek1SJXZIHFD_AL-GH8mMH2kCEuqlB67etdePb2fnW898A_A6I423TAkeRMbwwASKq9TGXCgbp6HFFq9KFO7Jfj8eDNTJBvxqc2EorLK1iZWhTgtLe-R7uA5HkaSg9XfTb5yqRtHf1baERg2LI3f-Aynb_O3hR_y-b3x__9PphwPeVBXgeCN-yVMjdSiM9ZXNstjGoRSxzXynTKoyKt_ktAyzrkm1S7NAOy2Mc6FVyIRwsRd41U24hlZcEtWTgyW9q7TNa2db8i46Um3ckIj2zFkxHZZDPZ4UY8RllbQchVQoedNMztaXxL_83D_DNVfWv_27_9ebuwd3Gj-bva8nxn3YcPk23DhuIgm24Xa9X8nqNKwH8PNkVrRZp-xCAp0VGdM5o_lVS22w0YqGKXdV5lnK9PgrPnE5nDDkAEwvygKJAB6vd7ZxGMoVzQsq_3zO0FA7R9tRdHHhMfyUrJG3nT-Ez1fwTh7BVl7k7gmwIPSsQd_bUF32IMWuMtCeE0JmCil42IFdhEoyrTVIkoq7iShZRVZCyEpqZHVAtphKbKP2TkVHxpc4s7s88_Kj7bTQSxobOE8ucNeBV8tmtF70S0rnrlhgn6CrkBLgItKBxzXKl4MisfAi9FjxUdbwv-xAyujrLfloWCmkx54kUaqn_76tl3Dz4PS4l_QO-0fP4JZP0UpVKOsObJWzhXsO1-33cjSfvagmOoMvVzs7fgOmnJab
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7aOjQhTVzGYIUBRoI3rKZxEscPCAFbxbRRVcDDnohsx6ad2qS0KWh_gN_Ez-M4l64FCe1lD7zGTpzLd27OOd8BeG4dx5sVjAaRUjRQgaAi1TFlQsdpqHHEKwuFT3m_H5-dicEG_GpqYVxaZaMTS0Wd5trtkXfQDkcRd0nrHVunRQwOe6-n36jrIOX-tDbtNCqInJiLHxi-zV8dH-K3fuH7vaPP797TusMAxZvyC5oqLkOmtC-0tbGOQ85ibX0jVCqsa-VkJA9tV6XSpDaQRjJlTKgFRkVo-BledRO2OLoYQQu23h71Bx-XVsAxnVeuN6dddKuaLCIWddR5Ph0WQzme5GNEaVnCHIWubfKmmpyvG8i_vN4_kzdXrGHv9v_7Hu_ArdoDJ28qkbkLGybbhe0PdY7BLuxUO5mkKtC6Bz8Hs7ypRyWX5Ogkt0RmxEleRcJBRivsptSUNWkpkeOv-MTFcEIwOiByUeQYIuDxas8bl3FVpFnuGkNfEFThxriNKndx5hH8rKQmvp3vwadreCf3oZXlmdkHEoSeVuiVK9exPUhxKg-kZxjjVmBwHrbhJcImmVbsJEkZ1bEoWUVZ4lCWVChrA2_wleiaB961Ixlf4czu8syrr3bQwDCpteM8ucRgG54th1GvuZ9VMjP5AucEXYHBApqXNjyoEL9cFEMOL0JfFh9lTRaWExxn-vpINhqW3Omxxx1d1cN_39ZT2EahSE6P-yeP4Kbv0pjKHNcDaBWzhXkMN_T3YjSfPamlnsCX6xWP35jsoLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospective+evaluation+of+an+artificial+intelligence-enabled+algorithm+for+automated+diabetic+retinopathy+screening+of+30+000+patients&rft.jtitle=British+journal+of+ophthalmology&rft.au=Heydon%2C+Peter&rft.au=Egan%2C+Catherine&rft.au=Bolter%2C+Louis&rft.au=Chambers%2C+Ryan&rft.date=2021-05-01&rft.pub=BMJ+Publishing+Group+LTD&rft.issn=0007-1161&rft.eissn=1468-2079&rft.volume=105&rft.issue=5&rft.spage=723&rft.epage=728&rft_id=info:doi/10.1136%2Fbjophthalmol-2020-316594&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon