Time to replace the spherical equivalent with the average paraxial lens power

While for the ApP , the average is the average of orthogonal and oblique paraxial rays, that is, ApP =average orthogonal and oblique paraxial power F¯ApP(orthogonal+oblique), F¯ApP(orthogonal+oblique)=C14+C14+C2−C14, ApP=F¯ApP(orthogonal+oblique)=C14+C24. [...]the ApP is equal to half the SE if calc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMJ open ophthalmology Ročník 8; číslo 1; s. e001340
Hlavní autor: Kaye, Stephen B
Médium: Journal Article
Jazyk:angličtina
Vydáno: England BMJ Publishing Group Ltd 01.06.2023
BMJ Publishing Group LTD
BMJ Publishing Group
Témata:
ISSN:2397-3269, 2397-3269
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:While for the ApP , the average is the average of orthogonal and oblique paraxial rays, that is, ApP =average orthogonal and oblique paraxial power F¯ApP(orthogonal+oblique), F¯ApP(orthogonal+oblique)=C14+C14+C2−C14, ApP=F¯ApP(orthogonal+oblique)=C14+C24. [...]the ApP is equal to half the SE if calculated in cross cylinder form, that is, ApP=SE2. If a refractive error, however, does comprise a true spherical component, then the average of that component is of course the sphere. [...]for a refractive power that contains a sphere, the ApP=Sphere+C4 and the SE=Sphere+C2 and the difference between the ApP and SE is equal to C4 . The ApP as a scalar measure is more inclusive and appears to be associated with better visual acuity than the SE, although further clinical trials are needed particularly in different age groups and conditions.
Bibliografie:SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
content type line 23
ISSN:2397-3269
2397-3269
DOI:10.1136/bmjophth-2023-001340