Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models

The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorial chemistry & high throughput screening Jg. 18; H. 8; S. 735
Hauptverfasser: Munteanu, Cristian R, Gonzalez-Diaz, Humberto, Garcia, Rafael, Loza, Mabel, Pazos, Alejandro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United Arab Emirates 01.01.2015
Schlagworte:
ISSN:1875-5402, 1875-5402
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
AbstractList The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
Author Munteanu, Cristian R
Garcia, Rafael
Gonzalez-Diaz, Humberto
Loza, Mabel
Pazos, Alejandro
Author_xml – sequence: 1
  givenname: Cristian R
  surname: Munteanu
  fullname: Munteanu, Cristian R
  email: crm.publish@gmail.com
  organization: Information and Communication Technologies Department, Faculty of Computer Science, University of A Coruna, 15071 A Coruna, Spain. crm.publish@gmail.com
– sequence: 2
  givenname: Humberto
  surname: Gonzalez-Diaz
  fullname: Gonzalez-Diaz, Humberto
– sequence: 3
  givenname: Rafael
  surname: Garcia
  fullname: Garcia, Rafael
– sequence: 4
  givenname: Mabel
  surname: Loza
  fullname: Loza, Mabel
– sequence: 5
  givenname: Alejandro
  surname: Pazos
  fullname: Pazos, Alejandro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26234511$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAURC1URB_wC8js2ARsx494WSIolVqxoIhl5MQ31MiJS5ws-vdEopVYzZXmzGh052jShhYQuqPkgVHFH2maSUZUSjMpJRUkIynlRAtygWY0UyIRnLDJv3uK5jF-E0IkTfkVmjLJUi4onaHjkwvJcr19x3nwHqrehRaHGud7aIJr69A1pndVxJ9Q4l0IPuLSRLB4xLZhDAzedHjVmcMer8_46JnW4mXXu9pVzvjR6sF79wVtBWPOgo_X6LI2PsLNSRfo4-V5l78mm7fVOl9ukpIL1Sc8q1KopTHKMsGUEcpWdBStFZNaG6tLo3VVgrCqVlwKKIlSNcjMZkRLyhbo_q_30IWfAWJfNC5W4xrTQhhiQRWlgjMm5IjentChbMAWh841pjsW53exXzmocJs
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2174/1386207318666150803140950
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1875-5402
ExternalDocumentID 26234511
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.5.
0R~
29F
36B
4.4
53G
5GY
69Q
AAEGP
AAVXF
ABEEF
ABJNI
ACGFS
ACITR
ACIWK
ACPRK
ACZAY
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
C1A
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
FIJ
GH2
HZ~
IPNFZ
KCGFV
NPM
O9-
P2P
RIG
7X8
ABMOS
AFHZU
AGQPQ
ID FETCH-LOGICAL-b457t-48c3ef6aa7d2527a57dc17a59972699ad9ba99cbe5d7f7465eb077fe68d809612
IEDL.DBID 7X8
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360935600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-5402
IngestDate Fri Jul 11 08:54:08 EDT 2025
Thu Jan 02 23:11:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b457t-48c3ef6aa7d2527a57dc17a59972699ad9ba99cbe5d7f7465eb077fe68d809612
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 26234511
PQID 1711542256
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1711542256
pubmed_primary_26234511
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Combinatorial chemistry & high throughput screening
PublicationTitleAlternate Comb Chem High Throughput Screen
PublicationYear 2015
SSID ssj0006134
Score 2.076249
SecondaryResourceType review_article
Snippet The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 735
SubjectTerms Artificial Intelligence
Drug Design
Informatics - methods
Models, Biological
Proteins - chemistry
Quantitative Structure-Activity Relationship
Title Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models
URI https://www.ncbi.nlm.nih.gov/pubmed/26234511
https://www.proquest.com/docview/1711542256
Volume 18
WOSCitedRecordID wos000360935600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LS8QwEMYHX6gX34_1xQjiyWIfm6Q9iYqPBXdZcNW9LWmTgiCt2lXY_96Ztut6EQQv7aUpoRmSr5nM7wM40l6qbcxp94Ch2k3pO6RapaMTLw2EJ4UuvQEf71SnE_b7UbfecCvqY5XjObGcqE2e8B75qacYHEPRJ89e3xx2jeLsam2hMQ2zAUkZjmrVn9DCZZ1VJk3OBwD8eTjko88kwk-9gKQ8hTfz3komOmPcSW64vyvNcsW5Xv5vX1dgqdaaeF4FxypM2WwNFi7HFm9rcNytwNWjE-xN6rCKEzzG7gRpPVqH0cVz7py32vdYbjSUtRCYp8jvymv2KrfEJxtjL89fCuTl0SA91h4b8OINw7GxlX0XTKLOTNm9CmOBrR98UGSXtpdiAx6ur3qXt05t2uDETaGGTjNMAptKrZXxha-0UCbx6MYFujKKtIliHUVJbIVRKUWFsLGrVGplaEK2n_E3YSbLM7sNyFnxmH6UTSJNM_C1Dq1UsSvCNLGea90GHI4__4A-HGc6dGbzj2IwGYAGbFVjOHit6B0DnwQfQ9l2_tB6FxZJIIlqy2UPZlOaEuw-zCWfw-fi_aCMNrp2uu0v3QPdvQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-AIMS+Collection+of+Chemoinformatics+Web+Tools+based+on+Molecular+Graph+Information+and+Artificial+Intelligence+Models&rft.jtitle=Combinatorial+chemistry+%26+high+throughput+screening&rft.au=Munteanu%2C+Cristian+R&rft.au=Gonzalez-Diaz%2C+Humberto&rft.au=Garcia%2C+Rafael&rft.au=Loza%2C+Mabel&rft.date=2015-01-01&rft.issn=1875-5402&rft.eissn=1875-5402&rft.volume=18&rft.issue=8&rft.spage=735&rft_id=info:doi/10.2174%2F1386207318666150803140950&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-5402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-5402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-5402&client=summon