Prognostic machine learning models for predicting postoperative complications following general surgery in Bandar Abbas, Iran: a study protocol

IntroductionTo enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMJ open Ročník 15; číslo 10; s. e108019
Hlavní autori: Vatankhah Tarbebar, Majid, Mohammadi, Milad, Mehrnoush, Vahid, Darsareh, Fatemeh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England British Medical Journal Publishing Group 28.10.2025
BMJ Publishing Group LTD
BMJ Publishing Group
Predmet:
ISSN:2044-6055, 2044-6055
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract IntroductionTo enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery.Methods and analysisThis research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models.Ethics and disseminationWith approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.
AbstractList IntroductionTo enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery.Methods and analysisThis research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models.Ethics and disseminationWith approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.
To enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery. This research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models. With approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.
Introduction To enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery.Methods and analysis This research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models.Ethics and dissemination With approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.
To enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery.INTRODUCTIONTo enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative complications is essential. Subsequently, we will apply machine learning (ML) algorithms to build risk factor prediction models that will assist surgeons in identifying the risk factors associated with the development of postoperative complications after general surgery.This research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models.METHODS AND ANALYSISThis research will take place at a tertiary referral medical centre located in Bandar Abbas, Hormozgan, Iran. The inclusion criteria are (1) individuals aged 18 years or older who have any type of general surgery and (2) hospitalised from September 2025 to September 2026. Individuals with insufficient data will be excluded. The main outcomes of the study are complications within 30 days of surgery. Patients will be divided into two groups based on whether they develop complications or not. The predictors are classified as (1) patient-related factors, (2) surgery-related factors and (3) postoperative factors. We intend to detect postoperative complications following general surgery using four distinct supervised ML techniques: (1) logistic regression, (2) decision trees, (3) random forests and (4) extreme gradient boosting. Accuracy, precision, recall and F1 score will be used to evaluate the performance of ML models.With approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.ETHICS AND DISSEMINATIONWith approval from the Hormozgan University of Medical School Research Ethics Board (IR.HUMS.REC.1404.137), we will carry out a forward-looking analysis of the medical records of patients undergoing general surgery. We will obtain informed consent, and all information will be collected and examined anonymously. The findings of this research will be released in appropriate scientific publications.
Author Mohammadi, Milad
Vatankhah Tarbebar, Majid
Mehrnoush, Vahid
Darsareh, Fatemeh
Author_xml – sequence: 1
  givenname: Majid
  surname: Vatankhah Tarbebar
  fullname: Vatankhah Tarbebar, Majid
  organization: Department of Anesthesiology, Critical Care and Pain Management Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran (the Islamic Republic of)
– sequence: 2
  givenname: Milad
  surname: Mohammadi
  fullname: Mohammadi, Milad
  organization: Department of Anesthesiology, Critical Care and Pain Management Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran (the Islamic Republic of)
– sequence: 3
  givenname: Vahid
  surname: Mehrnoush
  fullname: Mehrnoush, Vahid
  organization: Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran (the Islamic Republic of)
– sequence: 4
  givenname: Fatemeh
  orcidid: 0000-0003-2644-792X
  surname: Darsareh
  fullname: Darsareh, Fatemeh
  email: famadarsareh@yahoo.com
  organization: Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran (the Islamic Republic of)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41151946$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuOFCEUhokZ41ycJzAxJG5cTDlQXLrK3Tjx0skkutA1OVBUSYeCFqrG9FP4ylJWOxoXsgEO3_kPB_5zdBJisAg9o-QVpUxe63EX9zZUNalFRUlDaPsIndWE80oSIU7-Wp-iy5x3pAwuWiHqJ-iUUypoy-UZ-vEpxSHEPDmDRzBfXbDYW0jBhQGPsbM-4z4mvE-2c2ZaovtCl9oJJndvsYnj3jtTNjEsqPfx-0INNhTE4zynwaYDdgG_gdBBwjdaQ77C2wThNQacp7k7FP04RRP9U_S4B5_t5XG-QF_evf18-6G6-_h-e3tzV2nO5FRx2jVCML1pSKclgYaZnvUg6qY21ABhsnTbcmO4JralPaMUQNgNb5gUhkt2gbarbhdhp_bJjZAOKoJTvwIxDQpSeRRvlWYbEMsTk55zzSVwkNJQazpoqJa2aL1ctUoT32abJzW6bKz3EGycs2K1lJw3pN0U9MU_6C7OKZROF0o0BWO8UM-P1KxH2z1c7_e3FYCtgEkx52T7B4QStfhDHf2hFn-o1R8l63rNKod_6v4v4yeNlr73
Cites_doi 10.1016/j.xagr.2024.100420
10.1145/2786984.2786995
10.1016/j.gocm.2023.07.002
10.7759/cureus.41448
10.19080/CTOIJ.2025.28.556233
10.1038/s41598-025-06651-0
10.1136/bmjopen-2022-067661
10.1038/s41598-025-92810-2
10.1016/j.jgo.2022.04.004
10.1016/j.jss.2021.07.009
10.12669/pjms.39.6.7963
10.1016/j.csa.2024.100063
10.7759/cureus.90501
10.1007/s00423-023-03207-6
10.1016/j.ogc.2019.01.001
10.1186/s12884-025-07313-9
10.1136/bmjopen-2023-074705
10.1108/IJHCQA-12-2018-0288
10.1016/j.yasu.2010.05.003
10.1016/j.cpc.2010.04.018
10.1007/978-3-540-37256-1_89
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.
Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.
– notice: Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
BTHHO
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
K9-
K9.
KB0
M0R
M0S
M1P
M2M
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOA
DOI 10.1136/bmjopen-2025-108019
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
BMJ Journals
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest Family Health
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2044-6055
ExternalDocumentID oai_doaj_org_article_b37a510800f44b46a4a66c1ecda81b6e
41151946
10_1136_bmjopen_2025_108019
bmjopen
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: Hormozgan University of Medical Sciences, Bandar Abbas, Iran
GroupedDBID ---
4.4
53G
5VS
7RV
7X7
7~R
88E
8FI
8FJ
9YT
ABUWG
ACGFS
ACMMV
ADBBV
AENEX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BKNYI
BPHCQ
BTFSW
BTHHO
CCPQU
DIK
DWQXO
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HMCUK
HYE
HZ~
K9-
KQ8
M0R
M1P
M2M
M~E
NAPCQ
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PSYQQ
RHI
RMJ
RPM
UKHRP
AAYXX
ADRAZ
BVXVI
CITATION
EJD
H13
M48
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-b436t-41d8553b780db60a83cf3fa5282c1ca03600494cc4b0e91f311aa5e748365c463
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603289400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2044-6055
IngestDate Mon Nov 03 22:00:03 EST 2025
Wed Oct 29 17:11:04 EDT 2025
Thu Nov 20 16:51:06 EST 2025
Sat Nov 01 14:17:14 EDT 2025
Thu Nov 27 01:02:47 EST 2025
Wed Oct 29 14:58:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords SURGERY
Machine Learning
Risk Factors
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b436t-41d8553b780db60a83cf3fa5282c1ca03600494cc4b0e91f311aa5e748365c463
Notes Protocol
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2644-792X
OpenAccessLink https://www.proquest.com/docview/3265844834?pq-origsite=%requestingapplication%
PMID 41151946
PQID 3265844834
PQPubID 2040975
ParticipantIDs doaj_primary_oai_doaj_org_article_b37a510800f44b46a4a66c1ecda81b6e
proquest_miscellaneous_3266448097
proquest_journals_3265844834
pubmed_primary_41151946
crossref_primary_10_1136_bmjopen_2025_108019
bmj_journals_10_1136_bmjopen_2025_108019
PublicationCentury 2000
PublicationDate 2025-10-28
PublicationDateYYYYMMDD 2025-10-28
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMJ open
PublicationTitleAbbrev BMJ Open
PublicationTitleAlternate BMJ Open
PublicationYear 2025
Publisher British Medical Journal Publishing Group
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: British Medical Journal Publishing Group
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Roozbeh, Montazeri, Farashah (R11) 2025; 15
van der Hulst, Dekker, Bastiaannet (R17) 2022; 13
Ranjbar, Taeidi, Mehrnoush (R10) 2023; 13
Zhong, Lu, Xie (R5) 2023; 39
Parkin, Moritz, Kirkland (R18) 2021; 268
Fishbein, Nambiar, McKenzie (R1) 2019; 33
Ingraham, Richards, Hall (R15) 2010; 44
Sargent, Waldman (R2) 2019; 46
Ranjbar, Rezaei Ghamsari, Boujarzadeh (R12) 2023; 3
Rezaei, Amani, Asgharpoor (R4) 2025; 17
Pedregosa, Varoquaux, Gramfort (R20) 2011; 12
Banaei, Roozbeh, Darsareh (R7) 2025; 5
Safarzadeh, Ardabili, Farashah (R13) 2025; 25
Erginoz, Sak, Bozkir (R16) 2023; 409
Taeidi, Ranjbar, Montazeri (R6) 2023; 15
Boujarzadeh, Ranjbar, Banihashemi (R9) 2023; 13
Mehrnoush, Darsareh, Shabana (R3) 2025; 28
Malakooti, Mehrnoush, Abdi (R8) 2025; 15
Tahir, Abdullah, Udzir (R19) 2025; 3
2025111907141925000_15.10.e108019.12
Fishbein (2025111907141925000_15.10.e108019.1) 2019; 33
Mehrnoush (2025111907141925000_15.10.e108019.3) 2025; 28
Zhong (2025111907141925000_15.10.e108019.5) 2023; 39
2025111907141925000_15.10.e108019.14
Tahir (2025111907141925000_15.10.e108019.19) 2025; 3
Ranjbar (2025111907141925000_15.10.e108019.10) 2023; 13
2025111907141925000_15.10.e108019.20
2025111907141925000_15.10.e108019.21
Sargent (2025111907141925000_15.10.e108019.2) 2019; 46
Safarzadeh (2025111907141925000_15.10.e108019.13) 2025; 25
Erginoz (2025111907141925000_15.10.e108019.16) 2023; 409
Parkin (2025111907141925000_15.10.e108019.18) 2021; 268
Taeidi (2025111907141925000_15.10.e108019.6) 2023; 15
Banaei (2025111907141925000_15.10.e108019.7) 2025; 5
Malakooti (2025111907141925000_15.10.e108019.8) 2025; 15
van der Hulst (2025111907141925000_15.10.e108019.17) 2022; 13
Rezaei (2025111907141925000_15.10.e108019.4) 2025; 17
Roozbeh (2025111907141925000_15.10.e108019.11) 2025; 15
2025111907141925000_15.10.e108019.15
Boujarzadeh (2025111907141925000_15.10.e108019.9) 2023; 13
References_xml – volume: 5
  year: 2025
  ident: R7
  article-title: Utilizing machine learning to predict the risk factors of episiotomy in parturient women
  publication-title: AJOG Glob Rep
  doi: 10.1016/j.xagr.2024.100420
– volume: 12
  start-page: 2825
  year: 2011
  ident: R20
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
  doi: 10.1145/2786984.2786995
– volume: 3
  start-page: 170
  year: 2023
  ident: R12
  article-title: Predicting risk of postpartum hemorrhage using machine learning approach: A systematic review
  publication-title: Gocm
  doi: 10.1016/j.gocm.2023.07.002
– volume: 15
  year: 2023
  ident: R6
  article-title: Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
  publication-title: Cureus
  doi: 10.7759/cureus.41448
– volume: 28
  start-page: 556233
  year: 2025
  ident: R3
  article-title: Prediction of renal Cancer recurrence using artificial intelligence: A systematic review
  publication-title: Canc Therapy Oncol Int J
  doi: 10.19080/CTOIJ.2025.28.556233
– volume: 15
  year: 2025
  ident: R8
  article-title: Development of a machine learning model to identify the predictors of the neonatal intensive care unit admission
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-06651-0
– volume: 13
  year: 2023
  ident: R9
  article-title: Machine learning approach to predict postpartum haemorrhage: a systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2022-067661
– volume: 15
  year: 2025
  ident: R11
  article-title: Proposing a machine learning-based model for predicting nonreassuring fetal heart
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-92810-2
– volume: 13
  start-page: 788
  year: 2022
  ident: R17
  article-title: Validation of the ACS NSQIP surgical risk calculator in older patients with colorectal cancer undergoing elective surgery
  publication-title: J Geriatr Oncol
  doi: 10.1016/j.jgo.2022.04.004
– volume: 268
  start-page: 300
  year: 2021
  ident: R18
  article-title: What is the Accuracy of the ACS-NSQIP Surgical Risk Calculator in Emergency Abdominal Surgery? A Meta-Analysis
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2021.07.009
– volume: 39
  start-page: 1835
  year: 2023
  ident: R5
  article-title: A prediction model of risk factors of poor wound healing after craniocerebral surgery
  publication-title: Pak J Med Sci
  doi: 10.12669/pjms.39.6.7963
– volume: 3
  start-page: 100063
  year: 2025
  ident: R19
  article-title: A novel approach for handling missing data to enhance network intrusion detection system
  publication-title: Cyber Security and Applicat
  doi: 10.1016/j.csa.2024.100063
– volume: 17
  year: 2025
  ident: R4
  article-title: Machine Learning Approach to Predict Emergency Cesarean Sections Among Nulliparous Women
  publication-title: Cureus
  doi: 10.7759/cureus.90501
– volume: 409
  start-page: 12
  year: 2023
  ident: R16
  article-title: Evaluation of the ACS NSQIP surgical risk calculator in patients undergoing common bile duct exploration
  publication-title: Langenbecks Arch Surg
  doi: 10.1007/s00423-023-03207-6
– volume: 46
  start-page: 199
  year: 2019
  ident: R2
  article-title: The Patient Experience and Safety
  publication-title: Obstet Gynecol Clin North Am
  doi: 10.1016/j.ogc.2019.01.001
– volume: 25
  year: 2025
  ident: R13
  article-title: Predicting mother and newborn skin-to-skin contact using a machine learning approach
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-025-07313-9
– volume: 13
  year: 2023
  ident: R10
  article-title: Machine learning models for predicting pre-eclampsia: a systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2023-074705
– volume: 33
  start-page: 1
  year: 2019
  ident: R1
  article-title: Objective measures of workload in healthcare: a narrative review
  publication-title: Int J Health Care Qual Assur
  doi: 10.1108/IJHCQA-12-2018-0288
– volume: 44
  start-page: 251
  year: 2010
  ident: R15
  article-title: Quality improvement in surgery: the American College of Surgeons National Surgical Quality Improvement Program approach
  publication-title: Adv Surg
  doi: 10.1016/j.yasu.2010.05.003
– volume: 15
  year: 2025
  ident: 2025111907141925000_15.10.e108019.8
  article-title: Development of a machine learning model to identify the predictors of the neonatal intensive care unit admission
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-06651-0
– volume: 39
  start-page: 1835
  year: 2023
  ident: 2025111907141925000_15.10.e108019.5
  article-title: A prediction model of risk factors of poor wound healing after craniocerebral surgery
  publication-title: Pak J Med Sci
  doi: 10.12669/pjms.39.6.7963
– volume: 15
  year: 2025
  ident: 2025111907141925000_15.10.e108019.11
  article-title: Proposing a machine learning-based model for predicting nonreassuring fetal heart
  publication-title: Sci Rep
  doi: 10.1038/s41598-025-92810-2
– ident: 2025111907141925000_15.10.e108019.12
  doi: 10.1016/j.gocm.2023.07.002
– volume: 33
  start-page: 1
  year: 2019
  ident: 2025111907141925000_15.10.e108019.1
  article-title: Objective measures of workload in healthcare: a narrative review
  publication-title: Int J Health Care Qual Assur
  doi: 10.1108/IJHCQA-12-2018-0288
– volume: 13
  year: 2023
  ident: 2025111907141925000_15.10.e108019.9
  article-title: Machine learning approach to predict postpartum haemorrhage: a systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2022-067661
– volume: 3
  start-page: 100063
  year: 2025
  ident: 2025111907141925000_15.10.e108019.19
  article-title: A novel approach for handling missing data to enhance network intrusion detection system
  publication-title: Cyber Security and Applicat
  doi: 10.1016/j.csa.2024.100063
– volume: 13
  year: 2023
  ident: 2025111907141925000_15.10.e108019.10
  article-title: Machine learning models for predicting pre-eclampsia: a systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2023-074705
– ident: 2025111907141925000_15.10.e108019.20
  doi: 10.1016/j.cpc.2010.04.018
– volume: 5
  year: 2025
  ident: 2025111907141925000_15.10.e108019.7
  article-title: Utilizing machine learning to predict the risk factors of episiotomy in parturient women
  publication-title: AJOG Glob Rep
  doi: 10.1016/j.xagr.2024.100420
– volume: 15
  year: 2023
  ident: 2025111907141925000_15.10.e108019.6
  article-title: Machine Learning-Based Approach to Predict Intrauterine Growth Restriction
  publication-title: Cureus
– ident: 2025111907141925000_15.10.e108019.15
  doi: 10.1016/j.yasu.2010.05.003
– volume: 268
  start-page: 300
  year: 2021
  ident: 2025111907141925000_15.10.e108019.18
  article-title: What is the Accuracy of the ACS-NSQIP Surgical Risk Calculator in Emergency Abdominal Surgery? A Meta-Analysis
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2021.07.009
– volume: 46
  start-page: 199
  year: 2019
  ident: 2025111907141925000_15.10.e108019.2
  article-title: The Patient Experience and Safety
  publication-title: Obstet Gynecol Clin North Am
  doi: 10.1016/j.ogc.2019.01.001
– volume: 28
  start-page: 556233
  year: 2025
  ident: 2025111907141925000_15.10.e108019.3
  article-title: Prediction of renal Cancer recurrence using artificial intelligence: A systematic review
  publication-title: Canc Therapy Oncol Int J
– volume: 25
  year: 2025
  ident: 2025111907141925000_15.10.e108019.13
  article-title: Predicting mother and newborn skin-to-skin contact using a machine learning approach
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-025-07313-9
– volume: 17
  year: 2025
  ident: 2025111907141925000_15.10.e108019.4
  article-title: Machine Learning Approach to Predict Emergency Cesarean Sections Among Nulliparous Women
  publication-title: Cureus
– volume: 409
  start-page: 12
  year: 2023
  ident: 2025111907141925000_15.10.e108019.16
  article-title: Evaluation of the ACS NSQIP surgical risk calculator in patients undergoing common bile duct exploration
  publication-title: Langenbecks Arch Surg
  doi: 10.1007/s00423-023-03207-6
– ident: 2025111907141925000_15.10.e108019.21
  doi: 10.1007/978-3-540-37256-1_89
– volume: 13
  start-page: 788
  year: 2022
  ident: 2025111907141925000_15.10.e108019.17
  article-title: Validation of the ACS NSQIP surgical risk calculator in older patients with colorectal cancer undergoing elective surgery
  publication-title: J Geriatr Oncol
  doi: 10.1016/j.jgo.2022.04.004
– ident: 2025111907141925000_15.10.e108019.14
SSID ssj0000459552
Score 2.4018219
Snippet IntroductionTo enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for...
To enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for postoperative...
Introduction To enhance the quality of surgical care, complications need to be minimised. Consequently, comprehending the occurrence and risk elements for...
SourceID doaj
proquest
pubmed
crossref
bmj
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e108019
SubjectTerms Adult
Algorithms
Antibiotics
Anticoagulants
Artificial intelligence
Blood transfusions
Cardiac arrest
COVID-19 vaccines
Drug use
Female
Humans
Hypertension
Immunization
Iran
Kidney diseases
Machine Learning
Male
Marital status
Missing data
Molecular weight
Mortality
Patients
Pneumonia
Postoperative Complications - diagnosis
Postoperative Complications - epidemiology
Postoperative Complications - etiology
Prognosis
Quality improvement
Questionnaires
Regression analysis
Research Design
Risk Assessment - methods
Risk Factors
Sepsis
Surgery
Variables
Ventilators
SummonAdditionalLinks – databaseName: BMJ Journals
  dbid: RMJ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9VAEJ8gGsLFb6SKZk08eKDQ7X506w2MRE0gxGjCrdndbl8w0L70PfDP8F92Zts-wgFjPDVpp812d6bzm-3MbwDeeW1qGYxKPdVv4dePipWbPHUl-oYQlDbSxmYTxcmJOTsrT9cgn2ph3OVPahu1h8ehooE4mtrlPldo3_uBMuJ4uUdb0_fgPsU2ZIzfjr-u9lUQopQqNtrJMylTROtqJBviQk-PR93IiYCTHrYJGxJhEQbzRDuCArc8VCTyvxt9Ri909Oh_xv8YHo6Ykx0MSvIE1kL7FDaOx7_qz-D3ad9Rvh1eZpcxuTKwsZvEjMVWOQuG2JbNe7qF8qTZnPg45mGgDWe38tJR9OKi-0VSs4HTmi2G2mt23rLDuHPBDhy6z132BT3lB2ZZJLllxBnRoWI-hx9Hn75__JyOjRpSJ4VeppLXRinhCpPVTmfWCN-IxioM5zz3Fp1kpKHxXroslLwRnFurQiGN0MpLLbZgve3asA2MyxwHUHrfyFo23pcNxu4BMZ80litXJ_Aep7YaDW1RxRhG6Gqc94oWthpmOYHdaR2r-UDd8XfxQ1rrlSjxbscTXT-rRjOunCisIvmskdJJbaXV2vPga4v4X4cEdiZNuRkjImSEebRrm8Db1WU0Y_o3Y9vQXUUZipSzskjgxaBhq5FM6vny39_9FWyOKp7mZgfWl_1VeA0P_PXyfNG_iRbzB1bvFAU
  priority: 102
  providerName: BMJ Publishing Group Ltd
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9UwDI5gQogL4vcKAwWJA4dVaxonTbhtiAkOTDuAtFuVpOk0tLVP773Bn8G_jJ1kj-0AXLgmrmTFX2I7dT4z9iZoM0A0qg70fgtPP3qsPLa1t-gbYlTagEvNJrqjI3NyYo-vtfqimrBMD5wXbs_LzikqhGtGAA_agdM6iBgGhxGXjnT6Np29lkylMxiUVaotNENC6j1_8Y36USEqWqLeNIlb5zaO3nBIibf_z8FmcjqHD9j9Ei3y_azlQ3YrTo_Y3c_lf_hj9vN4OVOlHE7zi1QWGXnpA3HKU5ObFceolC-W9AlVOPMFMWksYib85jcqylH0_Hz-QVKnmY2ar_KraX428YN058D3PTq-Xf4Jfdw77niip-XE9jAjpJ6wr4cfvrz_WJcWC7UHqdc1iMEoJX1nmsHrxhkZRjk6hYlYEMGhe0sEMiGAb6IVoxTCORU7MFKrAFo-ZVvTPMVtxgW0qIANYYQBxhDsiFl3xGgNjBPKDxV7i6vdly2y6lP2IXVfDNOTYfpsmIrtXpmkX2TSjb-LH5DZNqLEmJ0GEEd9wVH_LxxVbOfK6L91xNgWAzS6b63Y6800bkD6q-KmOF8mGcpxG9tV7FkGy0YTwHhbWNDP_4eGL9i9At66NTtsa728jC_ZnfB9fbZavkr4_wXtEQq-
  priority: 102
  providerName: Directory of Open Access Journals
Title Prognostic machine learning models for predicting postoperative complications following general surgery in Bandar Abbas, Iran: a study protocol
URI https://bmjopen.bmj.com/content/15/10/e108019.full
https://www.ncbi.nlm.nih.gov/pubmed/41151946
https://www.proquest.com/docview/3265844834
https://www.proquest.com/docview/3266448097
https://doaj.org/article/b37a510800f44b46a4a66c1ecda81b6e
Volume 15
WOSCitedRecordID wos001603289400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADZ
  databaseName: BMJ Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: RMJ
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.bmj.com/thebmj
  providerName: BMJ Publishing Group Ltd
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: M0R
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: 7RV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: M2M
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixAX3oVAWRmJA4dGjRPbcbigLmpFkbKKVoCWU-Q4zqqoTcJmCz-Dv8yM492qB3rhEmXj2cjKzHgeHn9DyFsjVc2tEqHB81uw-uFh5SYOqwxsg7VCKq5ds4l0NlOLRVb4hNvgyyo3a6JbqOvOYI78CNwMsJWY-vrQ_wyxaxTurvoWGjtkD9tmo5yni3SbYwF3JRMi9mBDLJFH1eUP7EoFshEjAKdyCDs78PSGWXLo_f92OZ3pOX34v5N-RB54p5Mej1LymNyx7RNyL_fb6k_Jn2LVYcEdDNNLV11pqW8nsaSuV85Awbml_Qr_goXStEdAjt6OuOH0RmE6kF5cdL-RajmCWtNhPHxNz1s6dakLelyB_TykZ2Aq31NNHcotRdCIDiTzGfl6evLl46fQd2oIK57IdchZrYRIqlRFdSUjrRLTJI0WEM8ZZjRYSYdDYwyvIpuxJmFMa2FT-DJSGC6TfbLbdq19QSjjMUwgM6bhNW-MyRoI3i04fVxpJqo6IO-AXaXXtKF0QUwiS8_ZEjlbjpwNyOGGp2U_YnfcTj5Fvm9JEXjbPehWy9LrcVklqRZIHzWcV1xqrqU0zJpaQwAgbUAONpJwPcdrMQjIm-0w6DFuzujWdleOBkPlKEsD8nyUtu1MOLjtLOPy5e0vf0Xue7kOY3VAdterK_ua3DW_1ufDagKqMf82cQrirmpC9qYns2I-cXkIuOYR3udxDiPFWV58h1_z_PNfb4shig
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQEX3rSBAkYCiUOj5mE7DhJCLVB11e6qhyL1ljqOsypqk7DZUvEr-Cf8RmacZKse6K0HrvHEsZLP88r4G4C3RqqCWyV8Q-e3UPvRYeUy8vMUbYO1QiquXbOJZDJRR0fpwRL8Gc7CUFnloBOdoi5qQznyTXQz0FZS6utT88OnrlH0d3VoodHBYs_-usCQrf04-oLf910U7Xw9_Lzr910F_JzHcu7zsFBCxHmigiKXgVaxKeNSC4w9TGg0anTHmWIMzwObhmUchloLm-CjpTBcxjjvMtziaAmpY8I4Gi9yOugepUJEPblRGMvN_Ow7dcFCLEZE-Kkco88yXr1iBl23gH-7uM7U7Tz4317SQ7jfO9Vsq9sFj2DJVo_hzrgvG3gCvw9mNRUU4jA7c9WjlvXtMqbM9QJqGTrvrJnRLVQIzhoiHGlsx4vOrhTeo-jpaX1BUtOOtJu13eFydlKxbZeaYVs5-gcbbISuwAemmWPxZUSKUePOewrfbuR1PIOVqq7sGrCQR7iA1JiSF7w0Ji0THll0arnSocgLD94jPLJek7SZC9JimfVIyghJWYckDzYGDGVNx01yvfg24WwhSsTi7kI9m2a9nsryONGC5IOS85xLzbWUJrSm0BjgSOvB-oC8yzVews6DN4th1FP080lXtj53MpQKCNLEg9UO3YuVcAxLwpTL59dP_hru7h6O97P90WTvBdzr95QfqXVYmc_O7Uu4bX7OT9rZK7ctGRzfNMT_Ah8vcyM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61W1RxKf90oYCRQOLQaDeJ7SRICHVpV6wKqxUCqbfUcZxVUZuE7JaKp-B9eDpmHGerHuitB672xLKcz-OZ8fgbgFdaxjk3sfA0vd9C7UePlYvAyxI8G4wRMubKFpuIptP46CiZrcGf7i0MpVV2OtEq6rzSFCMfoJmBZyWFvgaFS4uY7Y_f1z88qiBFN61dOY0WIofm1wW6b4t3k33816-DYHzw9cNHz1UY8DIeyqXH_TwWIsyieJhncqjiUBdhoQT6IdrXCrW75U_RmmdDk_hF6PtKCRPhNKTQXIY47jpsRCE6PT3YGB1MZ19WER40lhIhAkd15IdykJ19p5pYiMyA6D9jy--zjq1XDkVbO-DfBq89-MZ3_ucluwtbztxme-3-uAdrprwPm59dQsED-D1rKko1xG52ZvNKDXOFNObMVglaMDTrWd3QJ5QizmqiIqlNy5jOrqTko-jpaXVBUvOWzpst2mfn7KRkIxu0YXsZWg67bIJGwlummOX3ZUSXUeGefAjfbmQ5HkGvrEqzDcznAU4g0brgOS-0ToqIBwbNXR4rX2R5H94gVFKnYxapdd9CmTpUpYSqtEVVH3Y7PKV1y1pyvfiIMLcSJcpx21A189RpsDQLIyVIflhwnnGpuJJS-0bnCl0fafqw06Hwco6XEOzDy1U3ajC6llKlqc6tDAUJhknUh8ct0lcz4eiw-AmXT64f_AVsIrLTT5Pp4VO47baXF8Q70Fs25-YZ3NI_lyeL5rnbowyObxrjfwH9aH1G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+machine+learning+models+for+predicting+postoperative+complications+following+general+surgery+in+Bandar+Abbas%2C+Iran%3A+a+study+protocol&rft.jtitle=BMJ+open&rft.au=Vatankhah+Tarbebar+Majid&rft.au=Mohammadi+Milad&rft.au=Vahid%2C+Mehrnoush&rft.au=Darsareh+Fatemeh&rft.date=2025-10-28&rft.pub=BMJ+Publishing+Group+LTD&rft.eissn=2044-6055&rft.volume=15&rft.issue=10&rft.spage=e108019&rft_id=info:doi/10.1136%2Fbmjopen-2025-108019&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-6055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-6055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-6055&client=summon