Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging
Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coh...
Uloženo v:
| Vydáno v: | British journal of ophthalmology Ročník 106; číslo 3; s. 388 - 395 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
BMA House, Tavistock Square, London, WC1H 9JR
BMJ Publishing Group Ltd
01.03.2022
BMJ Publishing Group LTD |
| Témata: | |
| ISSN: | 0007-1161, 1468-2079, 1468-2079 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.Results284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).ConclusionOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data. |
|---|---|
| AbstractList | Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.Results284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).ConclusionOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data. To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. 284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data. To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data.BACKGROUND/AIMSTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data.Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.METHODSColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).RESULTS284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.CONCLUSIONOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data. |
| Author | Grewal, Dilraj S. Burke, James R. Wang, Dong Henao, Ricardo Yoon, Stephen P. Polascik, Bryce W. Liu, Andy Carin, Lawrence Fekrat, Sharon Wisely, C. Ellis Robbins, Cason B. Soundararajan, Srinath Thompson, Atalie C. |
| Author_xml | – sequence: 1 givenname: C. Ellis orcidid: 0000-0001-7675-689X surname: Wisely fullname: Wisely, C. Ellis organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 2 givenname: Dong surname: Wang fullname: Wang, Dong organization: Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA – sequence: 3 givenname: Ricardo orcidid: 0000-0003-4980-845X surname: Henao fullname: Henao, Ricardo organization: Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA – sequence: 4 givenname: Dilraj S. orcidid: 0000-0002-2229-5343 surname: Grewal fullname: Grewal, Dilraj S. organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 5 givenname: Atalie C. surname: Thompson fullname: Thompson, Atalie C. organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 6 givenname: Cason B. orcidid: 0000-0001-7909-510X surname: Robbins fullname: Robbins, Cason B. organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 7 givenname: Stephen P. surname: Yoon fullname: Yoon, Stephen P. organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 8 givenname: Srinath surname: Soundararajan fullname: Soundararajan, Srinath organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 9 givenname: Bryce W. surname: Polascik fullname: Polascik, Bryce W. organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA – sequence: 10 givenname: James R. surname: Burke fullname: Burke, James R. organization: Department of Neurology, Duke University Health System, Durham, NC, USA – sequence: 11 givenname: Andy surname: Liu fullname: Liu, Andy organization: Department of Neurology, Duke University Health System, Durham, NC, USA – sequence: 12 givenname: Lawrence surname: Carin fullname: Carin, Lawrence organization: Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA – sequence: 13 givenname: Sharon orcidid: 0000-0003-4403-5996 surname: Fekrat fullname: Fekrat, Sharon email: sharon.fekrat@duke.edu organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33243829$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkc2OFCEUhYkZ4_SMvoKpxI2bUihoqtiYTDr-JZO40TUB6jJNDxQtUJp25Wv4ej6JlD2jZjbq6gbudw7ce87QyRQnQKgh-BkhlD_Xu7jflq3yIfq2wx1uKen5WtxDK8L4UK96cYJWGOO-JYSTU3SW864eO076B-iU0o7RoRMrdL2J06fo5-LipHwzwZx-lvI5puumxMaNMBVnD00-hH2JQRVnmgv_ZQsuQPr-9VtuRpdBZWjm7KarJsy-uBDHapOguMXVBXVVWw_Rfat8hkc39Rx9ePXy_eZNe_nu9dvNxWWrGe1Ka63qBRMYazBEjCMGowQwo_CgLQDQNedWY7C1oQ23jLOx643oqSBajIaeo6dH332KH2fIRQaXDXivJohzlh3ja0a5IKKiT-6guzin-udKcYoZw3xYqMc31KwDjHKf6kTpIG_XWIEXR8CkmHMCK40ratlpScp5SbBccpN_5iaX3OQxt2ow3DG4feMfpPQo1WH3Pyr2W_Vr5r_KfgAF_MiG |
| CitedBy_id | crossref_primary_10_1002_dad2_70041 crossref_primary_10_47102_annals_acadmedsg_2022369 crossref_primary_10_1016_j_msard_2024_105743 crossref_primary_10_1097_APO_0000000000000515 crossref_primary_10_1109_JBHI_2024_3448238 crossref_primary_10_1038_s41598_025_12498_2 crossref_primary_10_1016_j_blre_2023_101102 crossref_primary_10_1038_s41598_024_58121_8 crossref_primary_10_3390_jpm13071118 crossref_primary_10_1097_ICU_0000000000000877 crossref_primary_10_3390_math11122664 crossref_primary_10_7759_s44389_025_03800_4 crossref_primary_10_1016_j_survophthal_2025_07_005 crossref_primary_10_1007_s00417_024_06394_0 crossref_primary_10_3233_JAD_230055 crossref_primary_10_1007_s40120_023_00526_0 crossref_primary_10_1038_s41433_021_01556_4 crossref_primary_10_1007_s00221_025_07076_x crossref_primary_10_1097_ICU_0000000000001174 crossref_primary_10_1186_s12938_023_01110_1 crossref_primary_10_1002_mef2_75 crossref_primary_10_1002_dad2_70132 crossref_primary_10_3233_JAD_220596 crossref_primary_10_1136_jnnp_2024_335723 crossref_primary_10_1016_j_preteyeres_2025_101350 crossref_primary_10_1016_j_preteyeres_2024_101290 crossref_primary_10_1136_bjophthalmol_2020_318407 crossref_primary_10_1016_j_compbiomed_2023_107411 crossref_primary_10_1016_j_oret_2022_03_001 crossref_primary_10_1136_bjo_2023_323283 crossref_primary_10_1016_j_compbiomed_2025_110412 crossref_primary_10_1007_s11042_024_20299_4 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1016_j_oret_2024_01_019 crossref_primary_10_1186_s13024_025_00819_y crossref_primary_10_1038_s41597_025_04930_z crossref_primary_10_3390_diagnostics12071714 crossref_primary_10_4103_sjopt_sjopt_153_23 crossref_primary_10_1007_s11042_025_20611_w crossref_primary_10_1016_j_hroo_2025_01_019 crossref_primary_10_1016_j_neurobiolaging_2023_01_015 crossref_primary_10_1002_VIW_20220070 crossref_primary_10_1016_j_energy_2023_130158 crossref_primary_10_3390_app15094963 crossref_primary_10_1002_widm_1506 crossref_primary_10_1038_s41598_024_51612_8 crossref_primary_10_1016_j_eclinm_2025_103089 crossref_primary_10_1111_ceo_14258 crossref_primary_10_1002_advs_202507629 crossref_primary_10_3390_jcm12010152 crossref_primary_10_1016_j_vaccine_2024_01_059 crossref_primary_10_1038_s41598_024_54251_1 crossref_primary_10_1002_oby_23807 crossref_primary_10_1007_s00417_022_05741_3 crossref_primary_10_1136_bmjopen_2021_058552 crossref_primary_10_3390_s24165192 crossref_primary_10_1002_mds_28775 crossref_primary_10_1002_alz_13529 crossref_primary_10_1016_j_preteyeres_2024_101273 crossref_primary_10_1080_08164622_2023_2235346 crossref_primary_10_1109_ACCESS_2024_3434670 crossref_primary_10_1002_alz_70476 |
| Cites_doi | 10.1038/nrneurol.2012.227 10.1371/journal.pone.0192646 10.3233/JAD-141659 10.1038/jcbfm.2013.58 10.1016/j.jalz.2011.03.005 10.1159/000487053 10.1016/j.ophtha.2018.08.009 10.1016/j.nicl.2018.101645 10.1007/s00401-016-1613-6 10.1016/j.dadm.2019.08.006 10.3389/fnagi.2018.00188 10.1371/journal.pone.0162202 10.3928/23258160-20180601-09 10.1136/bjophthalmol-2017-310476 10.1016/j.oret.2019.02.002 10.1109/JBHI.2017.2655720 10.2174/1567205015666180123122637 10.1016/j.preteyeres.2017.01.001 10.1016/j.neulet.2010.06.006 10.1007/s12021018-9370-4 10.1111/joim.12816 10.1016/j.jneumeth.2017.12.011 10.1109/CVPR.2016.90 10.1016/j.ajo.2020.04.040 10.1097/WNO.0000000000000831 10.1016/j.neuroimage.2019.01.031 |
| ContentType | Journal Article |
| Copyright | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. – notice: Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1136/bjophthalmol-2020-317659 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central BMJ Journals ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1468-2079 |
| EndPage | 395 |
| ExternalDocumentID | 33243829 10_1136_bjophthalmol_2020_317659 bjophthalmol |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US California |
| GeographicLocations_xml | – name: United States--US – name: California |
| GrantInformation_xml | – fundername: Research to Prevent Blindness, Inc, New York, New York grantid: Unrestricted Grant to Duke University |
| GroupedDBID | --- -~X .55 .GJ .VT 0R~ 18M 23N 2WC 354 39C 3O- 4.4 40O 53G 5GY 5RE 5VS 6J9 7X7 7~S 88E 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAWJN ABAAH ABJNI ABKDF ABMQD ABTFR ABUWG ABVAJ ACCCW ACGFO ACGFS ACGTL ACHTP ACMFJ ACNCT ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FYUFA H13 HAJ HMCUK HYE HZ~ IAO IEA IHR IOF ITC J5H KQ8 L7B M1P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 W8F WH7 WOQ X7M XOL YFH YQY ZGI AAFWJ AAYXX ACQHZ AERUA AFFHD CITATION PHGZM PJZUB PPXIY CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-b432t-ffa794900bec19dd0eca9e4ca08bfeee3566fb0ef0ecbc6f464d27c97391b9dc3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760935500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0007-1161 1468-2079 |
| IngestDate | Fri Sep 05 10:14:38 EDT 2025 Tue Oct 07 07:17:12 EDT 2025 Mon Jul 21 05:14:14 EDT 2025 Sat Nov 29 03:06:08 EST 2025 Tue Nov 18 22:18:27 EST 2025 Thu Apr 24 23:09:47 EDT 2025 Thu Apr 24 22:49:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | retina diagnostic tests/investigation imaging |
| Language | English |
| License | Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b432t-ffa794900bec19dd0eca9e4ca08bfeee3566fb0ef0ecbc6f464d27c97391b9dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2229-5343 0000-0003-4403-5996 0000-0001-7909-510X 0000-0003-4980-845X 0000-0001-7675-689X |
| PMID | 33243829 |
| PQID | 2630440689 |
| PQPubID | 2041039 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2465436919 proquest_journals_2630440689 pubmed_primary_33243829 crossref_citationtrail_10_1136_bjophthalmol_2020_317659 crossref_primary_10_1136_bjophthalmol_2020_317659 bmj_primary_10_1136_bjophthalmol_2020_317659 bmj_journals_10_1136_bjophthalmol_2020_317659 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | BMA House, Tavistock Square, London, WC1H 9JR |
| PublicationPlace_xml | – name: BMA House, Tavistock Square, London, WC1H 9JR – name: England – name: London |
| PublicationTitle | British journal of ophthalmology |
| PublicationTitleAbbrev | Br J Ophthalmol |
| PublicationTitleAlternate | Br J Ophthalmol |
| PublicationYear | 2022 |
| Publisher | BMJ Publishing Group Ltd BMJ Publishing Group LTD |
| Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group LTD |
| References | Leuzy, Heurling, Ashton (R22) 2018; 91 Shi, Zheng, Li (R21) 2018; 22 Heringa, Bouvy, van den Berg (R6) 2013; 33 Lad, Mukherjee, Stinnett (R9) 2018; 13 Choi, Park, Kim (R11) 2016; 11 Cheung, Ikram, Chen (R24) 2017; 57 Hart, Koronyo, Black (R5) 2016; 132 Liu, Cheng, Wang (R20) 2018; 16 Chan, Sun, Tang (R8) 2019; 126 Lee, Apte (R32) 2020 Almeida, Pires, Figueiredo (R17) 2019; 11 Liao, Zhu, Peng (R2) 2018; 10 Lu, Li, Zhang (R12) 2010; 480 Kingma, JL (R27) 2015 Basaia, Agosta, Wagner (R19) 2019; 21 Uchida, Bermel, Bonner-Jackson (R15) 2018; 59 Ukalovic, Cao, Lee (R31) 2018; 15 Blennow, Zetterberg (R1) 2018 Cipollini, Abdolrahimzadeh, Troili (R7) 2019 London, Benhar, Schwartz (R4) 2013; 9 Spasov, Duggento, Lio (R23) 2019; 189 Amoroso, Fanizzi, La Rocca (R18) 2018; 302 Csincsik, MacGillivray, Flynn (R30) 2018; 59 Bulut, Kurtuluş, Gözkaya (R14) 2018; 102 Cheung, Ong, Hilal (R10) 2015; 45 Grewal, Polascik, Hoffmeyer (R13) 2018; 49 He, Zhang, Ren (R25) 2016 Yoon, Grewal, Thompson (R16) 2019; 3 Hastie, Tibshirani, Friedman (R26) 2008; 241-245 Zhang, Goodfellow, Metaxas (R29) 2018 McKhann, Knopman, Chertkow (R3) 2011; 7 Hart, Koronyo, Black 2016; 132 Cheung, Ong, Hilal 2015; 45 Cipollini, Abdolrahimzadeh, Troili 2019 Blennow, Zetterberg 2018 Shi, Zheng, Li 2018; 22 Basaia, Agosta, Wagner 2019; 21 Cheung, Ikram, Chen 2017; 57 McKhann, Knopman, Chertkow 2011; 7 Leuzy, Heurling, Ashton 2018; 91 Ukalovic, Cao, Lee 2018; 15 Heringa, Bouvy, van den Berg 2013; 33 Kingma, JL 2015 Zhang, Goodfellow, Metaxas 2018 Hastie, Tibshirani, Friedman 2008; 241-245 London, Benhar, Schwartz 2013; 9 Amoroso, Fanizzi, La Rocca 2018; 302 He, Zhang, Ren 2016 Liu, Cheng, Wang 2018; 16 Yoon, Grewal, Thompson 2019; 3 Chan, Sun, Tang 2019; 126 Choi, Park, Kim 2016; 11 Bulut, Kurtuluş, Gözkaya 2018; 102 Csincsik, MacGillivray, Flynn 2018; 59 Liao, Zhu, Peng 2018; 10 Lu, Li, Zhang 2010; 480 Uchida, Bermel, Bonner-Jackson 2018; 59 Almeida, Pires, Figueiredo 2019; 11 Lee, Apte 2020 Grewal, Polascik, Hoffmeyer 2018; 49 Lad, Mukherjee, Stinnett 2018; 13 Spasov, Duggento, Lio 2019; 189 2022021802300787000_106.3.388.28 2022021802300787000_106.3.388.29 2022021802300787000_106.3.388.27 2022021802300787000_106.3.388.8 2022021802300787000_106.3.388.24 2022021802300787000_106.3.388.25 2022021802300787000_106.3.388.23 2022021802300787000_106.3.388.20 Grewal (2022021802300787000_106.3.388.13) 2018; 49 Hastie (2022021802300787000_106.3.388.26) 2008; 241-245 Yoon (2022021802300787000_106.3.388.16) 2019; 3 Csincsik (2022021802300787000_106.3.388.30) 2018; 59 Amoroso (2022021802300787000_106.3.388.18) 2018; 302 2022021802300787000_106.3.388.4 Cheung (2022021802300787000_106.3.388.10) 2015; 45 2022021802300787000_106.3.388.5 2022021802300787000_106.3.388.6 2022021802300787000_106.3.388.7 2022021802300787000_106.3.388.1 2022021802300787000_106.3.388.3 Uchida (2022021802300787000_106.3.388.15) 2018; 59 Liao (2022021802300787000_106.3.388.2) 2018; 10 2022021802300787000_106.3.388.14 Shi (2022021802300787000_106.3.388.21) 2018; 22 2022021802300787000_106.3.388.12 Choi (2022021802300787000_106.3.388.11) 2016; 11 2022021802300787000_106.3.388.32 Ukalovic (2022021802300787000_106.3.388.31) 2018; 15 Basaia (2022021802300787000_106.3.388.19) 2019; 21 Almeida (2022021802300787000_106.3.388.17) 2019; 11 Leuzy (2022021802300787000_106.3.388.22) 2018; 91 Lad (2022021802300787000_106.3.388.9) 2018; 13 33495160 - Br J Ophthalmol. 2021 May;105(5):593-594 |
| References_xml | – volume: 302 start-page: 3 year: 2018 ident: R18 article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge publication-title: Journal of Neuroscience Methods – volume: 9 start-page: 44 year: 2013 ident: R4 article-title: The retina as a window to the brain-from eye research to CNS disorders publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2012.227 – start-page: 770 year: 2016 ident: R25 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 13 year: 2018 ident: R9 article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0192646 – volume: 45 start-page: 45 year: 2015 ident: R10 article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-141659 – volume: 33 start-page: 983 year: 2013 ident: R6 article-title: Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2013.58 – volume: 7 start-page: 263 year: 2011 ident: R3 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – year: 2018 ident: R1 article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future publication-title: J Intern Med – volume: 59 start-page: 182 year: 2018 ident: R30 article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study publication-title: Ophthalmic Res doi: 10.1159/000487053 – volume: 189 start-page: 276 year: 2019 ident: R23 article-title: for the Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning apprroach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: NeuroImage – year: 2018 ident: R29 article-title: Self-Attention generative Adversarial networks publication-title: Stat – volume: 126 start-page: 497 year: 2019 ident: R8 article-title: Spectral-Domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.08.009 – volume: 21 year: 2019 ident: R19 article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101645 – volume: 132 start-page: 767 year: 2016 ident: R5 article-title: Ocular indicators of Alzheimer's: exploring disease in the retina publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1613-6 – volume: 59 start-page: 2768 year: 2018 ident: R15 article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease publication-title: Visual Neuroscience – volume: 11 start-page: 659 year: 2019 ident: R17 article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment publication-title: Alzheimers Dement doi: 10.1016/j.dadm.2019.08.006 – volume: 10 year: 2018 ident: R2 article-title: Potential utility of retinal imaging for Alzheimer's disease: a review publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00188 – volume: 16 start-page: 295 year: 2018 ident: R20 article-title: Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis publication-title: Neuroinformatics – volume: 91 start-page: 291 year: 2018 ident: R22 article-title: In vivo Detection of Alzheimer's Disease publication-title: Yale J Biol Med – volume: 241-245 start-page: 392 year: 2008 ident: R26 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Springer Series in Statistics – volume: 11 year: 2016 ident: R11 article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease publication-title: PLoS One doi: 10.1371/journal.pone.0162202 – year: 2020 ident: R32 article-title: Retinal Biomarkers of Alzheimer’s Disease publication-title: Am J Ophthalmol – volume: 49 start-page: 440 year: 2018 ident: R13 article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report publication-title: Ophthalmic Surg Lasers Imaging Retina doi: 10.3928/23258160-20180601-09 – volume: 102 start-page: 233 year: 2018 ident: R14 article-title: Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2017-310476 – volume: 3 start-page: 489 year: 2019 ident: R16 article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants publication-title: Ophthalmology Retina doi: 10.1016/j.oret.2019.02.002 – volume: 22 start-page: 173 year: 2018 ident: R21 article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2655720 – volume: 15 start-page: 743 year: 2018 ident: R31 article-title: Drusen in the peripheral retina of the Alzheimer's eye publication-title: Curr Alzheimer Res doi: 10.2174/1567205015666180123122637 – volume: 57 start-page: 89 year: 2017 ident: R24 article-title: Imaging retina to study dementia and stroke publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2017.01.001 – year: 2019 ident: R7 article-title: Neurocognitive assessment and retinal thickness alterations in Alzheimer disease: is there a correlation? publication-title: J Neuroophthalmol – start-page: 1 year: 2015 ident: R27 article-title: Adam: a method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 480 start-page: 69 year: 2010 ident: R12 article-title: Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography publication-title: Neurosci Lett doi: 10.1016/j.neulet.2010.06.006 – volume: 189 start-page: 276 year: 2019 article-title: for the Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning apprroach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: NeuroImage – year: 2020 article-title: Retinal Biomarkers of Alzheimer’s Disease publication-title: Am J Ophthalmol – volume: 9 start-page: 44 year: 2013 article-title: The retina as a window to the brain-from eye research to CNS disorders publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2012.227 – volume: 57 start-page: 89 year: 2017 article-title: Imaging retina to study dementia and stroke publication-title: Prog Retin Eye Res doi: 10.1016/j.preteyeres.2017.01.001 – year: 2018 article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future publication-title: J Intern Med – year: 2018 article-title: Self-Attention generative Adversarial networks publication-title: Stat – volume: 480 start-page: 69 year: 2010 article-title: Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography publication-title: Neurosci Lett doi: 10.1016/j.neulet.2010.06.006 – volume: 3 start-page: 489 year: 2019 article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants publication-title: Ophthalmology Retina doi: 10.1016/j.oret.2019.02.002 – volume: 10 year: 2018 article-title: Potential utility of retinal imaging for Alzheimer's disease: a review publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00188 – volume: 21 year: 2019 article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101645 – volume: 11 start-page: 659 year: 2019 article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment publication-title: Alzheimers Dement doi: 10.1016/j.dadm.2019.08.006 – volume: 16 start-page: 295 year: 2018 article-title: Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis publication-title: Neuroinformatics – volume: 302 start-page: 3 year: 2018 article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge publication-title: Journal of Neuroscience Methods – volume: 22 start-page: 173 year: 2018 article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2655720 – volume: 7 start-page: 263 year: 2011 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – year: 2019 article-title: Neurocognitive assessment and retinal thickness alterations in Alzheimer disease: is there a correlation? publication-title: J Neuroophthalmol – start-page: 770 year: 2016 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1 year: 2015 article-title: Adam: a method for stochastic optimization publication-title: International Conference on Learning Representations – volume: 49 start-page: 440 year: 2018 article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report publication-title: Ophthalmic Surg Lasers Imaging Retina doi: 10.3928/23258160-20180601-09 – volume: 13 year: 2018 article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0192646 – volume: 126 start-page: 497 year: 2019 article-title: Spectral-Domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.08.009 – volume: 45 start-page: 45 year: 2015 article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-141659 – volume: 59 start-page: 2768 year: 2018 article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease publication-title: Visual Neuroscience – volume: 11 year: 2016 article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease publication-title: PLoS One doi: 10.1371/journal.pone.0162202 – volume: 33 start-page: 983 year: 2013 article-title: Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2013.58 – volume: 91 start-page: 291 year: 2018 article-title: In vivo Detection of Alzheimer's Disease publication-title: Yale J Biol Med – volume: 59 start-page: 182 year: 2018 article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study publication-title: Ophthalmic Res doi: 10.1159/000487053 – volume: 132 start-page: 767 year: 2016 article-title: Ocular indicators of Alzheimer's: exploring disease in the retina publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1613-6 – volume: 241-245 start-page: 392 year: 2008 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Springer Series in Statistics – volume: 15 start-page: 743 year: 2018 article-title: Drusen in the peripheral retina of the Alzheimer's eye publication-title: Curr Alzheimer Res doi: 10.2174/1567205015666180123122637 – volume: 102 start-page: 233 year: 2018 article-title: Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2017-310476 – ident: 2022021802300787000_106.3.388.28 – ident: 2022021802300787000_106.3.388.8 doi: 10.1016/j.ophtha.2018.08.009 – volume: 13 year: 2018 ident: 2022021802300787000_106.3.388.9 article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0192646 – volume: 59 start-page: 182 year: 2018 ident: 2022021802300787000_106.3.388.30 article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study publication-title: Ophthalmic Res doi: 10.1159/000487053 – volume: 22 start-page: 173 year: 2018 ident: 2022021802300787000_106.3.388.21 article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2655720 – ident: 2022021802300787000_106.3.388.20 doi: 10.1007/s12021018-9370-4 – ident: 2022021802300787000_106.3.388.3 doi: 10.1016/j.jalz.2011.03.005 – ident: 2022021802300787000_106.3.388.5 doi: 10.1007/s00401-016-1613-6 – volume: 91 start-page: 291 year: 2018 ident: 2022021802300787000_106.3.388.22 article-title: In vivo Detection of Alzheimer's Disease publication-title: Yale J Biol Med – volume: 3 start-page: 489 year: 2019 ident: 2022021802300787000_106.3.388.16 article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants publication-title: Ophthalmology Retina doi: 10.1016/j.oret.2019.02.002 – volume: 21 year: 2019 ident: 2022021802300787000_106.3.388.19 article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101645 – ident: 2022021802300787000_106.3.388.6 doi: 10.1038/jcbfm.2013.58 – volume: 10 year: 2018 ident: 2022021802300787000_106.3.388.2 article-title: Potential utility of retinal imaging for Alzheimer's disease: a review publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00188 – ident: 2022021802300787000_106.3.388.1 doi: 10.1111/joim.12816 – volume: 302 start-page: 3 year: 2018 ident: 2022021802300787000_106.3.388.18 article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2017.12.011 – ident: 2022021802300787000_106.3.388.27 – volume: 241-245 start-page: 392 year: 2008 ident: 2022021802300787000_106.3.388.26 article-title: The elements of statistical learning: data mining, inference, and prediction publication-title: Springer Series in Statistics – ident: 2022021802300787000_106.3.388.25 doi: 10.1109/CVPR.2016.90 – ident: 2022021802300787000_106.3.388.32 doi: 10.1016/j.ajo.2020.04.040 – ident: 2022021802300787000_106.3.388.7 doi: 10.1097/WNO.0000000000000831 – ident: 2022021802300787000_106.3.388.29 – volume: 11 year: 2016 ident: 2022021802300787000_106.3.388.11 article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease publication-title: PLoS One – volume: 15 start-page: 743 year: 2018 ident: 2022021802300787000_106.3.388.31 article-title: Drusen in the peripheral retina of the Alzheimer's eye publication-title: Curr Alzheimer Res doi: 10.2174/1567205015666180123122637 – ident: 2022021802300787000_106.3.388.23 doi: 10.1016/j.neuroimage.2019.01.031 – ident: 2022021802300787000_106.3.388.14 doi: 10.1136/bjophthalmol-2017-310476 – volume: 49 start-page: 440 year: 2018 ident: 2022021802300787000_106.3.388.13 article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report publication-title: Ophthalmic Surg Lasers Imaging Retina doi: 10.3928/23258160-20180601-09 – volume: 59 start-page: 2768 year: 2018 ident: 2022021802300787000_106.3.388.15 article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease publication-title: Visual Neuroscience – ident: 2022021802300787000_106.3.388.12 doi: 10.1016/j.neulet.2010.06.006 – ident: 2022021802300787000_106.3.388.4 doi: 10.1038/nrneurol.2012.227 – volume: 45 start-page: 45 year: 2015 ident: 2022021802300787000_106.3.388.10 article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-141659 – ident: 2022021802300787000_106.3.388.24 doi: 10.1016/j.preteyeres.2017.01.001 – volume: 11 start-page: 659 year: 2019 ident: 2022021802300787000_106.3.388.17 article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment publication-title: Alzheimers Dement – reference: 33495160 - Br J Ophthalmol. 2021 May;105(5):593-594 |
| SSID | ssj0002617 |
| Score | 2.6141617 |
| Snippet | Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images... To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient... |
| SourceID | proquest pubmed crossref bmj |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 388 |
| SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer's disease Biomarkers Clinical science diagnostic tests/investigation Fluorescein Angiography - methods Humans imaging Machine learning Medical diagnosis Medical imaging Neural networks Neural Networks, Computer Patients Retina Retina - diagnostic imaging Retinal Vessels Tomography Tomography, Optical Coherence - methods |
| Title | Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging |
| URI | https://bjo.bmj.com/content/106/3/388.full https://bjo.bmj.com/content/early/2020/11/25/bjophthalmol-2020-317659.full https://www.ncbi.nlm.nih.gov/pubmed/33243829 https://www.proquest.com/docview/2630440689 https://www.proquest.com/docview/2465436919 |
| Volume | 106 |
| WOSCitedRecordID | wos000760935500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1468-2079 dateEnd: 20250614 omitProxy: false ssIdentifier: ssj0002617 issn: 0007-1161 databaseCode: 7X7 dateStart: 19220101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1468-2079 dateEnd: 20250614 omitProxy: false ssIdentifier: ssj0002617 issn: 0007-1161 databaseCode: BENPR dateStart: 19220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixCXlneXlspIHLGaxF47PqG2asUBVhUCaW-Rn-y2m3jZpJXKib_B3-OX1Ha8WziAVuKSHDy2E82MPfY8PgDeGG1KaYYaMU0zRJjOUWlyg7Q_qzBLFKE0Jgp_YKNROR7z83Th1qawyuWaGBdq7VS4Iz8sKA7oyLTk7-bfUECNCt7VBKGxAbYCbHaQczZeHbhitfHe_GUo96bNMpIH00N54eaTbiJmtZt5SYlpxIyGiqUbsr74c5P6i-UZd6Cznf_99kdgO9me8KgXlsfgnmmegAcfk3f9Kbg8cc11EkVPF0pdxlcMFIedg9OY1WtvYHtTzzsXq73Co9n3iZnWZvHrx88WJocPDPH0X2EMV6yd9sOEbMkw6rSOuEjPwJez088n71ECY0CS4KJD1gqvujzLPNNzrnVmlOCGKJGV0hpjsLcLrcyM9Q1SUUso0QVTnGGeS64Vfg42G9eYXQAl1d4sKD0JtwRTKQtBhliIoWUiKO0AIM-DKilTW8VzCqbV7zyrAs-qnmcD8DbQz_vyHGuQsyVzK5UKoQc8jtkaPfNVz_Vn21_KxN0f3QnEALxeNXvFDt4a0Rh35WlCpTtMee5pXvRyt5oUezMYlwV_-e_B98DDImRrxJC5fbDZLa7MK3BfXXfTdnEQdSU-ywOwdXw6Ov90C0Q7IuQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61WwRc-P9ZKGAkuGE1ib12fEColFatul1VqEi9pXFss1s2ybKbFi0nXoOX4KF4Emwn2cIBtJceOOXg8TiOP49n4vkBeKGVjqXuKcwVCzDlKsSxDjVW1lbhhmaUMR8o3OeDQXx8LA5X4EcbC-PcKluZ6AW1KjP3j3wjYsRVR2axeDP5jF3VKHe72pbQqGGxr-dfrMk2e733zq7vyyja2T7a2sVNVQEsKYkqbExqMSiCwL59KJQKdJYKTbM0iKXRWhOr4BgZaGMbZMYMZVRFPBOciFAKlRHLdxXWKKGs14G1t9uDw_cL2e_ym9cKN8ehVaZa3yHCNuRpORlWw3Scl2OLTR-4zJnLkboq89M_j8W_6Lr-zNu5-b99rVtwo9Gu0Wa9HW7Dii7uwNWDxn_gLnzaKovzZrNZOpfM0z-8KzyqSjTycctmjmbzfFKVPp8t2hx_HepRrqc_v32foeZKC7mIgY_IO2TmpbJsXDyo4zrKfeWne_DhUqZ6HzpFWeiHgCRTVvGJLYkwlDApo5T2SJr2DE-dWOoCtmueNOJilnhLjLDkd4wkDiNJjZEuvHL0kzoByRLkvAVTkjWp3l3FkfESPcNFz-VHW28xeDGjCwB24fmi2Youdx-VFro8szQulx9hIrQ0D2qcLwYlVtEncSQe_Zv5M7i2e3TQT_p7g_3HcD1ysSneQXAdOtX0TD-BK9l5NZpNnzY7FcHJZcP9F1wvg4s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELb6gyoutPwUlrZgJLhhbRJn7fiAUGm7ompZrRBIvYU4ttktm2TZpEXLidfgVXgcnoSxk2zhANpLD5yiyOOxHH8ez8Tzg9BTrXQkdU8RrphHQq58EmlfEwW2CjdhGjLmAoVP-WAQnZ2J4Qr60cbCWLfKViY6Qa2K1P4j7waM2urILBJd07hFDA_7L6efia0gZW9a23IaNURO9PwLmG_li-NDWOtnQdA_enfwmjQVBogMaVARYxLAo_A8mIkvlPJ0mggdpokXSaO1pqDsGOlpAw0yZSZkoQp4KjgVvhQqpcB3Fa3bVzD81l8dDYZvF-eAzXVeK9-c-KBYtX5ElHXleTEdVaNkkhUTwKkLYubM5ktdldn5n0fkX_Red_71N__nL7eFbjVaN96vt8lttKLzO2jjTeNXcBd9Oijyy2YTAp1N8ukezkUeVwUeu3hmM8flPJtWhctzi_cnX0d6nOnZz2_fS9xcdWEbSfARO0fNrFDAxsaJWq7jzFWEuofeX8tUt9FaXuT6AcKSKVCIIiARJqRMyiAJezRJeoYnVlx1EIH1jxsxUsbOQqMs_h0vscVLXOOlg55b-mmdmGQJct4CK06bFPC2EslkiZ7-oufyo-22eLya0RUYO-jJohlEmr2nSnJdXACNzfFHmfCB5n6N-cWgFAwAGgXi4b-ZP0YbgPH49HhwsoNuBjZkxfkN7qK1anah99CN9LIal7NHzabF6MN1o_0Xoq2MTg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+to+identify+symptomatic+Alzheimer%E2%80%99s+disease+using+multimodal+retinal+imaging&rft.jtitle=British+journal+of+ophthalmology&rft.au=Wisely%2C+C.+Ellis&rft.au=Wang%2C+Dong&rft.au=Henao%2C+Ricardo&rft.au=Grewal%2C+Dilraj+S.&rft.date=2022-03-01&rft.issn=0007-1161&rft.eissn=1468-2079&rft_id=info:doi/10.1136%2Fbjophthalmol-2020-317659&rft.externalDBID=bjo&rft.externalDocID=bjophthalmol |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon |