Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging

Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:British journal of ophthalmology Ročník 106; číslo 3; s. 388 - 395
Hlavní autoři: Wisely, C. Ellis, Wang, Dong, Henao, Ricardo, Grewal, Dilraj S., Thompson, Atalie C., Robbins, Cason B., Yoon, Stephen P., Soundararajan, Srinath, Polascik, Bryce W., Burke, James R., Liu, Andy, Carin, Lawrence, Fekrat, Sharon
Médium: Journal Article
Jazyk:angličtina
Vydáno: BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.03.2022
BMJ Publishing Group LTD
Témata:
ISSN:0007-1161, 1468-2079, 1468-2079
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.Results284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).ConclusionOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
AbstractList Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images and patient data.MethodsColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.Results284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).ConclusionOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data. Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data. 284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943). Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data.BACKGROUND/AIMSTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient data.Colour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.METHODSColour maps of ganglion cell-inner plexiform layer (GC-IPL) thickness, superficial capillary plexus (SCP) optical coherence tomography angiography (OCTA) images, and ultra-widefield (UWF) colour and fundus autofluorescence (FAF) scanning laser ophthalmoscopy images were captured in individuals with AD or healthy cognition. A CNN to predict AD diagnosis was developed using multimodal retinal images, OCT and OCTA quantitative data, and patient data.284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).RESULTS284 eyes of 159 subjects (222 eyes from 123 cognitively healthy subjects and 62 eyes from 36 subjects with AD) were used to develop the model. Area under the receiving operating characteristic curve (AUC) values for predicted probability of AD for the independent test set varied by input used: UWF colour AUC 0.450 (95% CI 0.282, 0.592), OCTA SCP 0.582 (95% CI 0.440, 0.724), UWF FAF 0.618 (95% CI 0.462, 0.773), GC-IPL maps 0.809 (95% CI 0.700, 0.919). A model incorporating all images, quantitative data and patient data (AUC 0.836 (CI 0.729, 0.943)) performed similarly to models only incorporating all images (AUC 0.829 (95% CI 0.719, 0.939)). GC-IPL maps, quantitative data and patient data AUC 0.841 (95% CI 0.739, 0.943).Our CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.CONCLUSIONOur CNN used multimodal retinal images to successfully predict diagnosis of symptomatic AD in an independent test set. GC-IPL maps were the most useful single inputs for prediction. Models including only images performed similarly to models also including quantitative data and patient data.
Author Grewal, Dilraj S.
Burke, James R.
Wang, Dong
Henao, Ricardo
Yoon, Stephen P.
Polascik, Bryce W.
Liu, Andy
Carin, Lawrence
Fekrat, Sharon
Wisely, C. Ellis
Robbins, Cason B.
Soundararajan, Srinath
Thompson, Atalie C.
Author_xml – sequence: 1
  givenname: C. Ellis
  orcidid: 0000-0001-7675-689X
  surname: Wisely
  fullname: Wisely, C. Ellis
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 2
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
– sequence: 3
  givenname: Ricardo
  orcidid: 0000-0003-4980-845X
  surname: Henao
  fullname: Henao, Ricardo
  organization: Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
– sequence: 4
  givenname: Dilraj S.
  orcidid: 0000-0002-2229-5343
  surname: Grewal
  fullname: Grewal, Dilraj S.
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 5
  givenname: Atalie C.
  surname: Thompson
  fullname: Thompson, Atalie C.
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 6
  givenname: Cason B.
  orcidid: 0000-0001-7909-510X
  surname: Robbins
  fullname: Robbins, Cason B.
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 7
  givenname: Stephen P.
  surname: Yoon
  fullname: Yoon, Stephen P.
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 8
  givenname: Srinath
  surname: Soundararajan
  fullname: Soundararajan, Srinath
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 9
  givenname: Bryce W.
  surname: Polascik
  fullname: Polascik, Bryce W.
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
– sequence: 10
  givenname: James R.
  surname: Burke
  fullname: Burke, James R.
  organization: Department of Neurology, Duke University Health System, Durham, NC, USA
– sequence: 11
  givenname: Andy
  surname: Liu
  fullname: Liu, Andy
  organization: Department of Neurology, Duke University Health System, Durham, NC, USA
– sequence: 12
  givenname: Lawrence
  surname: Carin
  fullname: Carin, Lawrence
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
– sequence: 13
  givenname: Sharon
  orcidid: 0000-0003-4403-5996
  surname: Fekrat
  fullname: Fekrat, Sharon
  email: sharon.fekrat@duke.edu
  organization: Department of Ophthalmology, Duke University Health System, Durham, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33243829$$D View this record in MEDLINE/PubMed
BookMark eNqVkc2OFCEUhYkZ4_SMvoKpxI2bUihoqtiYTDr-JZO40TUB6jJNDxQtUJp25Wv4ej6JlD2jZjbq6gbudw7ce87QyRQnQKgh-BkhlD_Xu7jflq3yIfq2wx1uKen5WtxDK8L4UK96cYJWGOO-JYSTU3SW864eO076B-iU0o7RoRMrdL2J06fo5-LipHwzwZx-lvI5puumxMaNMBVnD00-hH2JQRVnmgv_ZQsuQPr-9VtuRpdBZWjm7KarJsy-uBDHapOguMXVBXVVWw_Rfat8hkc39Rx9ePXy_eZNe_nu9dvNxWWrGe1Ka63qBRMYazBEjCMGowQwo_CgLQDQNedWY7C1oQ23jLOx643oqSBajIaeo6dH332KH2fIRQaXDXivJohzlh3ja0a5IKKiT-6guzin-udKcYoZw3xYqMc31KwDjHKf6kTpIG_XWIEXR8CkmHMCK40ratlpScp5SbBccpN_5iaX3OQxt2ow3DG4feMfpPQo1WH3Pyr2W_Vr5r_KfgAF_MiG
CitedBy_id crossref_primary_10_1002_dad2_70041
crossref_primary_10_47102_annals_acadmedsg_2022369
crossref_primary_10_1016_j_msard_2024_105743
crossref_primary_10_1097_APO_0000000000000515
crossref_primary_10_1109_JBHI_2024_3448238
crossref_primary_10_1038_s41598_025_12498_2
crossref_primary_10_1016_j_blre_2023_101102
crossref_primary_10_1038_s41598_024_58121_8
crossref_primary_10_3390_jpm13071118
crossref_primary_10_1097_ICU_0000000000000877
crossref_primary_10_3390_math11122664
crossref_primary_10_7759_s44389_025_03800_4
crossref_primary_10_1016_j_survophthal_2025_07_005
crossref_primary_10_1007_s00417_024_06394_0
crossref_primary_10_3233_JAD_230055
crossref_primary_10_1007_s40120_023_00526_0
crossref_primary_10_1038_s41433_021_01556_4
crossref_primary_10_1007_s00221_025_07076_x
crossref_primary_10_1097_ICU_0000000000001174
crossref_primary_10_1186_s12938_023_01110_1
crossref_primary_10_1002_mef2_75
crossref_primary_10_1002_dad2_70132
crossref_primary_10_3233_JAD_220596
crossref_primary_10_1136_jnnp_2024_335723
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_1016_j_preteyeres_2024_101290
crossref_primary_10_1136_bjophthalmol_2020_318407
crossref_primary_10_1016_j_compbiomed_2023_107411
crossref_primary_10_1016_j_oret_2022_03_001
crossref_primary_10_1136_bjo_2023_323283
crossref_primary_10_1016_j_compbiomed_2025_110412
crossref_primary_10_1007_s11042_024_20299_4
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1016_j_oret_2024_01_019
crossref_primary_10_1186_s13024_025_00819_y
crossref_primary_10_1038_s41597_025_04930_z
crossref_primary_10_3390_diagnostics12071714
crossref_primary_10_4103_sjopt_sjopt_153_23
crossref_primary_10_1007_s11042_025_20611_w
crossref_primary_10_1016_j_hroo_2025_01_019
crossref_primary_10_1016_j_neurobiolaging_2023_01_015
crossref_primary_10_1002_VIW_20220070
crossref_primary_10_1016_j_energy_2023_130158
crossref_primary_10_3390_app15094963
crossref_primary_10_1002_widm_1506
crossref_primary_10_1038_s41598_024_51612_8
crossref_primary_10_1016_j_eclinm_2025_103089
crossref_primary_10_1111_ceo_14258
crossref_primary_10_1002_advs_202507629
crossref_primary_10_3390_jcm12010152
crossref_primary_10_1016_j_vaccine_2024_01_059
crossref_primary_10_1038_s41598_024_54251_1
crossref_primary_10_1002_oby_23807
crossref_primary_10_1007_s00417_022_05741_3
crossref_primary_10_1136_bmjopen_2021_058552
crossref_primary_10_3390_s24165192
crossref_primary_10_1002_mds_28775
crossref_primary_10_1002_alz_13529
crossref_primary_10_1016_j_preteyeres_2024_101273
crossref_primary_10_1080_08164622_2023_2235346
crossref_primary_10_1109_ACCESS_2024_3434670
crossref_primary_10_1002_alz_70476
Cites_doi 10.1038/nrneurol.2012.227
10.1371/journal.pone.0192646
10.3233/JAD-141659
10.1038/jcbfm.2013.58
10.1016/j.jalz.2011.03.005
10.1159/000487053
10.1016/j.ophtha.2018.08.009
10.1016/j.nicl.2018.101645
10.1007/s00401-016-1613-6
10.1016/j.dadm.2019.08.006
10.3389/fnagi.2018.00188
10.1371/journal.pone.0162202
10.3928/23258160-20180601-09
10.1136/bjophthalmol-2017-310476
10.1016/j.oret.2019.02.002
10.1109/JBHI.2017.2655720
10.2174/1567205015666180123122637
10.1016/j.preteyeres.2017.01.001
10.1016/j.neulet.2010.06.006
10.1007/s12021018-9370-4
10.1111/joim.12816
10.1016/j.jneumeth.2017.12.011
10.1109/CVPR.2016.90
10.1016/j.ajo.2020.04.040
10.1097/WNO.0000000000000831
10.1016/j.neuroimage.2019.01.031
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
Copyright_xml – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1136/bjophthalmol-2020-317659
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-2079
EndPage 395
ExternalDocumentID 33243829
10_1136_bjophthalmol_2020_317659
bjophthalmol
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GrantInformation_xml – fundername: Research to Prevent Blindness, Inc, New York, New York
  grantid: Unrestricted Grant to Duke University
GroupedDBID ---
-~X
.55
.GJ
.VT
0R~
18M
23N
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAWJN
ABAAH
ABJNI
ABKDF
ABMQD
ABTFR
ABUWG
ABVAJ
ACCCW
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACNCT
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FYUFA
H13
HAJ
HMCUK
HYE
HZ~
IAO
IEA
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
W8F
WH7
WOQ
X7M
XOL
YFH
YQY
ZGI
AAFWJ
AAYXX
ACQHZ
AERUA
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-b432t-ffa794900bec19dd0eca9e4ca08bfeee3566fb0ef0ecbc6f464d27c97391b9dc3
IEDL.DBID 7X7
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760935500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1161
1468-2079
IngestDate Fri Sep 05 10:14:38 EDT 2025
Tue Oct 07 07:17:12 EDT 2025
Mon Jul 21 05:14:14 EDT 2025
Sat Nov 29 03:06:08 EST 2025
Tue Nov 18 22:18:27 EST 2025
Thu Apr 24 23:09:47 EDT 2025
Thu Apr 24 22:49:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords retina
diagnostic tests/investigation
imaging
Language English
License Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b432t-ffa794900bec19dd0eca9e4ca08bfeee3566fb0ef0ecbc6f464d27c97391b9dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2229-5343
0000-0003-4403-5996
0000-0001-7909-510X
0000-0003-4980-845X
0000-0001-7675-689X
PMID 33243829
PQID 2630440689
PQPubID 2041039
PageCount 8
ParticipantIDs proquest_miscellaneous_2465436919
proquest_journals_2630440689
pubmed_primary_33243829
crossref_citationtrail_10_1136_bjophthalmol_2020_317659
crossref_primary_10_1136_bjophthalmol_2020_317659
bmj_primary_10_1136_bjophthalmol_2020_317659
bmj_journals_10_1136_bjophthalmol_2020_317659
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace BMA House, Tavistock Square, London, WC1H 9JR
PublicationPlace_xml – name: BMA House, Tavistock Square, London, WC1H 9JR
– name: England
– name: London
PublicationTitle British journal of ophthalmology
PublicationTitleAbbrev Br J Ophthalmol
PublicationTitleAlternate Br J Ophthalmol
PublicationYear 2022
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
References Leuzy, Heurling, Ashton (R22) 2018; 91
Shi, Zheng, Li (R21) 2018; 22
Heringa, Bouvy, van den Berg (R6) 2013; 33
Lad, Mukherjee, Stinnett (R9) 2018; 13
Choi, Park, Kim (R11) 2016; 11
Cheung, Ikram, Chen (R24) 2017; 57
Hart, Koronyo, Black (R5) 2016; 132
Liu, Cheng, Wang (R20) 2018; 16
Chan, Sun, Tang (R8) 2019; 126
Lee, Apte (R32) 2020
Almeida, Pires, Figueiredo (R17) 2019; 11
Liao, Zhu, Peng (R2) 2018; 10
Lu, Li, Zhang (R12) 2010; 480
Kingma, JL (R27) 2015
Basaia, Agosta, Wagner (R19) 2019; 21
Uchida, Bermel, Bonner-Jackson (R15) 2018; 59
Ukalovic, Cao, Lee (R31) 2018; 15
Blennow, Zetterberg (R1) 2018
Cipollini, Abdolrahimzadeh, Troili (R7) 2019
London, Benhar, Schwartz (R4) 2013; 9
Spasov, Duggento, Lio (R23) 2019; 189
Amoroso, Fanizzi, La Rocca (R18) 2018; 302
Csincsik, MacGillivray, Flynn (R30) 2018; 59
Bulut, Kurtuluş, Gözkaya (R14) 2018; 102
Cheung, Ong, Hilal (R10) 2015; 45
Grewal, Polascik, Hoffmeyer (R13) 2018; 49
He, Zhang, Ren (R25) 2016
Yoon, Grewal, Thompson (R16) 2019; 3
Hastie, Tibshirani, Friedman (R26) 2008; 241-245
Zhang, Goodfellow, Metaxas (R29) 2018
McKhann, Knopman, Chertkow (R3) 2011; 7
Hart, Koronyo, Black 2016; 132
Cheung, Ong, Hilal 2015; 45
Cipollini, Abdolrahimzadeh, Troili 2019
Blennow, Zetterberg 2018
Shi, Zheng, Li 2018; 22
Basaia, Agosta, Wagner 2019; 21
Cheung, Ikram, Chen 2017; 57
McKhann, Knopman, Chertkow 2011; 7
Leuzy, Heurling, Ashton 2018; 91
Ukalovic, Cao, Lee 2018; 15
Heringa, Bouvy, van den Berg 2013; 33
Kingma, JL 2015
Zhang, Goodfellow, Metaxas 2018
Hastie, Tibshirani, Friedman 2008; 241-245
London, Benhar, Schwartz 2013; 9
Amoroso, Fanizzi, La Rocca 2018; 302
He, Zhang, Ren 2016
Liu, Cheng, Wang 2018; 16
Yoon, Grewal, Thompson 2019; 3
Chan, Sun, Tang 2019; 126
Choi, Park, Kim 2016; 11
Bulut, Kurtuluş, Gözkaya 2018; 102
Csincsik, MacGillivray, Flynn 2018; 59
Liao, Zhu, Peng 2018; 10
Lu, Li, Zhang 2010; 480
Uchida, Bermel, Bonner-Jackson 2018; 59
Almeida, Pires, Figueiredo 2019; 11
Lee, Apte 2020
Grewal, Polascik, Hoffmeyer 2018; 49
Lad, Mukherjee, Stinnett 2018; 13
Spasov, Duggento, Lio 2019; 189
2022021802300787000_106.3.388.28
2022021802300787000_106.3.388.29
2022021802300787000_106.3.388.27
2022021802300787000_106.3.388.8
2022021802300787000_106.3.388.24
2022021802300787000_106.3.388.25
2022021802300787000_106.3.388.23
2022021802300787000_106.3.388.20
Grewal (2022021802300787000_106.3.388.13) 2018; 49
Hastie (2022021802300787000_106.3.388.26) 2008; 241-245
Yoon (2022021802300787000_106.3.388.16) 2019; 3
Csincsik (2022021802300787000_106.3.388.30) 2018; 59
Amoroso (2022021802300787000_106.3.388.18) 2018; 302
2022021802300787000_106.3.388.4
Cheung (2022021802300787000_106.3.388.10) 2015; 45
2022021802300787000_106.3.388.5
2022021802300787000_106.3.388.6
2022021802300787000_106.3.388.7
2022021802300787000_106.3.388.1
2022021802300787000_106.3.388.3
Uchida (2022021802300787000_106.3.388.15) 2018; 59
Liao (2022021802300787000_106.3.388.2) 2018; 10
2022021802300787000_106.3.388.14
Shi (2022021802300787000_106.3.388.21) 2018; 22
2022021802300787000_106.3.388.12
Choi (2022021802300787000_106.3.388.11) 2016; 11
2022021802300787000_106.3.388.32
Ukalovic (2022021802300787000_106.3.388.31) 2018; 15
Basaia (2022021802300787000_106.3.388.19) 2019; 21
Almeida (2022021802300787000_106.3.388.17) 2019; 11
Leuzy (2022021802300787000_106.3.388.22) 2018; 91
Lad (2022021802300787000_106.3.388.9) 2018; 13
33495160 - Br J Ophthalmol. 2021 May;105(5):593-594
References_xml – volume: 302
  start-page: 3
  year: 2018
  ident: R18
  article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge
  publication-title: Journal of Neuroscience Methods
– volume: 9
  start-page: 44
  year: 2013
  ident: R4
  article-title: The retina as a window to the brain-from eye research to CNS disorders
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2012.227
– start-page: 770
  year: 2016
  ident: R25
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 13
  year: 2018
  ident: R9
  article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192646
– volume: 45
  start-page: 45
  year: 2015
  ident: R10
  article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-141659
– volume: 33
  start-page: 983
  year: 2013
  ident: R6
  article-title: Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2013.58
– volume: 7
  start-page: 263
  year: 2011
  ident: R3
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– year: 2018
  ident: R1
  article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future
  publication-title: J Intern Med
– volume: 59
  start-page: 182
  year: 2018
  ident: R30
  article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study
  publication-title: Ophthalmic Res
  doi: 10.1159/000487053
– volume: 189
  start-page: 276
  year: 2019
  ident: R23
  article-title: for the Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning apprroach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: NeuroImage
– year: 2018
  ident: R29
  article-title: Self-Attention generative Adversarial networks
  publication-title: Stat
– volume: 126
  start-page: 497
  year: 2019
  ident: R8
  article-title: Spectral-Domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.08.009
– volume: 21
  year: 2019
  ident: R19
  article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101645
– volume: 132
  start-page: 767
  year: 2016
  ident: R5
  article-title: Ocular indicators of Alzheimer's: exploring disease in the retina
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1613-6
– volume: 59
  start-page: 2768
  year: 2018
  ident: R15
  article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease
  publication-title: Visual Neuroscience
– volume: 11
  start-page: 659
  year: 2019
  ident: R17
  article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment
  publication-title: Alzheimers Dement
  doi: 10.1016/j.dadm.2019.08.006
– volume: 10
  year: 2018
  ident: R2
  article-title: Potential utility of retinal imaging for Alzheimer's disease: a review
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00188
– volume: 16
  start-page: 295
  year: 2018
  ident: R20
  article-title: Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
– volume: 91
  start-page: 291
  year: 2018
  ident: R22
  article-title: In vivo Detection of Alzheimer's Disease
  publication-title: Yale J Biol Med
– volume: 241-245
  start-page: 392
  year: 2008
  ident: R26
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Springer Series in Statistics
– volume: 11
  year: 2016
  ident: R11
  article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162202
– year: 2020
  ident: R32
  article-title: Retinal Biomarkers of Alzheimer’s Disease
  publication-title: Am J Ophthalmol
– volume: 49
  start-page: 440
  year: 2018
  ident: R13
  article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report
  publication-title: Ophthalmic Surg Lasers Imaging Retina
  doi: 10.3928/23258160-20180601-09
– volume: 102
  start-page: 233
  year: 2018
  ident: R14
  article-title: Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2017-310476
– volume: 3
  start-page: 489
  year: 2019
  ident: R16
  article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants
  publication-title: Ophthalmology Retina
  doi: 10.1016/j.oret.2019.02.002
– volume: 22
  start-page: 173
  year: 2018
  ident: R21
  article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2655720
– volume: 15
  start-page: 743
  year: 2018
  ident: R31
  article-title: Drusen in the peripheral retina of the Alzheimer's eye
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205015666180123122637
– volume: 57
  start-page: 89
  year: 2017
  ident: R24
  article-title: Imaging retina to study dementia and stroke
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2017.01.001
– year: 2019
  ident: R7
  article-title: Neurocognitive assessment and retinal thickness alterations in Alzheimer disease: is there a correlation?
  publication-title: J Neuroophthalmol
– start-page: 1
  year: 2015
  ident: R27
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 480
  start-page: 69
  year: 2010
  ident: R12
  article-title: Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2010.06.006
– volume: 189
  start-page: 276
  year: 2019
  article-title: for the Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning apprroach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: NeuroImage
– year: 2020
  article-title: Retinal Biomarkers of Alzheimer’s Disease
  publication-title: Am J Ophthalmol
– volume: 9
  start-page: 44
  year: 2013
  article-title: The retina as a window to the brain-from eye research to CNS disorders
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2012.227
– volume: 57
  start-page: 89
  year: 2017
  article-title: Imaging retina to study dementia and stroke
  publication-title: Prog Retin Eye Res
  doi: 10.1016/j.preteyeres.2017.01.001
– year: 2018
  article-title: Biomarkers for Alzheimer’s disease: current status and prospects for the future
  publication-title: J Intern Med
– year: 2018
  article-title: Self-Attention generative Adversarial networks
  publication-title: Stat
– volume: 480
  start-page: 69
  year: 2010
  article-title: Retinal nerve fiber layer structure abnormalities in early Alzheimer's disease: evidence in optical coherence tomography
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2010.06.006
– volume: 3
  start-page: 489
  year: 2019
  article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants
  publication-title: Ophthalmology Retina
  doi: 10.1016/j.oret.2019.02.002
– volume: 10
  year: 2018
  article-title: Potential utility of retinal imaging for Alzheimer's disease: a review
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00188
– volume: 21
  year: 2019
  article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101645
– volume: 11
  start-page: 659
  year: 2019
  article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment
  publication-title: Alzheimers Dement
  doi: 10.1016/j.dadm.2019.08.006
– volume: 16
  start-page: 295
  year: 2018
  article-title: Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis
  publication-title: Neuroinformatics
– volume: 302
  start-page: 3
  year: 2018
  article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge
  publication-title: Journal of Neuroscience Methods
– volume: 22
  start-page: 173
  year: 2018
  article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2655720
– volume: 7
  start-page: 263
  year: 2011
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– year: 2019
  article-title: Neurocognitive assessment and retinal thickness alterations in Alzheimer disease: is there a correlation?
  publication-title: J Neuroophthalmol
– start-page: 770
  year: 2016
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1
  year: 2015
  article-title: Adam: a method for stochastic optimization
  publication-title: International Conference on Learning Representations
– volume: 49
  start-page: 440
  year: 2018
  article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report
  publication-title: Ophthalmic Surg Lasers Imaging Retina
  doi: 10.3928/23258160-20180601-09
– volume: 13
  year: 2018
  article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192646
– volume: 126
  start-page: 497
  year: 2019
  article-title: Spectral-Domain OCT measurements in Alzheimer's disease: a systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.08.009
– volume: 45
  start-page: 45
  year: 2015
  article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-141659
– volume: 59
  start-page: 2768
  year: 2018
  article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease
  publication-title: Visual Neuroscience
– volume: 11
  year: 2016
  article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162202
– volume: 33
  start-page: 983
  year: 2013
  article-title: Associations between retinal microvascular changes and dementia, cognitive functioning, and brain imaging abnormalities: a systematic review
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2013.58
– volume: 91
  start-page: 291
  year: 2018
  article-title: In vivo Detection of Alzheimer's Disease
  publication-title: Yale J Biol Med
– volume: 59
  start-page: 182
  year: 2018
  article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study
  publication-title: Ophthalmic Res
  doi: 10.1159/000487053
– volume: 132
  start-page: 767
  year: 2016
  article-title: Ocular indicators of Alzheimer's: exploring disease in the retina
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1613-6
– volume: 241-245
  start-page: 392
  year: 2008
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Springer Series in Statistics
– volume: 15
  start-page: 743
  year: 2018
  article-title: Drusen in the peripheral retina of the Alzheimer's eye
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205015666180123122637
– volume: 102
  start-page: 233
  year: 2018
  article-title: Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2017-310476
– ident: 2022021802300787000_106.3.388.28
– ident: 2022021802300787000_106.3.388.8
  doi: 10.1016/j.ophtha.2018.08.009
– volume: 13
  year: 2018
  ident: 2022021802300787000_106.3.388.9
  article-title: Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0192646
– volume: 59
  start-page: 182
  year: 2018
  ident: 2022021802300787000_106.3.388.30
  article-title: Peripheral retinal imaging biomarkers for Alzheimer's disease: a pilot study
  publication-title: Ophthalmic Res
  doi: 10.1159/000487053
– volume: 22
  start-page: 173
  year: 2018
  ident: 2022021802300787000_106.3.388.21
  article-title: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2655720
– ident: 2022021802300787000_106.3.388.20
  doi: 10.1007/s12021018-9370-4
– ident: 2022021802300787000_106.3.388.3
  doi: 10.1016/j.jalz.2011.03.005
– ident: 2022021802300787000_106.3.388.5
  doi: 10.1007/s00401-016-1613-6
– volume: 91
  start-page: 291
  year: 2018
  ident: 2022021802300787000_106.3.388.22
  article-title: In vivo Detection of Alzheimer's Disease
  publication-title: Yale J Biol Med
– volume: 3
  start-page: 489
  year: 2019
  ident: 2022021802300787000_106.3.388.16
  article-title: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants
  publication-title: Ophthalmology Retina
  doi: 10.1016/j.oret.2019.02.002
– volume: 21
  year: 2019
  ident: 2022021802300787000_106.3.388.19
  article-title: Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101645
– ident: 2022021802300787000_106.3.388.6
  doi: 10.1038/jcbfm.2013.58
– volume: 10
  year: 2018
  ident: 2022021802300787000_106.3.388.2
  article-title: Potential utility of retinal imaging for Alzheimer's disease: a review
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00188
– ident: 2022021802300787000_106.3.388.1
  doi: 10.1111/joim.12816
– volume: 302
  start-page: 3
  year: 2018
  ident: 2022021802300787000_106.3.388.18
  article-title: for the Alzheimer’s Disease Neuroimaging Initiative. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2017.12.011
– ident: 2022021802300787000_106.3.388.27
– volume: 241-245
  start-page: 392
  year: 2008
  ident: 2022021802300787000_106.3.388.26
  article-title: The elements of statistical learning: data mining, inference, and prediction
  publication-title: Springer Series in Statistics
– ident: 2022021802300787000_106.3.388.25
  doi: 10.1109/CVPR.2016.90
– ident: 2022021802300787000_106.3.388.32
  doi: 10.1016/j.ajo.2020.04.040
– ident: 2022021802300787000_106.3.388.7
  doi: 10.1097/WNO.0000000000000831
– ident: 2022021802300787000_106.3.388.29
– volume: 11
  year: 2016
  ident: 2022021802300787000_106.3.388.11
  article-title: Macular ganglion cell -Inner plexiform layer thickness is associated with clinical progression in mild cognitive impairment and Alzheimers disease
  publication-title: PLoS One
– volume: 15
  start-page: 743
  year: 2018
  ident: 2022021802300787000_106.3.388.31
  article-title: Drusen in the peripheral retina of the Alzheimer's eye
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205015666180123122637
– ident: 2022021802300787000_106.3.388.23
  doi: 10.1016/j.neuroimage.2019.01.031
– ident: 2022021802300787000_106.3.388.14
  doi: 10.1136/bjophthalmol-2017-310476
– volume: 49
  start-page: 440
  year: 2018
  ident: 2022021802300787000_106.3.388.13
  article-title: Assessment of differences in retinal microvasculature using OCT angiography in Alzheimer's disease: a twin discordance report
  publication-title: Ophthalmic Surg Lasers Imaging Retina
  doi: 10.3928/23258160-20180601-09
– volume: 59
  start-page: 2768
  year: 2018
  ident: 2022021802300787000_106.3.388.15
  article-title: Outer retinal assessment using spectral-domain optical coherence tomography in patients with Alzheimer’s and Parkinson’s disease
  publication-title: Visual Neuroscience
– ident: 2022021802300787000_106.3.388.12
  doi: 10.1016/j.neulet.2010.06.006
– ident: 2022021802300787000_106.3.388.4
  doi: 10.1038/nrneurol.2012.227
– volume: 45
  start-page: 45
  year: 2015
  ident: 2022021802300787000_106.3.388.10
  article-title: Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-141659
– ident: 2022021802300787000_106.3.388.24
  doi: 10.1016/j.preteyeres.2017.01.001
– volume: 11
  start-page: 659
  year: 2019
  ident: 2022021802300787000_106.3.388.17
  article-title: Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment
  publication-title: Alzheimers Dement
– reference: 33495160 - Br J Ophthalmol. 2021 May;105(5):593-594
SSID ssj0002617
Score 2.6141617
Snippet Background/AimsTo develop a convolutional neural network (CNN) to detect symptomatic Alzheimer’s disease (AD) using a combination of multimodal retinal images...
To develop a convolutional neural network (CNN) to detect symptomatic Alzheimer's disease (AD) using a combination of multimodal retinal images and patient...
SourceID proquest
pubmed
crossref
bmj
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 388
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Biomarkers
Clinical science
diagnostic tests/investigation
Fluorescein Angiography - methods
Humans
imaging
Machine learning
Medical diagnosis
Medical imaging
Neural networks
Neural Networks, Computer
Patients
Retina
Retina - diagnostic imaging
Retinal Vessels
Tomography
Tomography, Optical Coherence - methods
Title Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging
URI https://bjo.bmj.com/content/106/3/388.full
https://bjo.bmj.com/content/early/2020/11/25/bjophthalmol-2020-317659.full
https://www.ncbi.nlm.nih.gov/pubmed/33243829
https://www.proquest.com/docview/2630440689
https://www.proquest.com/docview/2465436919
Volume 106
WOSCitedRecordID wos000760935500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250614
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: 7X7
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250614
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: BENPR
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoixCXlneXlspIHLGaxF47PqG2asUBVhUCaW-Rn-y2m3jZpJXKib_B3-OX1Ha8WziAVuKSHDy2E82MPfY8PgDeGG1KaYYaMU0zRJjOUWlyg7Q_qzBLFKE0Jgp_YKNROR7z83Th1qawyuWaGBdq7VS4Iz8sKA7oyLTk7-bfUECNCt7VBKGxAbYCbHaQczZeHbhitfHe_GUo96bNMpIH00N54eaTbiJmtZt5SYlpxIyGiqUbsr74c5P6i-UZd6Cznf_99kdgO9me8KgXlsfgnmmegAcfk3f9Kbg8cc11EkVPF0pdxlcMFIedg9OY1WtvYHtTzzsXq73Co9n3iZnWZvHrx88WJocPDPH0X2EMV6yd9sOEbMkw6rSOuEjPwJez088n71ECY0CS4KJD1gqvujzLPNNzrnVmlOCGKJGV0hpjsLcLrcyM9Q1SUUso0QVTnGGeS64Vfg42G9eYXQAl1d4sKD0JtwRTKQtBhliIoWUiKO0AIM-DKilTW8VzCqbV7zyrAs-qnmcD8DbQz_vyHGuQsyVzK5UKoQc8jtkaPfNVz_Vn21_KxN0f3QnEALxeNXvFDt4a0Rh35WlCpTtMee5pXvRyt5oUezMYlwV_-e_B98DDImRrxJC5fbDZLa7MK3BfXXfTdnEQdSU-ywOwdXw6Ov90C0Q7IuQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB61WwRc-P9ZKGAkuGE1ib12fEColFatul1VqEi9pXFss1s2ybKbFi0nXoOX4KF4Emwn2cIBtJceOOXg8TiOP49n4vkBeKGVjqXuKcwVCzDlKsSxDjVW1lbhhmaUMR8o3OeDQXx8LA5X4EcbC-PcKluZ6AW1KjP3j3wjYsRVR2axeDP5jF3VKHe72pbQqGGxr-dfrMk2e733zq7vyyja2T7a2sVNVQEsKYkqbExqMSiCwL59KJQKdJYKTbM0iKXRWhOr4BgZaGMbZMYMZVRFPBOciFAKlRHLdxXWKKGs14G1t9uDw_cL2e_ym9cKN8ehVaZa3yHCNuRpORlWw3Scl2OLTR-4zJnLkboq89M_j8W_6Lr-zNu5-b99rVtwo9Gu0Wa9HW7Dii7uwNWDxn_gLnzaKovzZrNZOpfM0z-8KzyqSjTycctmjmbzfFKVPp8t2hx_HepRrqc_v32foeZKC7mIgY_IO2TmpbJsXDyo4zrKfeWne_DhUqZ6HzpFWeiHgCRTVvGJLYkwlDApo5T2SJr2DE-dWOoCtmueNOJilnhLjLDkd4wkDiNJjZEuvHL0kzoByRLkvAVTkjWp3l3FkfESPcNFz-VHW28xeDGjCwB24fmi2Youdx-VFro8szQulx9hIrQ0D2qcLwYlVtEncSQe_Zv5M7i2e3TQT_p7g_3HcD1ysSneQXAdOtX0TD-BK9l5NZpNnzY7FcHJZcP9F1wvg4s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELb6gyoutPwUlrZgJLhhbRJn7fiAUGm7ompZrRBIvYU4ttktm2TZpEXLidfgVXgcnoSxk2zhANpLD5yiyOOxHH8ez8Tzg9BTrXQkdU8RrphHQq58EmlfEwW2CjdhGjLmAoVP-WAQnZ2J4Qr60cbCWLfKViY6Qa2K1P4j7waM2urILBJd07hFDA_7L6efia0gZW9a23IaNURO9PwLmG_li-NDWOtnQdA_enfwmjQVBogMaVARYxLAo_A8mIkvlPJ0mggdpokXSaO1pqDsGOlpAw0yZSZkoQp4KjgVvhQqpcB3Fa3bVzD81l8dDYZvF-eAzXVeK9-c-KBYtX5ElHXleTEdVaNkkhUTwKkLYubM5ktdldn5n0fkX_Red_71N__nL7eFbjVaN96vt8lttKLzO2jjTeNXcBd9Oijyy2YTAp1N8ukezkUeVwUeu3hmM8flPJtWhctzi_cnX0d6nOnZz2_fS9xcdWEbSfARO0fNrFDAxsaJWq7jzFWEuofeX8tUt9FaXuT6AcKSKVCIIiARJqRMyiAJezRJeoYnVlx1EIH1jxsxUsbOQqMs_h0vscVLXOOlg55b-mmdmGQJct4CK06bFPC2EslkiZ7-oufyo-22eLya0RUYO-jJohlEmr2nSnJdXACNzfFHmfCB5n6N-cWgFAwAGgXi4b-ZP0YbgPH49HhwsoNuBjZkxfkN7qK1anah99CN9LIal7NHzabF6MN1o_0Xoq2MTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+to+identify+symptomatic+Alzheimer%E2%80%99s+disease+using+multimodal+retinal+imaging&rft.jtitle=British+journal+of+ophthalmology&rft.au=Wisely%2C+C.+Ellis&rft.au=Wang%2C+Dong&rft.au=Henao%2C+Ricardo&rft.au=Grewal%2C+Dilraj+S.&rft.date=2022-03-01&rft.issn=0007-1161&rft.eissn=1468-2079&rft_id=info:doi/10.1136%2Fbjophthalmol-2020-317659&rft.externalDBID=bjo&rft.externalDocID=bjophthalmol
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon