New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology

Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model cap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:British journal of ophthalmology Ročník 106; číslo 7; s. 889 - 892
Hlavní autoři: Nath, Siddharth, Marie, Abdullah, Ellershaw, Simon, Korot, Edward, Keane, Pearse A
Médium: Journal Article
Jazyk:angličtina
Vydáno: BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.07.2022
BMJ Publishing Group LTD
Témata:
ISSN:0007-1161, 1468-2079, 1468-2079
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care.
AbstractList Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care.
Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care.Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently been discussed in the mainstream media and the literature with the advent of Generative Pre-trained Transformer 3 (GPT-3), a language model capable of producing human-like text. The release of GPT-3 has also sparked renewed interest on the applicability of NLP to contemporary healthcare problems. This article provides an overview of NLP models, with a focus on GPT-3, as well as discussion of applications specific to ophthalmology. We also outline the limitations of GPT-3 and the challenges with its integration into routine ophthalmic care.
Author Ellershaw, Simon
Marie, Abdullah
Keane, Pearse A
Nath, Siddharth
Korot, Edward
Author_xml – sequence: 1
  givenname: Siddharth
  orcidid: 0000-0003-4520-7163
  surname: Nath
  fullname: Nath, Siddharth
  organization: National Institute for Health Research, Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology, Moorfields Eye Hospital City Road Campus, London, UK
– sequence: 2
  givenname: Abdullah
  surname: Marie
  fullname: Marie, Abdullah
  organization: School of Medicine and Dentistry, Queen's University Belfast, Belfast, UK
– sequence: 3
  givenname: Simon
  surname: Ellershaw
  fullname: Ellershaw, Simon
  organization: UKRI Centre for Doctoral Training in AI-enabled Healthcare, University College London, London, UK
– sequence: 4
  givenname: Edward
  orcidid: 0000-0002-5687-1564
  surname: Korot
  fullname: Korot, Edward
  organization: Byers Eye Institute, Stanford University, Stanford, California, USA
– sequence: 5
  givenname: Pearse A
  surname: Keane
  fullname: Keane, Pearse A
  email: p.keane@ucl.ac.uk
  organization: National Institute for Health Research, Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology, Moorfields Eye Hospital City Road Campus, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35523534$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2Kqgy0f6Gy1A2bgG_8SNIFEkIUkEaUBV1btseZ8TSxB9sR4t_Xw4BALNqu_NB3zz065wDt-eAtQhjIMQAVJ3odNqu8UsMYhqomdV3RGoDBBzQDJtry1XR7aEYIaSoAAfvoIKV1edYCmk9on3JeU07ZDP2-sQ94tMo7v8R9iPhmfvsd55XFOTo1JKz8YnvV06CyCz7h0GOv8hTVgAfll5NaWryJwdiUthoPLq_w5e1dRbHz-NVmWD5-Rh_7Imm_PJ-H6NePi7vzq2r-8_L6_GxeaQYiV6ZlHe-YsUZz0nNmiWGqa4yl3GrgVDFqRQOw0D3vaafpAlTXk0aJkk2jGT1ERzvdYut-sinL0SVjh2LXhinJWgggbUsIFPTbO3QdpuiLu0K1RFDgpPk7JQSnXUtFob4-U5Me7UJuohtVfJQvYRfgdAeYGFKKtpfG5adUc1RukEDktl35tl25bVfu2i0C7TuBlx3_Mcp2o3pcv7r_59gffIm-Xg
CitedBy_id crossref_primary_10_1016_j_archger_2024_105409
crossref_primary_10_2196_51282
crossref_primary_10_1177_09760016241259851
crossref_primary_10_1007_s10462_024_11080_y
crossref_primary_10_1016_j_chbr_2025_100652
crossref_primary_10_1097_IAE_0000000000004351
crossref_primary_10_1016_j_aopr_2025_01_002
crossref_primary_10_3390_ijerph20043378
crossref_primary_10_7759_cureus_58232
crossref_primary_10_1007_s11899_023_00716_5
crossref_primary_10_1016_j_cmpb_2024_108326
crossref_primary_10_1097_ICL_0000000000001160
crossref_primary_10_3390_biom13020387
crossref_primary_10_2196_47814
crossref_primary_10_1016_j_cose_2024_103998
crossref_primary_10_3390_bdcc7010035
crossref_primary_10_1038_s41746_025_01461_0
crossref_primary_10_3389_frai_2025_1527010
crossref_primary_10_1080_08164622_2023_2298812
crossref_primary_10_1007_s10462_024_10921_0
crossref_primary_10_1002_mef2_75
crossref_primary_10_1097_ICU_0000000000001172
crossref_primary_10_1016_j_xops_2024_100681
crossref_primary_10_1136_bjo_2023_325143
crossref_primary_10_2147_JMDH_S441790
crossref_primary_10_2196_47621
crossref_primary_10_3389_fdata_2024_1357926
crossref_primary_10_5662_wjm_v13_i4_170
crossref_primary_10_1097_ICO_0000000000003492
crossref_primary_10_1002_eng2_70249
crossref_primary_10_1371_journal_pdig_0000341
crossref_primary_10_7759_cureus_86288
crossref_primary_10_1016_j_ribaf_2025_102939
crossref_primary_10_3390_bdcc9060151
crossref_primary_10_1007_s00417_024_06470_5
crossref_primary_10_1007_s10462_024_10849_5
crossref_primary_10_3390_jpm15030097
crossref_primary_10_1136_bjo_2023_324438
crossref_primary_10_5472_marumj_1571218
crossref_primary_10_1136_bjo_2023_325054
crossref_primary_10_1016_j_apjo_2024_100106
crossref_primary_10_3390_bdcc8100130
crossref_primary_10_1136_jnis_2023_020353
crossref_primary_10_1016_j_asoc_2025_113524
crossref_primary_10_1136_bjo_2023_325053
crossref_primary_10_1136_bjo_2024_326064
crossref_primary_10_3390_su16031245
crossref_primary_10_3390_app132111953
crossref_primary_10_1007_s40123_023_00805_x
crossref_primary_10_1109_ACCESS_2024_3416755
crossref_primary_10_1016_j_teler_2023_100065
crossref_primary_10_1007_s44163_025_00381_y
crossref_primary_10_15388_Amed_2024_31_2_18
crossref_primary_10_1038_s41746_025_01772_2
crossref_primary_10_1136_bjo_2024_325459
crossref_primary_10_1016_j_clae_2024_102125
crossref_primary_10_1016_j_jbi_2025_104861
crossref_primary_10_1016_j_rbmo_2023_04_009
crossref_primary_10_1108_MRJIAM_01_2024_1501
crossref_primary_10_1007_s00521_023_08941_y
crossref_primary_10_1136_bjo_2023_325046
crossref_primary_10_1016_j_fertnstert_2023_03_010
crossref_primary_10_4103_IJO_IJO_2510_23
crossref_primary_10_1049_cmu2_12714
Cites_doi 10.1126/science.aal4230
10.1111/j.1525-1497.2006.00415.x
10.1001/jamaophthalmol.2018.7051
10.1016/j.jbi.2021.103864
10.1111/ceo.13666
10.1097/ICU.0000000000000789
10.1002/pds.4149
10.1016/S0140-6736(21)00722-4
10.1038/s41746-021-00464-x
10.22148/001c.17212
10.1136/amiajnl-2011-000456
10.1016/S2589-7500(19)30108-6
10.1007/s11999-011-1770-9
10.1007/s11023-020-09548-1
10.1111/ceo.13340
10.1111/j.1526-4610.2010.01763.x
10.1200/JCO.2017.35.15_suppl.6501
10.1016/j.ophtha.2020.10.012
10.5301/ejo.5000706
10.1007/s11136-008-9399-1
10.1177/0840470419872775
10.1109/PROC.1986.13580
10.1093/oso/9780198250791.003.0017
10.1109/MICC.2017.8311752
10.3115/v1/D14-1179
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
Copyright_xml – notice: Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1136/bjophthalmol-2022-321141
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
ProQuest One Academic Middle East (New)
MEDLINE
ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-2079
EndPage 892
ExternalDocumentID 35523534
10_1136_bjophthalmol_2022_321141
bjophthalmol
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: UK Research and Innovation Future Leaders Fellowship
  grantid: MR/T019050/1
– fundername: Moorfields Eye Charity Career Development Award
  grantid: R190028A
– fundername: Medical Research Council
  grantid: MR/T019050/1
GroupedDBID ---
-~X
.55
.GJ
.VT
0R~
18M
23N
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAWJN
ABAAH
ABJNI
ABKDF
ABMQD
ABTFR
ABUWG
ABVAJ
ACCCW
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACNCT
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FYUFA
H13
HAJ
HMCUK
HYE
HZ~
IAO
IEA
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
W8F
WH7
WOQ
X7M
XOL
YFH
YQY
ZGI
AAFWJ
AAYXX
ACQHZ
AERUA
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-b416t-c849594cecb50f54e0c4a97ce35eb153a43e6711dbf5f39b3d1a9f07a61137b43
IEDL.DBID 7X7
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0007-1161
1468-2079
IngestDate Fri Sep 05 13:34:40 EDT 2025
Tue Oct 07 07:16:18 EDT 2025
Tue Oct 07 07:29:14 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Sat Nov 29 03:06:10 EST 2025
Tue Nov 18 22:44:19 EST 2025
Thu Apr 24 22:50:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Telemedicine
Diagnostic tests/Investigation
Language English
License Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b416t-c849594cecb50f54e0c4a97ce35eb153a43e6711dbf5f39b3d1a9f07a61137b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5687-1564
0000-0003-4520-7163
PMID 35523534
PQID 2666539836
PQPubID 2041039
PageCount 4
ParticipantIDs proquest_miscellaneous_2661088001
proquest_journals_2680631507
proquest_journals_2666539836
pubmed_primary_35523534
crossref_citationtrail_10_1136_bjophthalmol_2022_321141
crossref_primary_10_1136_bjophthalmol_2022_321141
bmj_journals_10_1136_bjophthalmol_2022_321141
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace BMA House, Tavistock Square, London, WC1H 9JR
PublicationPlace_xml – name: BMA House, Tavistock Square, London, WC1H 9JR
– name: England
– name: London
PublicationTitle British journal of ophthalmology
PublicationTitleAbbrev Br J Ophthalmol
PublicationTitleAlternate Br J Ophthalmol
PublicationYear 2022
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
References Brown, Mann, Ryder (R6) 2020
Gaskin, Pershing, Cole (R27) 2016; 26
Naseri, Kafi, Skamene (R14) 2021; 120
Liu, Shorstein, Amsden (R28) 2017; 26
Caliskan, Bryson, Narayanan (R12) 2017; 356
Stein, Rahman, Andrews (R24) 2019; 137
Elkins, Chun (R3) 2020; 5
Tan, Bacchi, Casson (R25) 2020; 48
Turing (R2) 2004
Wu, Chen, Yun (R29) 2021; 128
Cho, van Merrienboer, Gulcehre (R8) 2014
Korngiebel, Mooney (R13) 2021; 4
Floridi, Chiriatti (R5) 2020; 30
Smith, Johnson, Russell (R26) 2008; 17
Radford, Kim, Hallacy (R34) 2021
Guida, Mauri (R1) 1986; 74
Zheng, Luo, Mercado (R23) 2019; 47
Faes, Wagner, Fu (R31) 2019; 1
Mularski, White-Chu, Overbay (R19) 2006; 21
Keane, Topol (R32) 2021; 397
Ramesh, Pavlov, Goh (R35) 2021
Yang, Ng, Foo (R20) 2021; 32
Peissig, Rasmussen, Berg (R21) 2012; 19
Beck, Vinegra, Dankwa-Mullan (R15) 2017; 35
Coghill (R18) 2010; 50
Mossey (R17) 2011; 469
Crampton (R30) 2020; 33
2023062822101722000_106.7.889.15
Liu (2023062822101722000_106.7.889.28) 2017; 26
2023062822101722000_106.7.889.16
2023062822101722000_106.7.889.35
2023062822101722000_106.7.889.36
2023062822101722000_106.7.889.11
2023062822101722000_106.7.889.33
2023062822101722000_106.7.889.12
2023062822101722000_106.7.889.34
2023062822101722000_106.7.889.10
Tan (2023062822101722000_106.7.889.25) 2020; 48
2023062822101722000_106.7.889.19
2023062822101722000_106.7.889.17
2023062822101722000_106.7.889.18
Guida (2023062822101722000_106.7.889.1) 1986; 74
Korngiebel (2023062822101722000_106.7.889.13) 2021; 4
Naseri (2023062822101722000_106.7.889.14) 2021; 120
2023062822101722000_106.7.889.26
2023062822101722000_106.7.889.21
Yang (2023062822101722000_106.7.889.20) 2021; 32
Crampton (2023062822101722000_106.7.889.30) 2020; 33
2023062822101722000_106.7.889.29
2023062822101722000_106.7.889.3
Faes (2023062822101722000_106.7.889.31) 2019; 1
2023062822101722000_106.7.889.2
2023062822101722000_106.7.889.5
2023062822101722000_106.7.889.4
2023062822101722000_106.7.889.7
2023062822101722000_106.7.889.6
2023062822101722000_106.7.889.9
Stein (2023062822101722000_106.7.889.24) 2019; 137
2023062822101722000_106.7.889.8
Barrows Jr (2023062822101722000_106.7.889.22) 2000
Zheng (2023062822101722000_106.7.889.23) 2019; 47
Gaskin (2023062822101722000_106.7.889.27) 2016; 26
Keane (2023062822101722000_106.7.889.32) 2021; 397
References_xml – year: 2021
  ident: R35
  article-title: Zero-Shot Text-to-Image Generation [Internet]
  publication-title: arXiv
– volume: 356
  start-page: 183
  year: 2017
  ident: R12
  article-title: Semantics derived automatically from language corpora contain human-like biases
  publication-title: Science
  doi: 10.1126/science.aal4230
– volume: 21
  start-page: 607
  year: 2006
  ident: R19
  article-title: Measuring pain as the 5th vital sign does not improve quality of pain management
  publication-title: J Gen Intern Med
  doi: 10.1111/j.1525-1497.2006.00415.x
– volume: 137
  start-page: 491
  year: 2019
  ident: R24
  article-title: Evaluation of an algorithm for identifying ocular conditions in electronic health record data
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2018.7051
– volume: 120
  year: 2021
  ident: R14
  article-title: Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2021.103864
– year: 2004
  ident: R2
  article-title: Computing Machinery and Intelligence (1950) [Internet]
  publication-title: The Essential Turing
– volume: 48
  start-page: 169
  year: 2020
  ident: R25
  article-title: Triaging ophthalmology outpatient referrals with machine learning: a pilot study
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.13666
– volume: 32
  start-page: 397
  year: 2021
  ident: R20
  article-title: Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0000000000000789
– volume: 26
  start-page: 378
  year: 2017
  ident: R28
  article-title: Natural language processing to ascertain two key variables from operative reports in ophthalmology
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4149
– volume: 397
  year: 2021
  ident: R32
  article-title: AI-facilitated health care requires education of clinicians
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00722-4
– volume: 4
  start-page: 93
  year: 2021
  ident: R13
  article-title: Considering the possibilities and pitfalls of generative Pre-trained transformer 3 (GPT-3) in healthcare delivery
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00464-x
– volume: 5
  year: 2020
  ident: R3
  article-title: Can GPT-3 pass a writer’s Turing test?
  publication-title: J Cult Anal
  doi: 10.22148/001c.17212
– year: 2020
  ident: R6
  article-title: Language Models are Few-Shot Learners [Internet]
  publication-title: arXiv [cs.CL]
– volume: 19
  start-page: 225
  year: 2012
  ident: R21
  article-title: Importance of multi-modal approaches to effectively identify cataract cases from electronic health records
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000456
– year: 2014
  ident: R8
  article-title: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation [Internet]
  publication-title: arXiv
– volume: 1
  start-page: e232
  year: 2019
  ident: R31
  article-title: Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30108-6
– volume: 469
  start-page: 1859
  year: 2011
  ident: R17
  article-title: Defining racial and ethnic disparities in pain management
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-011-1770-9
– volume: 30
  start-page: 681
  year: 2020
  ident: R5
  article-title: GPT-3: its nature, scope, limits, and consequences
  publication-title: Minds Mach
  doi: 10.1007/s11023-020-09548-1
– volume: 47
  start-page: 7
  year: 2019
  ident: R23
  article-title: Using natural language processing for identification of herpes zoster ophthalmicus cases to support population-based study
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.13340
– volume: 50
  start-page: 1531
  year: 2010
  ident: R18
  article-title: Individual differences in the subjective experience of pain: new insights into mechanisms and models
  publication-title: Headache
  doi: 10.1111/j.1526-4610.2010.01763.x
– volume: 35
  year: 2017
  ident: R15
  article-title: Cognitive technology addressing optimal cancer clinical trial matching and protocol feasibility in a community cancer practice
  publication-title: J Clin Orthod
  doi: 10.1200/JCO.2017.35.15_suppl.6501
– volume: 128
  start-page: 942
  year: 2021
  ident: R29
  article-title: Effectiveness of an ophthalmic hospital-based virtual service during the COVID-19 pandemic
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.10.012
– volume: 26
  start-page: 328
  year: 2016
  ident: R27
  article-title: Predictive modeling of risk factors and complications of cataract surgery
  publication-title: Eur J Ophthalmol
  doi: 10.5301/ejo.5000706
– volume: 17
  start-page: 1277
  year: 2008
  ident: R26
  article-title: Lower visual acuity predicts worse utility values among patients with type 2 diabetes
  publication-title: Qual Life Res
  doi: 10.1007/s11136-008-9399-1
– year: 2021
  ident: R34
  article-title: Learning transferable visual models from natural language supervision
  publication-title: arXiv
– volume: 33
  start-page: 34
  year: 2020
  ident: R30
  article-title: Ambient virtual scribes: Mutuo health's AutoScribe as a case study of artificial intelligence-based technology
  publication-title: Healthc Manage Forum
  doi: 10.1177/0840470419872775
– volume: 74
  start-page: 1026
  year: 1986
  ident: R1
  article-title: Evaluation of natural language processing systems: issues and approaches
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/PROC.1986.13580
– ident: 2023062822101722000_106.7.889.2
  doi: 10.1093/oso/9780198250791.003.0017
– volume: 4
  start-page: 93
  year: 2021
  ident: 2023062822101722000_106.7.889.13
  article-title: Considering the possibilities and pitfalls of generative Pre-trained transformer 3 (GPT-3) in healthcare delivery
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00464-x
– volume: 33
  start-page: 34
  year: 2020
  ident: 2023062822101722000_106.7.889.30
  article-title: Ambient virtual scribes: Mutuo health's AutoScribe as a case study of artificial intelligence-based technology
  publication-title: Healthc Manage Forum
  doi: 10.1177/0840470419872775
– ident: 2023062822101722000_106.7.889.9
– ident: 2023062822101722000_106.7.889.18
  doi: 10.1111/j.1526-4610.2010.01763.x
– ident: 2023062822101722000_106.7.889.11
– ident: 2023062822101722000_106.7.889.4
– ident: 2023062822101722000_106.7.889.6
– ident: 2023062822101722000_106.7.889.26
  doi: 10.1007/s11136-008-9399-1
– ident: 2023062822101722000_106.7.889.33
– ident: 2023062822101722000_106.7.889.35
– volume: 47
  start-page: 7
  year: 2019
  ident: 2023062822101722000_106.7.889.23
  article-title: Using natural language processing for identification of herpes zoster ophthalmicus cases to support population-based study
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.13340
– volume: 1
  start-page: e232
  year: 2019
  ident: 2023062822101722000_106.7.889.31
  article-title: Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30108-6
– volume: 26
  start-page: 378
  year: 2017
  ident: 2023062822101722000_106.7.889.28
  article-title: Natural language processing to ascertain two key variables from operative reports in ophthalmology
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4149
– ident: 2023062822101722000_106.7.889.12
  doi: 10.1126/science.aal4230
– volume: 120
  year: 2021
  ident: 2023062822101722000_106.7.889.14
  article-title: Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2021.103864
– volume: 397
  year: 2021
  ident: 2023062822101722000_106.7.889.32
  article-title: AI-facilitated health care requires education of clinicians
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00722-4
– ident: 2023062822101722000_106.7.889.21
  doi: 10.1136/amiajnl-2011-000456
– ident: 2023062822101722000_106.7.889.7
  doi: 10.1109/MICC.2017.8311752
– ident: 2023062822101722000_106.7.889.16
– volume: 74
  start-page: 1026
  year: 1986
  ident: 2023062822101722000_106.7.889.1
  article-title: Evaluation of natural language processing systems: issues and approaches
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/PROC.1986.13580
– ident: 2023062822101722000_106.7.889.8
  doi: 10.3115/v1/D14-1179
– ident: 2023062822101722000_106.7.889.10
– ident: 2023062822101722000_106.7.889.15
  doi: 10.1200/JCO.2017.35.15_suppl.6501
– ident: 2023062822101722000_106.7.889.19
  doi: 10.1111/j.1525-1497.2006.00415.x
– volume: 32
  start-page: 397
  year: 2021
  ident: 2023062822101722000_106.7.889.20
  article-title: Deep learning-based natural language processing in ophthalmology: applications, challenges and future directions
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0000000000000789
– ident: 2023062822101722000_106.7.889.17
  doi: 10.1007/s11999-011-1770-9
– ident: 2023062822101722000_106.7.889.34
– ident: 2023062822101722000_106.7.889.36
– volume: 48
  start-page: 169
  year: 2020
  ident: 2023062822101722000_106.7.889.25
  article-title: Triaging ophthalmology outpatient referrals with machine learning: a pilot study
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/ceo.13666
– volume: 26
  start-page: 328
  year: 2016
  ident: 2023062822101722000_106.7.889.27
  article-title: Predictive modeling of risk factors and complications of cataract surgery
  publication-title: Eur J Ophthalmol
  doi: 10.5301/ejo.5000706
– ident: 2023062822101722000_106.7.889.29
  doi: 10.1016/j.ophtha.2020.10.012
– volume: 137
  start-page: 491
  year: 2019
  ident: 2023062822101722000_106.7.889.24
  article-title: Evaluation of an algorithm for identifying ocular conditions in electronic health record data
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2018.7051
– ident: 2023062822101722000_106.7.889.5
  doi: 10.1007/s11023-020-09548-1
– start-page: 51
  year: 2000
  ident: 2023062822101722000_106.7.889.22
  article-title: Limited parsing of notational text visit notes: ad-hoc vs. NLP approaches
– ident: 2023062822101722000_106.7.889.3
  doi: 10.22148/001c.17212
SSID ssj0002617
Score 2.6338732
SecondaryResourceType review_article
Snippet Natural language processing (NLP) is a subfield of machine intelligence focused on the interaction of human language with computer systems. NLP has recently...
SourceID proquest
pubmed
crossref
bmj
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 889
SubjectTerms Cataracts
Datasets
Diagnostic tests/Investigation
Electronic health records
Gender
Humans
Internet
Language instruction
Medical diagnosis
Medical personnel
Medical research
Natural Language Processing
Ophthalmology
Pain management
Patients
Review
Telemedicine
Title New meaning for NLP: the trials and tribulations of natural language processing with GPT-3 in ophthalmology
URI https://bjo.bmj.com/content/106/7/889.full
https://www.ncbi.nlm.nih.gov/pubmed/35523534
https://www.proquest.com/docview/2666539836
https://www.proquest.com/docview/2680631507
https://www.proquest.com/docview/2661088001
Volume 106
WOSCitedRecordID wos000793336000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250609
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: 7X7
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1468-2079
  dateEnd: 20250609
  omitProxy: false
  ssIdentifier: ssj0002617
  issn: 0007-1161
  databaseCode: BENPR
  dateStart: 19220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VqKpe-m5ZSpGRerVI4jiJuSBaQXugq1UF0t4i23F4dDdZ2KVS_31nHGcXDlRIveRi2bE8r2_G4xmAz1GtNFkS7iqV8jSpI66kdNyYBEUv0qKS_qHwST4cFuOxGoWA2zykVfY60SvqqrUUI99DQ0JVVAuRHcyuOXWNotvV0EJjDTaobTbxeT5eOly-2ngHf3MeI7TpM3lEtmeu2tnF4kJPpu0EOYVS2tEVor7wa2Z6dd9IPYA8vQU6fvm_e38FLwL2ZIcds7yGJ655A89-hNv1t_ALNR6bOk2hEoZglg1PRvsMESLzvT3mTDcV8x2yQgIda2vmK4Piqn3gk826pwe0BgV52bfRKRfssmGro2jP_7yDs-Oj06_feWjGwA1itgW3BbpSKrXOGhnVMnWRTbXKrRMS1b0UOhUuy-O4MrWshTKiirWqo1xneN65ScV7WG_axm0CqwiV2URlDrGFjYVxukaeKai2WmGKZAAcaVAGYZqX3k8RWXmXZiXRrOxoNoC8p1ZpQ2VzarAxecTMeDlz1lX3eMSc7Z7Iqy2uKPzAcIFQkLD3AHaXwyjIdDujG9fe-iViVPkIGwbwoeOz5Z4QFCZCinTr3__-CM89K_ts4m1YX9zcuk_w1P5eXM5vdrxs-G-xAxtfjoajn38B76oYJw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQEX3pSFAkaCo9U4juMYCSEElFbdrvawSHsLtuPQx26ydLeg_il-I2Mn2YVDUS89cLbsOPY3M9_Y4xmAV1GptLck1BUqoUlcRlQJ4agxMYpepHkhwkPhvhwMsvFYDdfgV_cWxodVdjoxKOqitv6MfBsNic-imvH03ew79VWj_O1qV0KjgcW-O_-JLtv87d5H3N_XcbzzafRhl7ZVBahB8rGgNkOfQCXWWSOiUiQusolW0jouUG8JrhPuUslYYUpRcmV4wbQqI6lTxrg0Ccdx1-Ea6nHpnT05Xjp4Ibt5Q7clZUilusghnm6b43p2uDjUk2k9QWT6EHp0vXwd-nUzPf7bKF7AdIPF27nzv63VXbjdcmvyvhGGe7Dmqvtw46CNHngAJ6jRydRpfxREkKyTQX_4hiADJqF2yZzoqiChAlgbIEjqkoTMpzhqd7BLZs3TCj-GP8Qmn4cjyslRRVZLX387fwhfruRXH8FGVVfuMZDCs04bq9Qhd7KMG6dLlInM547LTBb3gOKe562ymOfBD-Np_idGco-RvMFID2SHjty2mdt9AZHJJXqyZc9Zk73kEn22OlCtprhC1AXNGVJd71v04OWyGRWVv33SlavPwhAMTRrSoh5sNrhezglJb8wFT578-9sv4Obu6KCf9_cG-0_hVhCjEDm9BRuL0zP3DK7bH4uj-enzIJcEvl41uH8DeSJyxQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61W1Rxoby7tICR4Gg1ieMkRqoQ0C5UXaIIFam31HYc-thNlu4W1L_WX8fYSXbhUNRLD5wtO3b8zcw39ngG4LVXCmktCTWFCGkYlB4VnBuqVICi50lWcPdQeBinaXJ4KLIluOrewtiwyk4nOkVd1NqekW-hIbFZVBMWbZVtWES2M3g3-UFtBSl709qV02ggsm8uf6H7Nt3e28G9fhMEg92Dj59pW2GAKiQiM6oT9A9EqI1W3Ct5aDwdShFrwzjqMM5kyEwU-36hSl4yoVjhS1F6sYx8n8UqZDjuMqzESDLCHqx82E2zr3M7YHOdN-Q7pj4Sqy6OCFegTuvJ8exYjsb1CHFqA-rREbNV6ZfV-PRvE3kN73X2b7D2P_-5-3CvZd3kfSMmD2DJVA9h9UsbV_AIzlDXk7GR9pCIII0n6TB7S5AbE1fVZEpkVRBXG6wNHSR1SVxOVBy1O_Ilk-bRhR3DHm-TT9kBZeSkIottqL9fPoZvt7LUJ9Cr6sqsAyksH9WBiAyyKu0zZWSJ0pLYrHKJSoI-UNz_vFUj09x5aCzK_8RLbvGSN3jpQ9whJddtTndbWmR0g57-vOekyWtygz6bHcAWU1yg65rmBEmw9Tr68GrejCrM3kvJytQXbggfjR0Spj48bTA-nxPS4YBxFj7797dfwipiOh_upfsbcNdJlAup3oTe7PzCPIc7-ufsZHr-ohVSAke3je7fQyJ85Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+meaning+for+NLP%3A+the+trials+and+tribulations+of+natural+language+processing+with+GPT-3+in+ophthalmology&rft.jtitle=British+journal+of+ophthalmology&rft.au=Nath%2C+Siddharth&rft.au=Marie%2C+Abdullah&rft.au=Ellershaw%2C+Simon&rft.au=Korot%2C+Edward&rft.date=2022-07-01&rft.pub=BMJ+Publishing+Group+Ltd&rft.issn=0007-1161&rft.eissn=1468-2079&rft.volume=106&rft.issue=7&rft.spage=889&rft.epage=892&rft_id=info:doi/10.1136%2Fbjophthalmol-2022-321141&rft_id=info%3Apmid%2F35523534&rft.externalDBID=bjo&rft.externalDocID=bjophthalmol
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon