Use of Open-Source Object Detection Algorithms to Detect Palmer Amaranth (Amaranthus palmeri) in Soybean

Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth (Amaranthus palmeri S. Watson) in soybean [Glycine max (L.) Merr.]. The objectives were to (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Weed science Ročník 70; číslo 6; s. 648 - 662
Hlavní autoři: Barnhart, Isaac H., Lancaster, Sarah, Goodin, Douglas, Spotanski, Jess, Dille, J. Anita
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA The Weed Science Society of America 01.11.2022
Cambridge University Press
Témata:
ISSN:0043-1745, 1550-2759
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth (Amaranthus palmeri S. Watson) in soybean [Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri, and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri. A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.
AbstractList Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth (Amaranthus palmeri S. Watson) in soybean [Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri, and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri. A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.
Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of object detection algorithms to detect Palmer amaranth ( Amaranthus palmeri S. Watson) in soybean [ Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare effectiveness of multiple open-source algorithms in detecting A. palmeri , and (3) evaluate the relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. palmeri . A total of 1,108 and 392 images were taken aerially and at ground level, respectively, between May 27 and July 27, 2021. After image annotation, a total of 4,492 images were selected. Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the highest mean average precision score of 0.77. For both A. palmeri and soybean detections within this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A lower confidence threshold of 0.15 increased the likelihood of species detection, but also increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to identify A. palmeri in a data set paired with measured growth features. Linear regression models predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems.
Author Dille, J. Anita
Barnhart, Isaac H.
Goodin, Douglas
Lancaster, Sarah
Spotanski, Jess
Author_xml – sequence: 1
  givenname: Isaac H.
  orcidid: 0000-0002-3740-6771
  surname: Barnhart
  fullname: Barnhart, Isaac H.
  organization: Graduate Research Assistant, Department of Agronomy, Kansas State University, Manhattan, KS, USA
– sequence: 2
  givenname: Sarah
  orcidid: 0000-0002-5818-0783
  surname: Lancaster
  fullname: Lancaster, Sarah
  organization: Assistant Professor, Extension Weed Specialist, Department of Agronomy, Kansas State University, Manhattan, KS, USA
– sequence: 3
  givenname: Douglas
  orcidid: 0000-0003-0062-924X
  surname: Goodin
  fullname: Goodin, Douglas
  organization: Professor, Department of Geography and Geospatial Sciences, Kansas State University, Manhattan, KS, USA
– sequence: 4
  givenname: Jess
  surname: Spotanski
  fullname: Spotanski, Jess
  organization: Owner/Manager, Midwest Research Incorporated, York, NE, USA
– sequence: 5
  givenname: J. Anita
  orcidid: 0000-0002-3968-30860
  surname: Dille
  fullname: Dille, J. Anita
  organization: Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA
BookMark eNp9kV1LwzAUhoNMcJte-QcC3jikMx9N012O-QmDCXPXJW1Pt4y2mUmG7N-buYkg6tUJyXNy3jzpoU5rWkDokpIhJVTevrtiyAhjQ8FPUJcKQSImxaiDuoTEPKIyFmeo59yaEJowOuqi1cIBNhWebaCN5mZrC8CzfA2Fx3fgQ9GmxeN6aaz2q8Zhb477-EXVDVg8bpRVrV_h66_V1uHN55keYN3iudnloNpzdFqp2sHFsfbR4uH-dfIUTWePz5PxNMq5JD7iqqzyEE2UIql4QmIJsWRxwZQskyqpFEtZSkHQXNI4SUTJFSRAR2mhCimh5H10dbh3Y83bFpzP1uFVbRiZBRVxSviIxoG6OVCFNc5ZqLKN1SH_LqMk26vMgspsrzITPND0B11or_ZqvFW6_qMnOvaoJre6XMJ3kN_5wYHPtQmf-m-eD7FClXM
CitedBy_id crossref_primary_10_1002_ps_70009
crossref_primary_10_1016_j_eswa_2025_127018
crossref_primary_10_1017_wsc_2024_63
crossref_primary_10_1016_j_cropro_2023_106522
crossref_primary_10_1016_j_chemolab_2024_105064
crossref_primary_10_1016_j_compag_2024_108622
crossref_primary_10_1002_csc2_21028
crossref_primary_10_3390_fire7120444
Cites_doi 10.3390/electronics10040372
10.1007/978-981-16-3880-0_35
10.1007/978-3-319-54193-8_13
10.1017/wet.2020.90
10.1017/wsc.2018.66
10.1007/s10489-021-02893-3
10.5586/aa.2011.068
10.3390/agriengineering2030032
10.1111/wre.12307
10.1088/1742-6596/1544/1/012033
10.1002/ps.6656
10.1111/j.1365-3180.2004.00423.x
10.1016/j.rse.2018.11.032
10.2135/cropsci1971.0011183X001100060051x
10.1007/978-3-319-10602-1_48
10.1109/ICCUBEA.2018.8697819
10.1614/WS-04-071R2
10.1109/CVPR.2017.351
10.1002/ps.6804
10.1109/CAIBDA53561.2021.00016
10.37221/eaef.13.2_42
10.1016/j.neucom.2017.01.018
10.1017/wet.2020.99
10.1109/CVPR.2016.91
10.1109/CVPR.2016.90
10.1002/ps.4009
10.1017/wet.2020.91
10.1007/978-3-319-46448-0_2
10.3390/agriengineering2020024
10.18280/ts.380211
10.3390/agronomy10071044
10.1609/aaai.v31i1.11231
10.3390/rs13010054
10.1023/B:PRAG.0000040806.39604.aa
10.1109/AVSS.2017.8078518
10.3390/s21134350
10.3390/rs12244091
10.3390/s20030578
10.1016/j.compag.2019.104963
10.1111/wre.12374
10.1016/j.compag.2021.106081
10.23919/MVA.2017.7986913
10.1038/s41598-020-66505-9
10.1109/CVPR.2017.211
10.1109/ICEngTechnol.2017.8308186
10.1017/S0043174500092997
10.1109/ICACCS48705.2020.9074315
10.1109/ICCE48956.2021.9352073
10.1109/CSCI46756.2018.00067
10.1109/DICTA.2007.4426799
10.1186/s40537-019-0197-0
10.1186/s13007-020-00570-z
10.1109/ICCV.2015.169
10.1109/DLS49591.2019.00011
10.1109/CVPR.2014.81
10.1614/WS-09-074.1
10.1109/LSP.2018.2889273
10.3390/rs12132136
10.1016/j.compag.2021.106040
10.1016/j.fcr.2019.02.022
10.1017/wsc.2020.46
10.1109/TPAMI.2016.2577031
10.1007/s11119-019-09666-6
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America
The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
– notice: The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America
– notice: The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7QL
7SS
7T7
7TM
7U9
7X2
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
H94
HCIFZ
LK8
M0K
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
DOI 10.1017/wsc.2022.53
DatabaseName Cambridge Journals Open Access
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
Research Library China
ProQuest Central (New)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1550-2759
EndPage 662
ExternalDocumentID 10_1017_wsc_2022_53
10.1017/wsc.2022.53
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -JH
09C
09E
0R~
123
7X2
8FE
8FH
8G5
AAAZR
AABWE
AAGFV
AAHBH
AAHKG
AAKTX
AAPSS
AASVR
AAUKB
AAXTN
ABGDZ
ABJNI
ABKMT
ABPLY
ABQTM
ABROB
ABTLG
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACDLN
ACGFS
ACPRK
ACQPF
ACUIJ
ACYZP
ADBBV
ADDNB
ADHSS
ADKIL
ADVJH
AEBAK
AEEJZ
AENEX
AEPYG
AEUYN
AFAZZ
AFFHD
AFKQG
AFKRA
AFLVW
AFNWH
AFRAH
AFRIC
AFZFC
AGABE
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AJCYY
AJPFC
AKMAY
AKPMI
ALMA_UNASSIGNED_HOLDINGS
AQJOH
ATCPS
ATUCA
AUXHV
AZQEC
BBLKV
BBNVY
BENPR
BHPHI
BLZWO
BMAJL
BPHCQ
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DU5
DWQXO
EBS
GNUQQ
GUQSH
HCIFZ
HZ~
IH6
IOEEP
IS6
JBS
JHPGK
JLS
JQKCU
KCGVB
KFECR
LK8
LW7
M0K
M2O
M7P
MV1
NIKVX
NVHAQ
O9-
P2P
PADUT
PHGZM
PHGZT
PQ0
PQGLB
PQQKQ
PROAC
Q5J
RBO
RCA
ROL
S6U
SAAAG
SJN
T9M
TN5
UT1
WFFJZ
WH7
Y6R
ZYDXJ
~02
~EF
~KM
29R
2AX
2~F
3V.
AACFU
AAEED
ABBHK
ABBZL
ABMYL
ABXSQ
ACCHT
ACQFJ
ACUYZ
ACWGA
ADACV
ADGEJ
ADOCW
ADOVH
ADOVT
ADOYD
ADULT
ADZLD
AEBPU
AEDJY
AENCP
AESBF
AEUPB
AEYYC
AFFIJ
AGOOT
AGUYK
AICQM
AIRJO
AKZCZ
ANHSF
AQVQM
ARZZG
AS~
AYIQA
BCGOX
BESQT
BJBOZ
CAG
CBGCD
CCUQV
CFBFF
CGQII
COF
CWIXF
DATOO
DC7
DFEDG
DOOOF
DWIUU
EGQIC
EQZMY
GTFYD
HGD
HTVGU
IKXGN
IL9
IOO
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
JST
KAFGG
LHUNA
NEJ
NZEOI
OVD
SA0
TEORI
XOL
ZDLDU
ZJOSE
ZMEZD
AAXMD
AAYXX
ACHIC
AEHGV
AHXOZ
CITATION
ECGQY
H13
IPSME
IPYYG
7QL
7SS
7T7
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
ID FETCH-LOGICAL-b370t-3adfb6215d56f36047e4724c2a7d6f6fa28281e51b714665d3ae6e198cac77ed3
IEDL.DBID IKXGN
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868929400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1745
IngestDate Sat Sep 06 14:16:26 EDT 2025
Sat Nov 29 04:59:11 EST 2025
Tue Nov 18 22:33:35 EST 2025
Wed Mar 13 05:46:10 EDT 2024
Wed Nov 26 08:00:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords site-specific weed management
YOLOv5
Single Shot Detector
Artificial intelligence
Faster R-CNN
TensorFlow
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b370t-3adfb6215d56f36047e4724c2a7d6f6fa28281e51b714665d3ae6e198cac77ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5818-0783
0000-0002-3740-6771
0000-0002-3968-30860
0000-0003-0062-924X
0000-0002-3968-3086
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0043174522000534/type/journal_article
PQID 2754803914
PQPubID 506326
PageCount 15
ParticipantIDs proquest_journals_2754803914
crossref_primary_10_1017_wsc_2022_53
crossref_citationtrail_10_1017_wsc_2022_53
cambridge_journals_10_1017_wsc_2022_53
bioone_primary_10_1017_wsc_2022_53
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Lawrence
PublicationTitle Weed science
PublicationTitleAlternate Weed Sci
PublicationYear 2022
Publisher The Weed Science Society of America
Cambridge University Press
Publisher_xml – name: The Weed Science Society of America
– name: Cambridge University Press
References 2004; 44
2021; 21
2019; 6
2020; 20
2015; 72
2019; 59
2015; 11
1997; 45
2002; 8
2021; 182
2020; 16
2021; 184
2004; 5
2020; 13
2020; 12
2020; 10
2018; 67
2017; 235
2019; 221
1994; 42
2021; 35
2021; 13
1971; 11
2021; 38
2009; 57
2021; 10
2020; 2
2022; 2022
2017; 39
2019; 26
2022; 78
2011; 64
2005; 53
2019; 235
2022; 52
2020; 68
2020; 21
2018; 58
2020; 1544
Barroso (S0043174522000534_ref10) 2004; 44
Osborne (S0043174522000534_ref61) 2002; 8
Wenkel (S0043174522000534_ref95) 2021; 21
S0043174522000534_ref77
Naghashzadeh (S0043174522000534_ref59) 2015; 11
S0043174522000534_ref79
S0043174522000534_ref78
Yu (S0043174522000534_ref99) 2020; 68
Bongiovanni (S0043174522000534_ref13) 2004; 5
S0043174522000534_ref72
S0043174522000534_ref71
Parico (S0043174522000534_ref64) 2020; 13
Gao (S0043174522000534_ref27) 2020; 16
Du (S0043174522000534_ref21) 2020; 1544
S0043174522000534_ref88
S0043174522000534_ref87
S0043174522000534_ref86
S0043174522000534_ref85
Sharpe (S0043174522000534_ref76) 2020; 21
S0043174522000534_ref89
S0043174522000534_ref80
S0043174522000534_ref83
Hussain (S0043174522000534_ref39) 2020; 12
S0043174522000534_ref55
S0043174522000534_ref54
S0043174522000534_ref52
S0043174522000534_ref58
S0043174522000534_ref57
Ahmad (S0043174522000534_ref2) 2021; 184
S0043174522000534_ref51
S0043174522000534_ref50
Arsenijevic (S0043174522000534_ref8) 2021; 35
Maxwell (S0043174522000534_ref56) 2005; 53
S0043174522000534_ref66
S0043174522000534_ref65
Yang (S0043174522000534_ref97) 2019; 235
S0043174522000534_ref63
S0043174522000534_ref69
S0043174522000534_ref68
S0043174522000534_ref60
Sapkota (S0043174522000534_ref73) 2020; 2
Cardina (S0043174522000534_ref15) 1997; 45
S0043174522000534_ref33
S0043174522000534_ref32
Biffi (S0043174522000534_ref11) 2021; 13
Jin (S0043174522000534_ref41) 2022; 78
S0043174522000534_ref31
S0043174522000534_ref30
S0043174522000534_ref37
S0043174522000534_ref36
S0043174522000534_ref35
S0043174522000534_ref1
Li (S0043174522000534_ref49) 2020; 20
S0043174522000534_ref34
Sivakumar (S0043174522000534_ref81) 2020; 12
Ren (S0043174522000534_ref70) 2017; 39
Hussain (S0043174522000534_ref38) 2021; 182
Fehr (S0043174522000534_ref23) 1971; 11
Evans (S0043174522000534_ref22) 2015; 72
S0043174522000534_ref44
S0043174522000534_ref43
S0043174522000534_ref42
S0043174522000534_ref48
S0043174522000534_ref47
S0043174522000534_ref4
S0043174522000534_ref3
S0043174522000534_ref6
Klingaman (S0043174522000534_ref46) 1994; 42
S0043174522000534_ref5
S0043174522000534_ref7
S0043174522000534_ref9
S0043174522000534_ref19
S0043174522000534_ref18
S0043174522000534_ref16
S0043174522000534_ref96
S0043174522000534_ref14
S0043174522000534_ref101
Zhong (S0043174522000534_ref100) 2019; 221
S0043174522000534_ref12
S0043174522000534_ref91
S0043174522000534_ref90
Ying (S0043174522000534_ref98) 2021; 38
Fernández-Quintanilla (S0043174522000534_ref24) 2018; 58
S0043174522000534_ref94
S0043174522000534_ref93
Osorio (S0043174522000534_ref62) 2020; 2
S0043174522000534_ref92
Jha (S0043174522000534_ref40) 2009; 57
S0043174522000534_ref29
Sharpe (S0043174522000534_ref75) 2020; 10
S0043174522000534_ref28
Sun (S0043174522000534_ref84) 2022; 52
(S0043174522000534_ref67) 2021
Linn (S0043174522000534_ref53) 2019; 59
S0043174522000534_ref20
S0043174522000534_ref26
S0043174522000534_ref25
Kieloch (S0043174522000534_ref45) 2011; 64
Sharpe (S0043174522000534_ref74) 2018; 67
Somerville (S0043174522000534_ref82) 2020; 10
Chen (S0043174522000534_ref17) 2021; 10
References_xml – volume: 44
  start-page: 460
  year: 2004
  end-page: 468
  article-title: Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management
  publication-title: Weed Res
– volume: 53
  start-page: 221
  year: 2005
  end-page: 227
  article-title: Justification for site-specific weed management based on ecology and economics
  publication-title: Weed Sci
– volume: 35
  start-page: 136
  year: 2021
  end-page: 143
  publication-title: Weed Technol
– volume: 6
  start-page: 60
  year: 2019
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
– volume: 10
  start-page: 1044
  year: 2020
  article-title: Spatial modelling of within-field weed populations: a review
  publication-title: Agronomy
– volume: 1544
  start-page: 012033
  year: 2020
  article-title: Overview of two-stage object detection algorithms
  publication-title: J Phys Conf Ser
– volume: 26
  start-page: 2
  year: 2019
  article-title: One-class convolutional neural network
  publication-title: IEEE Signal Proc Let
– volume: 12
  start-page: 4091
  year: 2020
  article-title: Design and development of a smart variable rate sprayer using deep learning
  publication-title: Remote Sens
– volume: 21
  start-page: 264
  year: 2020
  end-page: 277
  article-title: Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network
  publication-title: Precis Agric
– volume: 21
  start-page: 4350
  year: 2021
  article-title: Confidence score: the forgotten dimension of object detection performance evaluation
  publication-title: Sensors
– volume: 5
  start-page: 359
  year: 2004
  end-page: 387
  article-title: Precision agriculture and sustainability
  publication-title: Precis Agric
– volume: 11
  start-page: 90
  year: 2015
  end-page: 92
  article-title: Broad-leaved weeds in chickpea (Cicer arietinum L.) as affected by plant density and Lentagran herbicide application
  publication-title: Electron J Biol
– volume: 13
  start-page: 42
  year: 2020
  end-page: 48
  article-title: An aerial weed detection system for green onion crops using the you only look once (YOLOv3) deep learning algorithm
  publication-title: Eng Agric Environ Food
– volume: 11
  start-page: 929
  year: 1971
  end-page: 931
  article-title: Stage of development descriptions for soybeans, Glycine max (L.) Merrill
  publication-title: Crop Sci
– volume: 235
  start-page: 142
  year: 2019
  end-page: 153
  article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images
  publication-title: Field Crop Res
– volume: 42
  start-page: 523
  year: 1994
  end-page: 527
  article-title: Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed
  publication-title: Sci
– volume: 10
  start-page: 9548
  year: 2020
  article-title: Goosegrass detection in strawberry and tomato using a convolutional neural network
  publication-title: Sci Rep
– volume: 67
  start-page: 239
  year: 2018
  end-page: 245
  article-title: Detection of Carolina geranium (Geranium carolinianum) growing in competition with strawberry using convolutional neural networks
  publication-title: Weed Sci
– volume: 52
  start-page: 8448
  year: 2022
  end-page: 8463
  article-title: RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring
  publication-title: Appl Intell
– volume: 2
  start-page: 350
  year: 2020
  end-page: 366
  article-title: Mapping and estimating weeds in cotton using unmanned aerial systems-borne imagery
  publication-title: AgriEngineering
– volume: 235
  start-page: 228
  year: 2017
  end-page: 235
  article-title: Plant identification using deep neural networks via optimization of transfer learning parameters
  publication-title: Neurocomputing
– volume: 20
  start-page: 578
  year: 2020
  article-title: A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network
  publication-title: Sensors
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE T Pattern Anal
– volume: 59
  start-page: 357
  year: 2019
  end-page: 366
  article-title: In-field classification of herbicide-resistant Papaver rhoeas and Stellaria media using an imaging sensor of the maximum quantum efficiency of photosystem II
  publication-title: Weed Res
– volume: 2022
  start-page: 521
  year: 2022
  end-page: 529
  article-title: Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat
  publication-title: Pest Manag Sci
– volume: 45
  start-page: 364
  year: 1997
  end-page: 373
  article-title: The nature and consequence of weed spatial distribution
  publication-title: Weed Sci
– volume: 35
  start-page: 210
  year: 2021
  end-page: 215
  article-title: Influence of sulfentrazone and metribuzin applied preemergence on soybean development and yield
  publication-title: Weed Technol
– volume: 2
  start-page: 471
  year: 2020
  end-page: 488
  article-title: A deep learning approach for weed detection in lettuce crops using multispectral images
  publication-title: AgriEngineering
– volume: 12
  start-page: 2136
  year: 2020
  article-title: Comparison of object detection and patch-based classification deep learning models on mid- to late-season weed detection in UAV imagery
  publication-title: Remote Sens
– volume: 184
  start-page: 106081
  year: 2021
  article-title: Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems
  publication-title: Comput Electron Agric
– volume: 13
  start-page: 54
  year: 2021
  publication-title: Remote Sens
– volume: 68
  start-page: 545
  year: 2020
  end-page: 552
  article-title: Detection of grassy weeds in bermudagrass with deep convolutional neural networks
  publication-title: Weed Sci
– volume: 78
  start-page: 1861
  year: 2022
  end-page: 1869
  article-title: A novel deep learning-based method for detection of weeds in vegetables
  publication-title: Pest Manag Sci
– volume: 16
  start-page: 29
  year: 2020
  article-title: Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields
  publication-title: Plant Methods
– volume: 72
  start-page: 74
  year: 2015
  end-page: 80
  article-title: Managing the evolution of herbicide resistance
  publication-title: Pest Manag Sci
– volume: 64
  start-page: 259
  year: 2011
  end-page: 266
  article-title: The role of the growth stage of weeds in their response to reduced herbicide doses
  publication-title: ACTA Agrobotanica
– volume: 8
  start-page: 1
  year: 2002
  end-page: 5
  article-title: Four assumptions of multiple regression that researchers should always test
  publication-title: Pract Assess Res Eval
– volume: 182
  start-page: 106040
  year: 2021
  article-title: Application of deep learning to detect lamb’s quarters (Chenopodium album L.) in potato fields of Atlantic Canada
  publication-title: Comput Electron Agric
– volume: 57
  start-page: 644
  year: 2009
  end-page: 651
  article-title: Soybean canopy and tillage effects on emergence of Palmeramaranth (Amaranthus palmeri) from a natural seedbank
  publication-title: Weed Sci
– volume: 38
  start-page: 341
  year: 2021
  end-page: 348
  article-title: Weed detection in images of carrot fields based on improved YOLO v4
  publication-title: Trait Signal
– volume: 10
  start-page: 372
  year: 2021
  article-title: A smartphone-based application for scale pest detection using multiple-object detection methods
  publication-title: Electronics
– volume: 58
  start-page: 259
  year: 2018
  end-page: 272
  article-title: Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops?
  publication-title: Weed Res
– volume: 221
  start-page: 430
  year: 2019
  end-page: 443
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens Environ
– volume: 10
  start-page: 372
  year: 2021
  ident: S0043174522000534_ref17
  article-title: A smartphone-based application for scale pest detection using multiple-object detection methods
  publication-title: Electronics
  doi: 10.3390/electronics10040372
– ident: S0043174522000534_ref6
  doi: 10.1007/978-981-16-3880-0_35
– ident: S0043174522000534_ref33
  doi: 10.1007/978-3-319-54193-8_13
– ident: S0043174522000534_ref48
  doi: 10.1017/wet.2020.90
– volume: 67
  start-page: 239
  year: 2018
  ident: S0043174522000534_ref74
  article-title: Detection of Carolina geranium (Geranium carolinianum) growing in competition with strawberry using convolutional neural networks
  publication-title: Weed Sci
  doi: 10.1017/wsc.2018.66
– volume: 52
  start-page: 8448
  year: 2022
  ident: S0043174522000534_ref84
  article-title: RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02893-3
– volume: 64
  start-page: 259
  year: 2011
  ident: S0043174522000534_ref45
  article-title: The role of the growth stage of weeds in their response to reduced herbicide doses
  publication-title: ACTA Agrobotanica
  doi: 10.5586/aa.2011.068
– volume: 2
  start-page: 471
  year: 2020
  ident: S0043174522000534_ref62
  article-title: A deep learning approach for weed detection in lettuce crops using multispectral images
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering2030032
– volume: 58
  start-page: 259
  year: 2018
  ident: S0043174522000534_ref24
  article-title: Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops?
  publication-title: Weed Res
  doi: 10.1111/wre.12307
– volume: 1544
  start-page: 012033
  year: 2020
  ident: S0043174522000534_ref21
  article-title: Overview of two-stage object detection algorithms
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1544/1/012033
– ident: S0043174522000534_ref26
– ident: S0043174522000534_ref101
  doi: 10.1002/ps.6656
– volume: 44
  start-page: 460
  year: 2004
  ident: S0043174522000534_ref10
  article-title: Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management
  publication-title: Weed Res
  doi: 10.1111/j.1365-3180.2004.00423.x
– volume: 221
  start-page: 430
  year: 2019
  ident: S0043174522000534_ref100
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.11.032
– ident: S0043174522000534_ref90
– volume: 11
  start-page: 929
  year: 1971
  ident: S0043174522000534_ref23
  article-title: Stage of development descriptions for soybeans, Glycine max (L.) Merrill
  publication-title: Crop Sci
  doi: 10.2135/cropsci1971.0011183X001100060051x
– ident: S0043174522000534_ref5
– ident: S0043174522000534_ref51
  doi: 10.1007/978-3-319-10602-1_48
– ident: S0043174522000534_ref52
– ident: S0043174522000534_ref47
  doi: 10.1109/ICCUBEA.2018.8697819
– volume: 53
  start-page: 221
  year: 2005
  ident: S0043174522000534_ref56
  article-title: Justification for site-specific weed management based on ecology and economics
  publication-title: Weed Sci
  doi: 10.1614/WS-04-071R2
– ident: S0043174522000534_ref12
– ident: S0043174522000534_ref35
  doi: 10.1109/CVPR.2017.351
– volume: 78
  start-page: 1861
  year: 2022
  ident: S0043174522000534_ref41
  article-title: A novel deep learning-based method for detection of weeds in vegetables
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.6804
– ident: S0043174522000534_ref89
– ident: S0043174522000534_ref34
  doi: 10.1109/CAIBDA53561.2021.00016
– volume: 13
  start-page: 42
  year: 2020
  ident: S0043174522000534_ref64
  article-title: An aerial weed detection system for green onion crops using the you only look once (YOLOv3) deep learning algorithm
  publication-title: Eng Agric Environ Food
  doi: 10.37221/eaef.13.2_42
– ident: S0043174522000534_ref28
  doi: 10.1016/j.neucom.2017.01.018
– ident: S0043174522000534_ref43
– volume: 35
  start-page: 210
  year: 2021
  ident: S0043174522000534_ref8
  article-title: Influence of sulfentrazone and metribuzin applied preemergence on soybean development and yield
  publication-title: Weed Technol
  doi: 10.1017/wet.2020.99
– ident: S0043174522000534_ref68
  doi: 10.1109/CVPR.2016.91
– ident: S0043174522000534_ref57
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2021
  ident: S0043174522000534_ref67
– ident: S0043174522000534_ref32
  doi: 10.1109/CVPR.2016.90
– volume: 72
  start-page: 74
  year: 2015
  ident: S0043174522000534_ref22
  article-title: Managing the evolution of herbicide resistance
  publication-title: Pest Manag Sci
  doi: 10.1002/ps.4009
– ident: S0043174522000534_ref80
  doi: 10.1017/wet.2020.91
– ident: S0043174522000534_ref54
  doi: 10.1007/978-3-319-46448-0_2
– volume: 2
  start-page: 350
  year: 2020
  ident: S0043174522000534_ref73
  article-title: Mapping and estimating weeds in cotton using unmanned aerial systems-borne imagery
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering2020024
– ident: S0043174522000534_ref14
– volume: 11
  start-page: 90
  year: 2015
  ident: S0043174522000534_ref59
  article-title: Broad-leaved weeds in chickpea (Cicer arietinum L.) as affected by plant density and Lentagran herbicide application
  publication-title: Electron J Biol
– volume: 38
  start-page: 341
  year: 2021
  ident: S0043174522000534_ref98
  article-title: Weed detection in images of carrot fields based on improved YOLO v4
  publication-title: Trait Signal
  doi: 10.18280/ts.380211
– ident: S0043174522000534_ref37
– volume: 10
  start-page: 1044
  year: 2020
  ident: S0043174522000534_ref82
  article-title: Spatial modelling of within-field weed populations: a review
  publication-title: Agronomy
  doi: 10.3390/agronomy10071044
– ident: S0043174522000534_ref85
  doi: 10.1609/aaai.v31i1.11231
– volume: 13
  start-page: 54
  year: 2021
  ident: S0043174522000534_ref11
  publication-title: Remote Sens
  doi: 10.3390/rs13010054
– volume: 5
  start-page: 359
  year: 2004
  ident: S0043174522000534_ref13
  article-title: Precision agriculture and sustainability
  publication-title: Precis Agric
  doi: 10.1023/B:PRAG.0000040806.39604.aa
– ident: S0043174522000534_ref87
– ident: S0043174522000534_ref93
– ident: S0043174522000534_ref7
  doi: 10.1109/AVSS.2017.8078518
– volume: 21
  start-page: 4350
  year: 2021
  ident: S0043174522000534_ref95
  article-title: Confidence score: the forgotten dimension of object detection performance evaluation
  publication-title: Sensors
  doi: 10.3390/s21134350
– ident: S0043174522000534_ref65
– volume: 12
  start-page: 4091
  year: 2020
  ident: S0043174522000534_ref39
  article-title: Design and development of a smart variable rate sprayer using deep learning
  publication-title: Remote Sens
  doi: 10.3390/rs12244091
– ident: S0043174522000534_ref42
– volume: 20
  start-page: 578
  year: 2020
  ident: S0043174522000534_ref49
  article-title: A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20030578
– ident: S0043174522000534_ref94
– ident: S0043174522000534_ref9
– ident: S0043174522000534_ref20
  doi: 10.1016/j.compag.2019.104963
– ident: S0043174522000534_ref16
– volume: 59
  start-page: 357
  year: 2019
  ident: S0043174522000534_ref53
  article-title: In-field classification of herbicide-resistant Papaver rhoeas and Stellaria media using an imaging sensor of the maximum quantum efficiency of photosystem II
  publication-title: Weed Res
  doi: 10.1111/wre.12374
– ident: S0043174522000534_ref79
– volume: 184
  start-page: 106081
  year: 2021
  ident: S0043174522000534_ref2
  article-title: Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106081
– ident: S0043174522000534_ref71
  doi: 10.23919/MVA.2017.7986913
– ident: S0043174522000534_ref60
– ident: S0043174522000534_ref4
– volume: 10
  start-page: 9548
  year: 2020
  ident: S0043174522000534_ref75
  article-title: Goosegrass detection in strawberry and tomato using a convolutional neural network
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-66505-9
– ident: S0043174522000534_ref50
  doi: 10.1109/CVPR.2017.211
– ident: S0043174522000534_ref25
– ident: S0043174522000534_ref91
– ident: S0043174522000534_ref3
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: S0043174522000534_ref19
– ident: S0043174522000534_ref36
– ident: S0043174522000534_ref86
– volume: 45
  start-page: 364
  year: 1997
  ident: S0043174522000534_ref15
  article-title: The nature and consequence of weed spatial distribution
  publication-title: Weed Sci
  doi: 10.1017/S0043174500092997
– ident: S0043174522000534_ref1
  doi: 10.1109/ICACCS48705.2020.9074315
– ident: S0043174522000534_ref88
  doi: 10.1109/ICCE48956.2021.9352073
– ident: S0043174522000534_ref44
– ident: S0043174522000534_ref96
  doi: 10.1109/CSCI46756.2018.00067
– ident: S0043174522000534_ref31
  doi: 10.1109/DICTA.2007.4426799
– ident: S0043174522000534_ref78
  doi: 10.1186/s40537-019-0197-0
– volume: 16
  start-page: 29
  year: 2020
  ident: S0043174522000534_ref27
  article-title: Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00570-z
– ident: S0043174522000534_ref77
– ident: S0043174522000534_ref29
  doi: 10.1109/ICCV.2015.169
– ident: S0043174522000534_ref55
  doi: 10.1109/DLS49591.2019.00011
– ident: S0043174522000534_ref30
  doi: 10.1109/CVPR.2014.81
– ident: S0043174522000534_ref18
– volume: 57
  start-page: 644
  year: 2009
  ident: S0043174522000534_ref40
  article-title: Soybean canopy and tillage effects on emergence of Palmeramaranth (Amaranthus palmeri) from a natural seedbank
  publication-title: Weed Sci
  doi: 10.1614/WS-09-074.1
– ident: S0043174522000534_ref92
– volume: 42
  start-page: 523
  year: 1994
  ident: S0043174522000534_ref46
  article-title: Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed
  publication-title: Sci
– ident: S0043174522000534_ref83
– ident: S0043174522000534_ref58
– ident: S0043174522000534_ref63
  doi: 10.1109/LSP.2018.2889273
– volume: 12
  start-page: 2136
  year: 2020
  ident: S0043174522000534_ref81
  article-title: Comparison of object detection and patch-based classification deep learning models on mid- to late-season weed detection in UAV imagery
  publication-title: Remote Sens
  doi: 10.3390/rs12132136
– volume: 182
  start-page: 106040
  year: 2021
  ident: S0043174522000534_ref38
  article-title: Application of deep learning to detect lamb’s quarters (Chenopodium album L.) in potato fields of Atlantic Canada
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106040
– ident: S0043174522000534_ref66
– volume: 235
  start-page: 142
  year: 2019
  ident: S0043174522000534_ref97
  article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.02.022
– volume: 68
  start-page: 545
  year: 2020
  ident: S0043174522000534_ref99
  article-title: Detection of grassy weeds in bermudagrass with deep convolutional neural networks
  publication-title: Weed Sci
  doi: 10.1017/wsc.2020.46
– ident: S0043174522000534_ref69
– volume: 39
  start-page: 1137
  year: 2017
  ident: S0043174522000534_ref70
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE T Pattern Anal
  doi: 10.1109/TPAMI.2016.2577031
– volume: 8
  start-page: 1
  year: 2002
  ident: S0043174522000534_ref61
  article-title: Four assumptions of multiple regression that researchers should always test
  publication-title: Pract Assess Res Eval
– volume: 21
  start-page: 264
  year: 2020
  ident: S0043174522000534_ref76
  article-title: Vegetation detection and discrimination within vegetable plasticulture row-middles using a convolutional neural network
  publication-title: Precis Agric
  doi: 10.1007/s11119-019-09666-6
– ident: S0043174522000534_ref72
SSID ssj0016219
Score 2.400598
Snippet Site-specific weed management using open-source object detection algorithms could accurately detect weeds in cropping systems. We investigated the use of...
SourceID proquest
crossref
cambridge
bioone
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 648
SubjectTerms Agriculture
Algorithms
Amaranth
Amaranthus palmeri
Artificial intelligence
Cropping systems
Datasets
Faster R-CNN
Gypsum
Herbicides
Image annotation
Natural populations
Neural networks
Object recognition
Regression analysis
Regression models
Single Shot Detector
site-specific weed management
Soybeans
TensorFlow
Weed control
Weeds
YOLOv5
SummonAdditionalLinks – databaseName: BioOne Complete
  dbid: PQ0
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZSsQwMHg96IO3uF4EEVGh2iZN0j4uHvjkgQq-lTSZugW3XbZdxb836bEeiIhvoZ0yzUwmk8lcCO3Z5j1cu-AI5oHjE_AcqZVyPBEoeyCAkNTNJsTVVfD4GN5MINLmwtiwyjjN8wwqN76VaxkXjZkpTl4LW3aQkGNGJ9G0US7cCuPNrTv2HHDiha1X2Zy2WZOT9-1jo29qLJ9LKnxVTV935krdXCz850cX0XxzuMTdejUsoQnIltFc92nYFNiAFdR7KADnCbaBJM5ddXOPr2N7GYPPoKzisjLcfX7Kh2nZ6xe4zJvnuO60grt9adRb2cMH7WhU4EH1Lj3EaYbv8rcYZLaKHi7O708vnabbghNT4ZYOlTqJDfWYZjyh3PUF-IL4ikihecITaY0zD5gXC7O7cqapBA5eGCiphABN19BUZsixjjDVXLmhdKlywVcsCBRoJYk2pmEgIZAdtFuTLhrUJTWiOtZMRIZskSVbxGgH7Y85EzWCVfwMeNSyLVJNYXPbX-P5Z-C9MfCvyLda_n_gJsIWx6Oh52_8ZQKbaNaO6sTFLTRVDkewjWbUS5kWw51q1b4De17q3A
  priority: 102
  providerName: BioOne
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46d9CDv8XplCBDVIi2SZu0Jxni8CQeHOxW0uTVDbZ2rp3if2_TZlNBvHgrTUhKvvQlee_l-xDqGPEerh0gwneBeBRcIrVSxBWBMhsCCGktNiEeH4PBIHyyDrfcplUubGJlqHWmjI_8hgrDTMZC17udvhKjGmWiq1ZCYxWtGZYEVqXuPS2jCJy64SLCXO68fXs_z1BGv-eGv5DSa6OK3IxHWZbCd3qFn8vUTytdLT29rf9-9DbatJtO3K1nyQ5agXQXbXRfZpZ4A_bQsJ8DzhJs1LRI7dHHWWycNFhDUeVrpViOX8rWi-Ekx0Vm3-NagQXLiSyXvWKIL7r2aZ7jaVU2usSjFOfZRwwy3Uf93v3z3QOxKgwkZsIpCJM6icuR9LXPE8YdT4AnqKeoFJonPJHm0OaC78aitLrc10wCBzcMlFRCgGYHqJGWo3uIMNNcOaF0mHLAU34QKNBKUl0eGQMJgWyhsxqJaFpTbUR1DpqISrgiA1fksxY6X6IU2R8u_73i1QLCSFnCc6O7Mf69cmdZ-c_O2wugv_r-Qvno7-JjtG7aqa8ytlGjmM3hBDXVWzHKZ6fV3P0E50X3Wg
  priority: 102
  providerName: ProQuest
Title Use of Open-Source Object Detection Algorithms to Detect Palmer Amaranth (Amaranthus palmeri) in Soybean
URI http://www.bioone.org/doi/abs/10.1017/wsc.2022.53
https://www.cambridge.org/core/product/identifier/S0043174522000534/type/journal_article
https://www.proquest.com/docview/2754803914
Volume 70
WOSCitedRecordID wos000868929400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADV
  databaseName: BioOne Complete
  customDbUrl:
  eissn: 1550-2759
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016219
  issn: 0043-1745
  databaseCode: PQ0
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://bioone.org/browse/title
  providerName: BioOne
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1550-2759
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016219
  issn: 0043-1745
  databaseCode: M0K
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1550-2759
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016219
  issn: 0043-1745
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1550-2759
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016219
  issn: 0043-1745
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1550-2759
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0016219
  issn: 0043-1745
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5t7R7ggd-IwagsNCFAypo4iZ08FrQBmigFMalvkWNf1khbUiUZiP-eXOwWJk2IF14sy7Hi5M7y2b677wM4JPIeYXz0ZBygF3EMPGW09gKZaNoQYMot2YScz5PlMl3swHKTC0NhlVuMg8GTP_CjrS386bQ0NoYGG8rxJeNHiOBDRmk0pUvLqVNB5gS_C-N-B8P5CMYfT5fv51sPg-BBuvE-01tc7h7BSf9oCduQ8yNiTN7Ly7qu8E_ohesm7PoKPpilk7v_74fuwR23VWUz23IfdrB6ALdn542D68CHsDprkdUFIw4uz_oBWJ3T1Q4z2A1RXhVTF-d1U3ary5Z1tWtnlreFqUvVG8tuxV7NXO2qZevhWfmalRVr6585quoRnJ0cf3v3wXPcDV4eSr_zQmWKvJdxbGJRhMKPJEaSR5oraUQhCkVHvQDjIJf9Wi1iEyoUGKSJVlpKNOFjGFW93J8AC43Qfqr8UPsY6ThJNBqtuOkPmonCRO3DC6ujbG0BOjIbuSazXpEZKTKLw314udVC5kTa3tzxzUa5mXYw6cTWcXFz58Nt578OfrCZJb_H5pKg9sI0iJ7-67c9g1tUs6mQBzDqmit8Dnv6e1e2zQTGb4_ni68TN9MnsPvJP6WSf6ZSLvpy8cX_BRRoEsc
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9UwFD9BIFEfxM-IgDYGjZpUt3ZrtwdCblQCAW94gIS32bVn3JvAdr0bEP4p_0badbtIQnjjwbdla9p0_fV89JyeH8C6I-8RJkAq4xBpxDCkymhNQ5loZxBgyjzZhBwOk6OjdH8O_vZ3YVxaZS8TW0FtKu3OyL8x6SqT8TSMNid_qGONctHVnkLDw2IXLy-sy1Zv7Pyw6_uBsa2fB9-3accqQHMug4ZyZYpcWE1nYlFwEUQSI8kizZQ0ohCFck5IiHGYSytFRGy4QoHWN9dKS4mG234fwII1I1jSpgruz6IWtte0j2hbSz_u7gO6EtUXtauXyNhXx8K8mI-rqsR_yzncVIs3tUKr6raW_ref9BSedEY1Gfhd8AzmsHwOjwfH066wCL6A0WGNpCqIYwujPmJBqtwdQhGDTZuPVhJ1cmxn04xOa9JU3XviGWaIOlVWrTcj8mnQPZ3VZNJ-G38m45LU1WWOqnwJh_cy1VcwX9rVfA2EG6GDVAVcBxjpOEk0Gq2YsS5xojBRy_Der3w28aVEMp9jJzMLj8zBI4v5MnycoSLrBEp9e8MvPWQy3RV0d7wiJ7c3Xp81vnPw1R5Y12Nfo-rN3Z_fwcPtg1972d7OcHcFHrk-_bXNVZhvpme4Bov6vBnX07ftviHw-74xeAUYEVQb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1Riip6oN-CFlqrolVbySWxEzs5oGpVuiqiWu2hSNxSx56wK0Gy3YQi_lp_HXacLEVC3Dj0FiWWLcfPM7Zn_B7AthPvESZAKuMQacQwpMpoTUOZaLcgwJR5sQk5GiVHR-l4Cf72d2FcWmVvE1tDbSrtzsh3mHTMZDwNo52iS4sY7w2_zH5TpyDlIq29nIaHyAFenNvtW727v2fH-h1jw28_v36nncIAzbkMGsqVKXJhvZ6JRcFFEEmMJIs0U9KIQhTKbUhCjMNcWosiYsMVCrT7dK20lGi4rfce3JeOtLxNGxwvIhi21rSPbttVf9zdDXR01ee1405k7LNTZF7Jp1VV4r_UDtdd5HUP0bq94aP_-Yc9hrVusU0GfnY8gSUsn8LDwfG8IxzBZzA5rJFUBXEqYtRHMkiVu8MpYrBp89RKok6ObW-ayWlNmqp7T7zyDFGnyrr7ZkI-DLqns5rM2m_Tj2Rakrq6yFGVz-HwTrr6ApZLO7LrQLgROkhVwHWAkY6TRKPRihm7VU4UJmoD3noUZDNPMZL53DuZWahkDipZzDfg_QIhWWdo6psLfurhk-mO6N3pjZzcXHh7UfjWxjd7kF21fYWwl7d_fgMPLPSyH_ujg1ew6qr0tzk3YbmZn-EWrOg_zbSev26nEIFfdw3BSzPWXNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+open-source+object+detection+algorithms+to+detect+Palmer+amaranth+%28Amaranthus+palmeri%29+in+soybean&rft.jtitle=Weed+science&rft.au=Barnhart%2C+Isaac+H.&rft.au=Lancaster%2C+Sarah&rft.au=Goodin%2C+Douglas&rft.au=Spotanski%2C+Jess&rft.date=2022-11-01&rft.pub=Cambridge+University+Press&rft.issn=0043-1745&rft.eissn=1550-2759&rft.volume=70&rft.issue=6&rft.spage=648&rft.epage=662&rft_id=info:doi/10.1017%2Fwsc.2022.53&rft.externalDocID=10_1017_wsc_2022_53
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1745&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1745&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1745&client=summon