Research on the Prediction of Health Status of the Container Gantry Crane Energy Systems
Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting...
Uložené v:
| Vydané v: | Journal of coastal research Ročník 73; číslo sp1; s. 139 - 145 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Coastal Education and Research Foundation
01.12.2015
Coastal Education & Research Foundation (CERF) |
| Predmet: | |
| ISSN: | 0749-0208, 1551-5036 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries. |
|---|---|
| ISSN: | 0749-0208 1551-5036 |
| DOI: | 10.2112/SI73-025.1 |