Research on the Prediction of Health Status of the Container Gantry Crane Energy Systems

Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal research Jg. 73; H. sp1; S. 139 - 145
Hauptverfasser: Jia, Hongxia, Liu, Haiwei, Yang, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Coastal Education and Research Foundation 01.12.2015
Coastal Education & Research Foundation (CERF)
Schlagworte:
ISSN:0749-0208, 1551-5036
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jia, H.; Liu, H., and Yang, Y., 2015. The research on the prediction of health status of the container gantry crane energy systems. In this paper, the remaining capacity of lead-acid batteries is used to evaluate the health status of RTG energy systems. A LS-SVM model was established for predicting the remaining capacity of batteries, with the PSO-BP algorithm optimizing the parameters in the LS-SVM model. Using the trained LS-SVM model, the remaining capacity of batteries and the degradation trend of battery capacity with time are predicted. Compared with measured results, the predicted results show that the LS-SVM model can accurately predict the remaining capacity of lead-acid batteries.
ISSN:0749-0208
1551-5036
DOI:10.2112/SI73-025.1