Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...
Uložené v:
| Vydané v: | bioRxiv |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Cold Spring Harbor Laboratory Press
09.05.2023
Cold Spring Harbor Laboratory |
| Vydanie: | 1.3 |
| Predmet: | |
| ISSN: | 2692-8205, 2692-8205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. |
|---|---|
| AbstractList | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms. White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://figshare.com/articles/dataset/Atlas_of_30_Human_Brain_Bundles_in_MNI_space/12089652 |
| Author | Thompson, Paul M Chattopadhyay, Tamoghna Thomopoulos, Sophia I Feng, Yixue Chandio, Bramsh Q |
| Author_xml | – sequence: 1 givenname: Yixue orcidid: 0000-0003-1015-4209 surname: Feng fullname: Feng, Yixue – sequence: 2 givenname: Bramsh Q orcidid: 0000-0002-8949-4937 surname: Chandio fullname: Chandio, Bramsh Q – sequence: 3 givenname: Sophia I orcidid: 0000-0002-0046-4070 surname: Thomopoulos fullname: Thomopoulos, Sophia I – sequence: 4 givenname: Tamoghna surname: Chattopadhyay fullname: Chattopadhyay, Tamoghna – sequence: 5 givenname: Paul M orcidid: 0000-0002-4720-8867 surname: Thompson fullname: Thompson, Paul M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36909490$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkMtOHDEQRa2IKBDgA7KJLLHJpid22e62l0B4SSNlwZBtq7pdA0167MF2J8zfMwTyUFZ1pTq6Vzrv2U6IgRj7IMVMSiE_gwA1EzADPTPgnNFv2B7UDioLwuz8k3fZYc73QghwtVSNfsd2Ve2E007sse_fMA1Yhhhw5MdTiRT66CllvoyJX1CgtP2GW369CeWOytDzRcK-xNuE67tNdYKZPD-Zgh-JL2i1HrFQ5kPgyOfxZ_UFC_JrKs8dB-ztEsdMh693n92cny1OL6v514ur0-N51YGsdSWt1F6SE0JbarC20IFGr7pONU73ul4qI00jnKvJICrtyfbaL63RyiuHap99eunthpgehx_tOg0rTJv2WVkroAXdvij7i65TfJgol3Y15J7GEQPFKbfQ2NpIYZ3Zokf_ofdxSlttvygBWmqwW-rjKzV1K_J_pn8bV0-hUIKk |
| ContentType | Journal Article Paper |
| Copyright | 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Posted by Cold Spring Harbor Laboratory |
| DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. |
| DOI | 10.1101/2023.02.24.529954 |
| DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv |
| DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.3 |
| ExternalDocumentID | 2023.02.24.529954v3 36909490 |
| Genre | Preprint Working Paper/Pre-Print |
| GroupedDBID | NPM 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI 7X8 PUEGO FX. |
| ID | FETCH-LOGICAL-b2164-1814d1e90048e7a682b24ad3bb3794c46f351570996e5aa34de8c4df8543d39a3 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:59:07 EST 2025 Thu Sep 04 16:19:44 EDT 2025 Fri Jul 25 09:14:07 EDT 2025 Wed Feb 19 02:13:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b2164-1814d1e90048e7a682b24ad3bb3794c46f351570996e5aa34de8c4df8543d39a3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0003-1015-4209 0000-0002-0046-4070 0000-0002-4720-8867 0000-0002-8949-4937 |
| OpenAccessLink | https://www.proquest.com/docview/2780241428?pq-origsite=%requestingapplication% |
| PMID | 36909490 |
| PQID | 2780241428 |
| PQPubID | 2050091 |
| PageCount | 6 |
| ParticipantIDs | biorxiv_primary_2023_02_24_529954 proquest_miscellaneous_2786510895 proquest_journals_2780241428 pubmed_primary_36909490 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-May-09 |
| PublicationDateYYYYMMDD | 2023-05-09 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-May-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationTitleAlternate | bioRxiv |
| PublicationYear | 2023 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | 38083771 - Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6 Dumais, Legarreta, Lemaire, Poulin, Rheault, Petit, Descoteaux, Jodoin (2023.02.24.529954v3.25) 2022 Girard, Whittingstall, Deriche, Descoteaux (2023.02.24.529954v3.39) 2014; 98 Pizzi, Franciotti, Taylor, Esposito, Tartaro, Thomas, Onofrj, Bonanni (2023.02.24.529954v3.6) 2015; 7 Knósche, Anwander, Liptrot, Dyrby (2023.02.24.529954v3.15) 2015; 36 Lizarraga, Narr, Donald, Joshi (2023.02.24.529954v3.26) 2022 Garyfallidis, Côté, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (2023.02.24.529954v3.8) 2018; 170 Short, Jang, Steiner, Stephens, Girault, Styner, Gilmore (2023.02.24.529954v3.18) 2022; 16 Zavaliangos-Petropulu, Nir, Thomopoulos, Reid, Bernstein, Borowski, Jack, Weiner, Jahanshad, Thompson (2023.02.24.529954v3.29) 2019; 13 Kellner, Dhital, Kiselev, Reisert (2023.02.24.529954v3.34) 2016; 76 Feng, Chandio, Chattopadhyay, Thomopoulos, Owens-Walton, Jahanshad, Garyfallidis, Thompson (2023.02.24.529954v3.27) 2022 Basser, Mattiello, LeBihan (2023.02.24.529954v3.1) 1994; 66 Thomopoulos, Nir, Villalon-Reina, Zavaliangos-Petropulu, Maiti, Zheng, Nourollahimoghadam, Jahanshad, Thompson (2023.02.24.529954v3.5) 2021 Sohn, Lee, Yan (2023.02.24.529954v3.43) 2015; 28 Galbusera, Bassani, Casaroli, Gitto, Zanchetta, Costa, Sconfienza (2023.02.24.529954v3.22) 2018; 2 Tournier, Calamante, Connelly (2023.02.24.529954v3.38) 2007; 35 Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux, Nimmo-Smith, Contributors (2023.02.24.529954v3.30) 2014; 8 Andersson, Graham, Drobnjak, Zhang, Filippini, Bastiani (2023.02.24.529954v3.37) 2017; 152 Schilling, Rheault, Petit, Hansen, Descoteaux (2023.02.24.529954v3.14) 2021; 243 Li, Cai, Zhang, Chen, Dey (2023.02.24.529954v3.40) 2022 Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (2023.02.24.529954v3.2) 2001; 13 Legarreta, Petit, Jodoin, Descoteaux (2023.02.24.529954v3.24) 2023; 85 Fu, Li, Liu, Gao, Celikyilmaz, Carin (2023.02.24.529954v3.41) 2019 Veraart, Novikov, Christiaens, Ades-aron, Sijbers, Fieremans (2023.02.24.529954v3.33) 2016; 142 Veraart, Fieremans, Novikov (2023.02.24.529954v3.32) 2016; 76 Spencer, Byrne, Lee-Kelland, Jary, Thoresen, Cowan, Chakkarapani, Brooks (2023.02.24.529954v3.17) 2022; 12 Chandio, Risacher, Pestilli, Bullock, Yeh, Koudoro, Rokem, Harezlak, Garyfallidis (2023.02.24.529954v3.7) 2020; 10 Rombach, Blattmann, Lorenz, Esser, Ommer (2023.02.24.529954v3.20) 2022 Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (2023.02.24.529954v3.28) 2016; 19 Jeurissen, Descoteaux, Mori, Leemans (2023.02.24.529954v3.4) 2019; 32 Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (2023.02.24.529954v3.19) 2021 Andersson, Graham, Zsoldos, Sotiropoulos (2023.02.24.529954v3.36) 2016; 141 Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda, Vettel, Verstynen (2023.02.24.529954v3.11) 2018; 178 Garyfallidis (2023.02.24.529954v3.12) 2021 Legarreta, Petit, Rheault, Theaud, Lemaire, De-scoteaux, Jodoin (2023.02.24.529954v3.23) 2021; 72 Yeh (2023.02.24.529954v3.42) 2020; 223 Pinaya, Tudosiu, Dafflon, da Costa, Fernan-dez, Nachev, Ourselin, Cardoso (2023.02.24.529954v3.21) 2022 Wasserthal, Neher, Maier-Hein (2023.02.24.529954v3.9) 2018; 183 Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (2023.02.24.529954v3.10) 2020; 217 Farquharson, Tournier, Calamante, Fabinyi, Schneider-Kolsky, Jackson, Connelly (2023.02.24.529954v3.3) 2013; 118 Chandio, Chattopadhyay, Owens-Walton, Reina, Nabulsi, Thomopoulos, Garyfallidis, Thompson (2023.02.24.529954v3.16) 2022 Andersson, Sotiropoulos (2023.02.24.529954v3.35) 2016; 125 Manjón, Coupé, Concha, Buades, Collins, Robles (2023.02.24.529954v3.31) 2013; 8 Chandio (2023.02.24.529954v3.13) 2022 |
| References_xml | – reference: 38083771 - Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6 – volume: 170 start-page: 283 year: 2018 end-page: 295 ident: 2023.02.24.529954v3.8 article-title: “Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: NeuroImage – volume: 76 start-page: 1582 year: 2016 end-page: 1593 ident: 2023.02.24.529954v3.32 article-title: “Diffusion MRI noise mapping using random matrix theory: Diffusion MRI Noise Mapping publication-title: Magnetic Resonance in Medicine – volume: 13 start-page: 534 issue: 4 year: 2001 end-page: 546 ident: 2023.02.24.529954v3.2 article-title: “Diffusion tensor imaging: concepts and applications publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine – year: 2022 ident: 2023.02.24.529954v3.26 publication-title: “Stream-Net: A WAE for White Matter Streamline Analysis – year: 2019 ident: 2023.02.24.529954v3.41 publication-title: “Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing – start-page: 79 year: 2021 ident: 2023.02.24.529954v3.5 publication-title: in 17th International Symposium on Medical Information Processing and Analysis – year: 2022 ident: 2023.02.24.529954v3.13 publication-title: Advancing White Matter Tractometry of the Brain Using Diffusion MRI and Machine Learning. PhD thesis, Indiana University – volume: 217 start-page: 116923 year: 2020 ident: 2023.02.24.529954v3.10 article-title: “XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: NeuroImage – year: 2021 ident: 2023.02.24.529954v3.19 publication-title: “Zero-Shot Text-to-Image Generation – volume: 12 start-page: 402 year: 2022 end-page: 416 ident: 2023.02.24.529954v3.17 article-title: “An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6–8 Years publication-title: Brain Connectivity – volume: 13 start-page: 2 year: 2019 ident: 2023.02.24.529954v3.29 article-title: “Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3 publication-title: Frontiers in Neuroinformatics – volume: 28 year: 2015 ident: 2023.02.24.529954v3.43 publication-title: in Advances in Neural Information Processing Systems – volume: 7 year: 2015 ident: 2023.02.24.529954v3.6 article-title: “Structural Connectivity is Differently Altered in Dementia with Lewy Body and Alzheimer’s Disease publication-title: Frontiers in Aging Neuroscience – volume: 8 year: 2014 ident: 2023.02.24.529954v3.30 article-title: “Dipy, a library for the analysis of diffusion MRI data publication-title: Frontiers in Neuroinformatics – volume: 85 start-page: 102761 year: 2023 ident: 2023.02.24.529954v3.24 article-title: “Generative Sampling in Bundle Tractography using Autoencoders (GESTA) publication-title: Medical Image Analysis – volume: 66 start-page: 259 issue: 1 year: 1994 end-page: 267 ident: 2023.02.24.529954v3.1 article-title: “Mr diffusion tensor spectroscopy and imaging publication-title: Biophysical journal – year: 2022 ident: 2023.02.24.529954v3.21 publication-title: “Brain Imaging Generation with Latent Diffusion Models – volume: 152 start-page: 450 year: 2017 end-page: 466 ident: 2023.02.24.529954v3.37 article-title: “Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement publication-title: NeuroImage – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: 2023.02.24.529954v3.28 article-title: “The Human Connectome Project’s neuroimaging approach publication-title: Nature Neuroscience – year: 2022 ident: 2023.02.24.529954v3.25 publication-title: “FIESTA: Autoencoders for accurate fiber segmentation in tractography – volume: 141 start-page: 556 year: 2016 end-page: 572 ident: 2023.02.24.529954v3.36 article-title: “Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images publication-title: NeuroImage – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: 2023.02.24.529954v3.9 article-title: “TractSeg - Fast and accurate white matter tract segmentation publication-title: NeuroImage – volume: 36 start-page: 4116 year: 2015 end-page: 4134 ident: 2023.02.24.529954v3.15 article-title: “Validation of tractography: Comparison with manganese tracing: Validation of Tractography With Manganese Tracing publication-title: Human Brain Mapping – volume: 142 start-page: 394 year: 2016 end-page: 406 ident: 2023.02.24.529954v3.33 article-title: “Denoising of diffusion MRI using random matrix theory publication-title: NeuroImage – volume: 223 start-page: 117329 year: 2020 ident: 2023.02.24.529954v3.42 article-title: “Shape analysis of the human association pathways publication-title: NeuroImage – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: 2023.02.24.529954v3.35 article-title: “An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage – volume: 243 start-page: 118502 year: 2021 ident: 2023.02.24.529954v3.14 article-title: “Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: NeuroImage – volume: 10 start-page: 17149 year: 2020 ident: 2023.02.24.529954v3.7 article-title: “Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations publication-title: Scientific Reports – year: 2021 ident: 2023.02.24.529954v3.12 publication-title: “Atlas of 30 Human Brain Bundles in MNI space – volume: 178 start-page: 57 year: 2018 end-page: 68 ident: 2023.02.24.529954v3.11 article-title: “Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: NeuroImage – year: 2022 ident: 2023.02.24.529954v3.40 publication-title: What Makes Convolutional Models Great on Long Sequence Modeling? – year: 2022 ident: 2023.02.24.529954v3.27 article-title: “Learning Optimal White Matter Tract Representations from Tractography using a Deep Generative Model for Population Analyses publication-title: bioRxiv – volume: 76 start-page: 1574 year: 2016 end-page: 1581 ident: 2023.02.24.529954v3.34 article-title: “Gibbs-ringing artifact removal based on local subvoxel-shifts: Gibbs-Ringing Artifact Removal publication-title: Magn. Res. Medicine – volume: 98 start-page: 266 year: 2014 end-page: 278 ident: 2023.02.24.529954v3.39 article-title: “Towards quantitative connectivity analysis: reducing tractography biases publication-title: NeuroImage – volume: 118 start-page: 1367 issue: 6 year: 2013 end-page: 1377 ident: 2023.02.24.529954v3.3 article-title: “White matter fiber tractography: why we need to move beyond dti publication-title: Journal of neurosurgery – volume: 16 start-page: 806268 year: 2022 ident: 2023.02.24.529954v3.18 article-title: “Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations publication-title: Frontiers in Neuroscience – year: 2022 ident: 2023.02.24.529954v3.20 publication-title: “High-Resolution Image Synthesis with Latent Diffusion Models – volume: 8 start-page: e73021 year: 2013 ident: 2023.02.24.529954v3.31 article-title: “Diffusion Weighted Image Denoising Using Overcomplete Local PCA publication-title: PLoS ONE – start-page: 5055 year: 2022 end-page: 5061 ident: 2023.02.24.529954v3.16 publication-title: in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: 2023.02.24.529954v3.38 article-title: “Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: NeuroImage – volume: 2 start-page: 29 year: 2018 ident: 2023.02.24.529954v3.22 article-title: “Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging publication-title: European Radiology Experimental – volume: 32 year: 2019 ident: 2023.02.24.529954v3.4 article-title: “Diffusion MRI fiber tractography of the brain publication-title: NMR in Biomedicine – volume: 72 start-page: 102126 year: 2021 ident: 2023.02.24.529954v3.23 article-title: “Filtering in tractography using autoen-coders (FINTA) publication-title: Medical Image Analysis |
| SSID | ssj0002961374 |
| Score | 1.8312889 |
| SecondaryResourceType | preprint |
| Snippet | White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are... |
| SourceID | biorxiv proquest pubmed |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Neuroscience Population studies Segmentation Substantia alba |
| Title | Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36909490 https://www.proquest.com/docview/2780241428 https://www.proquest.com/docview/2786510895 https://www.biorxiv.org/content/10.1101/2023.02.24.529954 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: M7P dateStart: 20131107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: BENPR dateStart: 20131107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: PIMPY dateStart: 20131107 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWZgN2avfq0kegArtqSyX5oVPR9IEWaANjzYbsZEiWAgTb7CyPbv33I2U1O62XXnywDVmgRPIjRX8E-GAzZURfGm5TO-Eqcwm3zkjuBOJ7iUG2c4Ey_zobDvPxWBcx4baIZZUPNjEYatdUlCP_JLIc3Qnxgx3PfnHqGkWnq7GFxgZ0iCVBhNK9Yp1jERqdVSBiFqlGxRf9JB5s4kaksF8SX6dQHxNBtGgIge20mf-Z3v0fbga3c7H11AlvQ6cwMz9_Bc98_RpetI0n79_A968YIsc0IDtZLRuis6SSZoYYlrVU1FQPzW7va0SIuLnYiH6nivzWfIC-z7HBihga2Mj_nP0gyMqmNTPsuvnNz8zSsFsfaqrfwpeL89HpJY9tF7gVGDxx9PnKHXlNyu0zk-bCCmWctFai8lYqnUgEQRlCy9QnxkjlfF4pN8kTJZ3URr6Dzbqp_XtgGK1Z5XNXIQxVShltJs4caY9mAO1aJbpwGCVezlpyjZJWpeyLUqiyXZUu7D_It4z6tSj_CReHWD9GzaDjDlP7ZhXeSdHi5Drpwk67huuvyFRjXKv7u48PvgcvaT6hwFHvw-ZyvvIH8Ly6W04X8x5sZOO8B53B-bD43AtbD6_D4gbvFVc3xbe_0PjfAw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7R0IqeSh9AWmhdqT26Dbb34UNVFSgiIkSRSCt62tprR1oBu2GTQPOn-I3M7G7Cqb1x6HlX3sd8nvlmPP4M8MFGyoiONNyGdsRV5AJunZHcCeT3EpNs5yrJ_F7U78dnZ3qwAreLvTDUVrnwiZWjdkVKNfLPIooxnJA-2NfxFadTo2h1dXGERg2LYz-_wZRt8qV7gPb9KMTh9-H-EW9OFeBWYG7AMaQpt-s1YddHJoyFFco4aa1EbKYqHEmM8REyp9AHxkjlfJwqN4oDJZ3URuK4j2BVEdhbsDrongx-Las6QmN4rKSfRajR1YhO0CylIvSp0CBJIVSoT4EgITYk3TYryj_Z9d8JbhXoDp_9b79oHX-NGfvyOaz4_AU8qY_WnL-E85-mzJpCJ_s2mxYk2ElN2wxZOqvFtqnjm53Oc-TAOH3YkDaMNQrefA-ju2N7M9KgYEN_Ob4gUs6ynBnWK274gZkaduqrrvFX8ONBvm8DWnmR-y1gmI9a5WOXItFWShltRs7sao-ODj13KtrwvrFwMq7lQxJCQdIRiVBJjYI2bC_smTQeZJLcGxOHWF7GuU8LOib3xay6J0SfGuugDZs1ZpZPkaHGzF13Xv978HewdjQ86SW9bv_4DTyld6vaOfU2tKblzO_A4_R6mk3Ktw3UGfx-aOjcAXrbNZI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Autoencoders+for+Generating+Synthetic+Tractography-Based+Bundle+Templates+in+a+Low-Data+Setting&rft.jtitle=bioRxiv&rft.au=Feng%2C+Yixue&rft.au=Chandio%2C+Bramsh+Q&rft.au=Thomopoulos%2C+Sophia+I&rft.au=Chattopadhyay%2C+Tamoghna&rft.date=2023-05-09&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.02.24.529954&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |