Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting

White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended ou...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Feng, Yixue, Chandio, Bramsh Q, Thomopoulos, Sophia I, Chattopadhyay, Tamoghna, Thompson, Paul M
Médium: Journal Article Paper
Jazyk:English
Vydavateľské údaje: United States Cold Spring Harbor Laboratory Press 09.05.2023
Cold Spring Harbor Laboratory
Vydanie:1.3
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
AbstractList White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model a Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.
White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are generated from hundreds of subjects, which becomes time-consuming to create and difficult to apply to all populations. In this study, we extended our prior work on using a deep generative model - Convolutional Variational Autoencoder - to map complex and data-intensive streamlines to a low-dimensional latent space given a limited sample size of 50 subjects from the ADNI3 dataset, to generate synthetic population-specific bundle templates using Kernel Density Estimation (KDE) on streamline embeddings. We conducted a quantitative shape analysis by calculating bundle shape metrics, and found that our bundle templates better capture the shape distribution of the bundles than the atlas data used in the original segmentation derived from young healthy adults. We further demonstrated the use of our framework for direct bundle segmentation from whole-brain tractograms.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://figshare.com/articles/dataset/Atlas_of_30_Human_Brain_Bundles_in_MNI_space/12089652
Author Thompson, Paul M
Chattopadhyay, Tamoghna
Thomopoulos, Sophia I
Feng, Yixue
Chandio, Bramsh Q
Author_xml – sequence: 1
  givenname: Yixue
  orcidid: 0000-0003-1015-4209
  surname: Feng
  fullname: Feng, Yixue
– sequence: 2
  givenname: Bramsh Q
  orcidid: 0000-0002-8949-4937
  surname: Chandio
  fullname: Chandio, Bramsh Q
– sequence: 3
  givenname: Sophia I
  orcidid: 0000-0002-0046-4070
  surname: Thomopoulos
  fullname: Thomopoulos, Sophia I
– sequence: 4
  givenname: Tamoghna
  surname: Chattopadhyay
  fullname: Chattopadhyay, Tamoghna
– sequence: 5
  givenname: Paul M
  orcidid: 0000-0002-4720-8867
  surname: Thompson
  fullname: Thompson, Paul M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36909490$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOHDEQRa2IKBDgA7KJLLHJpid22e62l0B4SSNlwZBtq7pdA0167MF2J8zfMwTyUFZ1pTq6Vzrv2U6IgRj7IMVMSiE_gwA1EzADPTPgnNFv2B7UDioLwuz8k3fZYc73QghwtVSNfsd2Ve2E007sse_fMA1Yhhhw5MdTiRT66CllvoyJX1CgtP2GW369CeWOytDzRcK-xNuE67tNdYKZPD-Zgh-JL2i1HrFQ5kPgyOfxZ_UFC_JrKs8dB-ztEsdMh693n92cny1OL6v514ur0-N51YGsdSWt1F6SE0JbarC20IFGr7pONU73ul4qI00jnKvJICrtyfbaL63RyiuHap99eunthpgehx_tOg0rTJv2WVkroAXdvij7i65TfJgol3Y15J7GEQPFKbfQ2NpIYZ3Zokf_ofdxSlttvygBWmqwW-rjKzV1K_J_pn8bV0-hUIKk
ContentType Journal Article
Paper
Copyright 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
DOI 10.1101/2023.02.24.529954
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.3
ExternalDocumentID 2023.02.24.529954v3
36909490
Genre Preprint
Working Paper/Pre-Print
GroupedDBID NPM
8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
7X8
PUEGO
FX.
ID FETCH-LOGICAL-b2164-1814d1e90048e7a682b24ad3bb3794c46f351570996e5aa34de8c4df8543d39a3
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 18:59:07 EST 2025
Thu Sep 04 16:19:44 EDT 2025
Fri Jul 25 09:14:07 EDT 2025
Wed Feb 19 02:13:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2164-1814d1e90048e7a682b24ad3bb3794c46f351570996e5aa34de8c4df8543d39a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-1015-4209
0000-0002-0046-4070
0000-0002-4720-8867
0000-0002-8949-4937
OpenAccessLink https://www.proquest.com/docview/2780241428?pq-origsite=%requestingapplication%
PMID 36909490
PQID 2780241428
PQPubID 2050091
PageCount 6
ParticipantIDs biorxiv_primary_2023_02_24_529954
proquest_miscellaneous_2786510895
proquest_journals_2780241428
pubmed_primary_36909490
PublicationCentury 2000
PublicationDate 2023-May-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References 38083771 - Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6
Dumais, Legarreta, Lemaire, Poulin, Rheault, Petit, Descoteaux, Jodoin (2023.02.24.529954v3.25) 2022
Girard, Whittingstall, Deriche, Descoteaux (2023.02.24.529954v3.39) 2014; 98
Pizzi, Franciotti, Taylor, Esposito, Tartaro, Thomas, Onofrj, Bonanni (2023.02.24.529954v3.6) 2015; 7
Knósche, Anwander, Liptrot, Dyrby (2023.02.24.529954v3.15) 2015; 36
Lizarraga, Narr, Donald, Joshi (2023.02.24.529954v3.26) 2022
Garyfallidis, Côté, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (2023.02.24.529954v3.8) 2018; 170
Short, Jang, Steiner, Stephens, Girault, Styner, Gilmore (2023.02.24.529954v3.18) 2022; 16
Zavaliangos-Petropulu, Nir, Thomopoulos, Reid, Bernstein, Borowski, Jack, Weiner, Jahanshad, Thompson (2023.02.24.529954v3.29) 2019; 13
Kellner, Dhital, Kiselev, Reisert (2023.02.24.529954v3.34) 2016; 76
Feng, Chandio, Chattopadhyay, Thomopoulos, Owens-Walton, Jahanshad, Garyfallidis, Thompson (2023.02.24.529954v3.27) 2022
Basser, Mattiello, LeBihan (2023.02.24.529954v3.1) 1994; 66
Thomopoulos, Nir, Villalon-Reina, Zavaliangos-Petropulu, Maiti, Zheng, Nourollahimoghadam, Jahanshad, Thompson (2023.02.24.529954v3.5) 2021
Sohn, Lee, Yan (2023.02.24.529954v3.43) 2015; 28
Galbusera, Bassani, Casaroli, Gitto, Zanchetta, Costa, Sconfienza (2023.02.24.529954v3.22) 2018; 2
Tournier, Calamante, Connelly (2023.02.24.529954v3.38) 2007; 35
Garyfallidis, Brett, Amirbekian, Rokem, van der Walt, Descoteaux, Nimmo-Smith, Contributors (2023.02.24.529954v3.30) 2014; 8
Andersson, Graham, Drobnjak, Zhang, Filippini, Bastiani (2023.02.24.529954v3.37) 2017; 152
Schilling, Rheault, Petit, Hansen, Descoteaux (2023.02.24.529954v3.14) 2021; 243
Li, Cai, Zhang, Chen, Dey (2023.02.24.529954v3.40) 2022
Le Bihan, Mangin, Poupon, Clark, Pappata, Molko, Chabriat (2023.02.24.529954v3.2) 2001; 13
Legarreta, Petit, Jodoin, Descoteaux (2023.02.24.529954v3.24) 2023; 85
Fu, Li, Liu, Gao, Celikyilmaz, Carin (2023.02.24.529954v3.41) 2019
Veraart, Novikov, Christiaens, Ades-aron, Sijbers, Fieremans (2023.02.24.529954v3.33) 2016; 142
Veraart, Fieremans, Novikov (2023.02.24.529954v3.32) 2016; 76
Spencer, Byrne, Lee-Kelland, Jary, Thoresen, Cowan, Chakkarapani, Brooks (2023.02.24.529954v3.17) 2022; 12
Chandio, Risacher, Pestilli, Bullock, Yeh, Koudoro, Rokem, Harezlak, Garyfallidis (2023.02.24.529954v3.7) 2020; 10
Rombach, Blattmann, Lorenz, Esser, Ommer (2023.02.24.529954v3.20) 2022
Glasser, Smith, Marcus, Andersson, Auerbach, Behrens, Coalson, Harms, Jenkinson, Moeller, Robinson, Sotiropoulos, Xu, Yacoub, Ugurbil, Van Essen (2023.02.24.529954v3.28) 2016; 19
Jeurissen, Descoteaux, Mori, Leemans (2023.02.24.529954v3.4) 2019; 32
Ramesh, Pavlov, Goh, Gray, Voss, Radford, Chen, Sutskever (2023.02.24.529954v3.19) 2021
Andersson, Graham, Zsoldos, Sotiropoulos (2023.02.24.529954v3.36) 2016; 141
Yeh, Panesar, Fernandes, Meola, Yoshino, Fernandez-Miranda, Vettel, Verstynen (2023.02.24.529954v3.11) 2018; 178
Garyfallidis (2023.02.24.529954v3.12) 2021
Legarreta, Petit, Rheault, Theaud, Lemaire, De-scoteaux, Jodoin (2023.02.24.529954v3.23) 2021; 72
Yeh (2023.02.24.529954v3.42) 2020; 223
Pinaya, Tudosiu, Dafflon, da Costa, Fernan-dez, Nachev, Ourselin, Cardoso (2023.02.24.529954v3.21) 2022
Wasserthal, Neher, Maier-Hein (2023.02.24.529954v3.9) 2018; 183
Warrington, Bryant, Khrapitchev, Sallet, Charquero-Ballester, Douaud, Jbabdi, Mars, Sotiropoulos (2023.02.24.529954v3.10) 2020; 217
Farquharson, Tournier, Calamante, Fabinyi, Schneider-Kolsky, Jackson, Connelly (2023.02.24.529954v3.3) 2013; 118
Chandio, Chattopadhyay, Owens-Walton, Reina, Nabulsi, Thomopoulos, Garyfallidis, Thompson (2023.02.24.529954v3.16) 2022
Andersson, Sotiropoulos (2023.02.24.529954v3.35) 2016; 125
Manjón, Coupé, Concha, Buades, Collins, Robles (2023.02.24.529954v3.31) 2013; 8
Chandio (2023.02.24.529954v3.13) 2022
References_xml – reference: 38083771 - Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  ident: 2023.02.24.529954v3.8
  article-title: “Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: NeuroImage
– volume: 76
  start-page: 1582
  year: 2016
  end-page: 1593
  ident: 2023.02.24.529954v3.32
  article-title: “Diffusion MRI noise mapping using random matrix theory: Diffusion MRI Noise Mapping
  publication-title: Magnetic Resonance in Medicine
– volume: 13
  start-page: 534
  issue: 4
  year: 2001
  end-page: 546
  ident: 2023.02.24.529954v3.2
  article-title: “Diffusion tensor imaging: concepts and applications
  publication-title: Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine
– year: 2022
  ident: 2023.02.24.529954v3.26
  publication-title: “Stream-Net: A WAE for White Matter Streamline Analysis
– year: 2019
  ident: 2023.02.24.529954v3.41
  publication-title: “Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing
– start-page: 79
  year: 2021
  ident: 2023.02.24.529954v3.5
  publication-title: in 17th International Symposium on Medical Information Processing and Analysis
– year: 2022
  ident: 2023.02.24.529954v3.13
  publication-title: Advancing White Matter Tractometry of the Brain Using Diffusion MRI and Machine Learning. PhD thesis, Indiana University
– volume: 217
  start-page: 116923
  year: 2020
  ident: 2023.02.24.529954v3.10
  article-title: “XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: NeuroImage
– year: 2021
  ident: 2023.02.24.529954v3.19
  publication-title: “Zero-Shot Text-to-Image Generation
– volume: 12
  start-page: 402
  year: 2022
  end-page: 416
  ident: 2023.02.24.529954v3.17
  article-title: “An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6–8 Years
  publication-title: Brain Connectivity
– volume: 13
  start-page: 2
  year: 2019
  ident: 2023.02.24.529954v3.29
  article-title: “Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3
  publication-title: Frontiers in Neuroinformatics
– volume: 28
  year: 2015
  ident: 2023.02.24.529954v3.43
  publication-title: in Advances in Neural Information Processing Systems
– volume: 7
  year: 2015
  ident: 2023.02.24.529954v3.6
  article-title: “Structural Connectivity is Differently Altered in Dementia with Lewy Body and Alzheimer’s Disease
  publication-title: Frontiers in Aging Neuroscience
– volume: 8
  year: 2014
  ident: 2023.02.24.529954v3.30
  article-title: “Dipy, a library for the analysis of diffusion MRI data
  publication-title: Frontiers in Neuroinformatics
– volume: 85
  start-page: 102761
  year: 2023
  ident: 2023.02.24.529954v3.24
  article-title: “Generative Sampling in Bundle Tractography using Autoencoders (GESTA)
  publication-title: Medical Image Analysis
– volume: 66
  start-page: 259
  issue: 1
  year: 1994
  end-page: 267
  ident: 2023.02.24.529954v3.1
  article-title: “Mr diffusion tensor spectroscopy and imaging
  publication-title: Biophysical journal
– year: 2022
  ident: 2023.02.24.529954v3.21
  publication-title: “Brain Imaging Generation with Latent Diffusion Models
– volume: 152
  start-page: 450
  year: 2017
  end-page: 466
  ident: 2023.02.24.529954v3.37
  article-title: “Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement
  publication-title: NeuroImage
– volume: 19
  start-page: 1175
  year: 2016
  end-page: 1187
  ident: 2023.02.24.529954v3.28
  article-title: “The Human Connectome Project’s neuroimaging approach
  publication-title: Nature Neuroscience
– year: 2022
  ident: 2023.02.24.529954v3.25
  publication-title: “FIESTA: Autoencoders for accurate fiber segmentation in tractography
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  ident: 2023.02.24.529954v3.36
  article-title: “Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: NeuroImage
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: 2023.02.24.529954v3.9
  article-title: “TractSeg - Fast and accurate white matter tract segmentation
  publication-title: NeuroImage
– volume: 36
  start-page: 4116
  year: 2015
  end-page: 4134
  ident: 2023.02.24.529954v3.15
  article-title: “Validation of tractography: Comparison with manganese tracing: Validation of Tractography With Manganese Tracing
  publication-title: Human Brain Mapping
– volume: 142
  start-page: 394
  year: 2016
  end-page: 406
  ident: 2023.02.24.529954v3.33
  article-title: “Denoising of diffusion MRI using random matrix theory
  publication-title: NeuroImage
– volume: 223
  start-page: 117329
  year: 2020
  ident: 2023.02.24.529954v3.42
  article-title: “Shape analysis of the human association pathways
  publication-title: NeuroImage
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: 2023.02.24.529954v3.35
  article-title: “An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 243
  start-page: 118502
  year: 2021
  ident: 2023.02.24.529954v3.14
  article-title: “Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: NeuroImage
– volume: 10
  start-page: 17149
  year: 2020
  ident: 2023.02.24.529954v3.7
  article-title: “Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations
  publication-title: Scientific Reports
– year: 2021
  ident: 2023.02.24.529954v3.12
  publication-title: “Atlas of 30 Human Brain Bundles in MNI space
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: 2023.02.24.529954v3.11
  article-title: “Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: NeuroImage
– year: 2022
  ident: 2023.02.24.529954v3.40
  publication-title: What Makes Convolutional Models Great on Long Sequence Modeling?
– year: 2022
  ident: 2023.02.24.529954v3.27
  article-title: “Learning Optimal White Matter Tract Representations from Tractography using a Deep Generative Model for Population Analyses
  publication-title: bioRxiv
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  ident: 2023.02.24.529954v3.34
  article-title: “Gibbs-ringing artifact removal based on local subvoxel-shifts: Gibbs-Ringing Artifact Removal
  publication-title: Magn. Res. Medicine
– volume: 98
  start-page: 266
  year: 2014
  end-page: 278
  ident: 2023.02.24.529954v3.39
  article-title: “Towards quantitative connectivity analysis: reducing tractography biases
  publication-title: NeuroImage
– volume: 118
  start-page: 1367
  issue: 6
  year: 2013
  end-page: 1377
  ident: 2023.02.24.529954v3.3
  article-title: “White matter fiber tractography: why we need to move beyond dti
  publication-title: Journal of neurosurgery
– volume: 16
  start-page: 806268
  year: 2022
  ident: 2023.02.24.529954v3.18
  article-title: “Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations
  publication-title: Frontiers in Neuroscience
– year: 2022
  ident: 2023.02.24.529954v3.20
  publication-title: “High-Resolution Image Synthesis with Latent Diffusion Models
– volume: 8
  start-page: e73021
  year: 2013
  ident: 2023.02.24.529954v3.31
  article-title: “Diffusion Weighted Image Denoising Using Overcomplete Local PCA
  publication-title: PLoS ONE
– start-page: 5055
  year: 2022
  end-page: 5061
  ident: 2023.02.24.529954v3.16
  publication-title: in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: 2023.02.24.529954v3.38
  article-title: “Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: NeuroImage
– volume: 2
  start-page: 29
  year: 2018
  ident: 2023.02.24.529954v3.22
  article-title: “Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging
  publication-title: European Radiology Experimental
– volume: 32
  year: 2019
  ident: 2023.02.24.529954v3.4
  article-title: “Diffusion MRI fiber tractography of the brain
  publication-title: NMR in Biomedicine
– volume: 72
  start-page: 102126
  year: 2021
  ident: 2023.02.24.529954v3.23
  article-title: “Filtering in tractography using autoen-coders (FINTA)
  publication-title: Medical Image Analysis
SSID ssj0002961374
Score 1.8312889
SecondaryResourceType preprint
Snippet White matter tracts generated from whole brain tractography are often processed using automatic segmentation methods with standard atlases. Atlases are...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Neuroscience
Population studies
Segmentation
Substantia alba
Title Variational Autoencoders for Generating Synthetic Tractography-Based Bundle Templates in a Low-Data Setting
URI https://www.ncbi.nlm.nih.gov/pubmed/36909490
https://www.proquest.com/docview/2780241428
https://www.proquest.com/docview/2786510895
https://www.biorxiv.org/content/10.1101/2023.02.24.529954
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: M7P
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: PIMPY
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWZgN2avfq0kegArtqSyX5oVPR9IEWaANjzYbsZEiWAgTb7CyPbv33I2U1O62XXnywDVmgRPIjRX8E-GAzZURfGm5TO-Eqcwm3zkjuBOJ7iUG2c4Ey_zobDvPxWBcx4baIZZUPNjEYatdUlCP_JLIc3Qnxgx3PfnHqGkWnq7GFxgZ0iCVBhNK9Yp1jERqdVSBiFqlGxRf9JB5s4kaksF8SX6dQHxNBtGgIge20mf-Z3v0fbga3c7H11AlvQ6cwMz9_Bc98_RpetI0n79_A968YIsc0IDtZLRuis6SSZoYYlrVU1FQPzW7va0SIuLnYiH6nivzWfIC-z7HBihga2Mj_nP0gyMqmNTPsuvnNz8zSsFsfaqrfwpeL89HpJY9tF7gVGDxx9PnKHXlNyu0zk-bCCmWctFai8lYqnUgEQRlCy9QnxkjlfF4pN8kTJZ3URr6Dzbqp_XtgGK1Z5XNXIQxVShltJs4caY9mAO1aJbpwGCVezlpyjZJWpeyLUqiyXZUu7D_It4z6tSj_CReHWD9GzaDjDlP7ZhXeSdHi5Drpwk67huuvyFRjXKv7u48PvgcvaT6hwFHvw-ZyvvIH8Ly6W04X8x5sZOO8B53B-bD43AtbD6_D4gbvFVc3xbe_0PjfAw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7R0IqeSh9AWmhdqT26Dbb34UNVFSgiIkSRSCt62tprR1oBu2GTQPOn-I3M7G7Cqb1x6HlX3sd8nvlmPP4M8MFGyoiONNyGdsRV5AJunZHcCeT3EpNs5yrJ_F7U78dnZ3qwAreLvTDUVrnwiZWjdkVKNfLPIooxnJA-2NfxFadTo2h1dXGERg2LYz-_wZRt8qV7gPb9KMTh9-H-EW9OFeBWYG7AMaQpt-s1YddHJoyFFco4aa1EbKYqHEmM8REyp9AHxkjlfJwqN4oDJZ3URuK4j2BVEdhbsDrongx-Las6QmN4rKSfRajR1YhO0CylIvSp0CBJIVSoT4EgITYk3TYryj_Z9d8JbhXoDp_9b79oHX-NGfvyOaz4_AU8qY_WnL-E85-mzJpCJ_s2mxYk2ElN2wxZOqvFtqnjm53Oc-TAOH3YkDaMNQrefA-ju2N7M9KgYEN_Ob4gUs6ynBnWK274gZkaduqrrvFX8ONBvm8DWnmR-y1gmI9a5WOXItFWShltRs7sao-ODj13KtrwvrFwMq7lQxJCQdIRiVBJjYI2bC_smTQeZJLcGxOHWF7GuU8LOib3xay6J0SfGuugDZs1ZpZPkaHGzF13Xv978HewdjQ86SW9bv_4DTyld6vaOfU2tKblzO_A4_R6mk3Ktw3UGfx-aOjcAXrbNZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Autoencoders+for+Generating+Synthetic+Tractography-Based+Bundle+Templates+in+a+Low-Data+Setting&rft.jtitle=bioRxiv&rft.au=Feng%2C+Yixue&rft.au=Chandio%2C+Bramsh+Q&rft.au=Thomopoulos%2C+Sophia+I&rft.au=Chattopadhyay%2C+Tamoghna&rft.date=2023-05-09&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.02.24.529954&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon