Summary and Future Directions
In this chapter we make a summary of how to optimize the K-means clustering algorithm based on evolutionary computing. The system is still missing a user interface to handle invalid user input. Parallel coordinates that may be used as a tool to visualize data in high-dimensional spaces is only given...
Uložené v:
| Vydané v: | Computational Intelligence, Evolutionary Computing and Evolutionary Clustering Algorithms Ročník 1; číslo 1; s. 113 - 120 |
|---|---|
| Hlavný autor: | |
| Médium: | Kapitola |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Bentham Science Publishers
01.09.2016
|
| Predmet: | |
| ISBN: | 1681083000, 9781681083001 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this chapter we make a summary of how to optimize the K-means
clustering algorithm based on evolutionary computing. The system is still missing a
user interface to handle invalid user input. Parallel coordinates that may be used as a
tool to visualize data in high-dimensional spaces is only given a short introduction. In
addition, Particle Swarm Optimization (PSO) is also mentioned to find global solutions
to optimization problems. |
|---|---|
| ISBN: | 1681083000 9781681083001 |
| DOI: | 10.2174/9781681082998116010011 |

