Summary and Future Directions
In this chapter we make a summary of how to optimize the K-means clustering algorithm based on evolutionary computing. The system is still missing a user interface to handle invalid user input. Parallel coordinates that may be used as a tool to visualize data in high-dimensional spaces is only given...
Uloženo v:
| Vydáno v: | Computational Intelligence, Evolutionary Computing and Evolutionary Clustering Algorithms Ročník 1; číslo 1; s. 113 - 120 |
|---|---|
| Hlavní autor: | |
| Médium: | Kapitola |
| Jazyk: | angličtina |
| Vydáno: |
United States
Bentham Science Publishers
01.09.2016
|
| Témata: | |
| ISBN: | 1681083000, 9781681083001 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this chapter we make a summary of how to optimize the K-means
clustering algorithm based on evolutionary computing. The system is still missing a
user interface to handle invalid user input. Parallel coordinates that may be used as a
tool to visualize data in high-dimensional spaces is only given a short introduction. In
addition, Particle Swarm Optimization (PSO) is also mentioned to find global solutions
to optimization problems. |
|---|---|
| ISBN: | 1681083000 9781681083001 |
| DOI: | 10.2174/9781681082998116010011 |

