Anomaly detection for high-content image-based phenotypic cell profiling

High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complex...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Shpigler, Alon, Kolet, Naor, Golan, Shahar, Weisbart, Erin, Zaritsky, Assaf
Médium: Journal Article Paper
Jazyk:English
Vydavateľské údaje: United States Cold Spring Harbor Laboratory 03.06.2024
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.
AbstractList High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell's physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.
High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide insight into the cell’s physiological state. Classical representations of the phenotypic profile can not capture the full underlying complexity in cell organization, while recent weakly machine-learning based representation-learning methods are hard to biologically interpret. We used the abundance of control wells to learn the in-distribution of control experiments and use it to formulate a self-supervised reconstruction anomaly-based representation that encodes the intricate morphological inter-feature dependencies while preserving the representation interpretability. The performance of our anomaly-based representations was evaluated for downstream tasks with respect to two classical representations across four public Cell Painting datasets. Anomaly-based representations improved reproducibility, Mechanism of Action classification, and complemented classical representations. Unsupervised explainability of autoencoder-based anomalies identified specific inter-feature dependencies causing anomalies. The general concept of anomaly-based representations can be adapted to other applications in cell biology.
Author Weisbart, Erin
Golan, Shahar
Kolet, Naor
Shpigler, Alon
Zaritsky, Assaf
Author_xml – sequence: 1
  givenname: Alon
  surname: Shpigler
  fullname: Shpigler, Alon
  organization: Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 2
  givenname: Naor
  surname: Kolet
  fullname: Kolet, Naor
  organization: Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 3
  givenname: Shahar
  surname: Golan
  fullname: Golan, Shahar
  organization: Department of Computer Science, Jerusalem College of Technology, 91160 Jerusalem, Israel
– sequence: 4
  givenname: Erin
  surname: Weisbart
  fullname: Weisbart, Erin
  organization: Imaging Platform, Broad Institute of MIT and Harvard, Cambridge (MA), USA
– sequence: 5
  givenname: Assaf
  orcidid: 0000-0002-1477-5478
  surname: Zaritsky
  fullname: Zaritsky, Assaf
  organization: Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38895267$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS1UREvpB7BBWbJJGNuxYy-rilKkSmxgHTm20xoldkhSRP-eRC2P1YxGR1dn7jWa-OAtQrcYEowBPxAgaQI8AZwwyQTjF2hGuCSxIMAm__YpWnTdOwAQyTHN0is0pUJIRng2Q5ulD7WqjpGxvdW9Cz4qQxvt3W4f6-B76_vI1Wpn40J11kTN3vrQHxunI22rKmraULrK-d0NuixV1dnFec7R2_rxdbWJty9Pz6vlNi6wEDzOTEmoZloSri01mRI4lWyUM4VmIsu4MqJUDGtpBoYPrwrOx1NJmE0VnaP7U27hQvvlPvOmHfzaYz72kQPPAeenPv7QQfLjYLs-r103Witvw6HLKWQggEIqB_TujB6K2prf0J-i6DeKkGra
ContentType Journal Article
Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
DOI 10.1101/2024.06.01.595856
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.06.01.595856v1
38895267
Genre Journal Article
Preprint
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM135019
– fundername: Wellcome Trust
GroupedDBID 8FE
8FH
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
ID FETCH-LOGICAL-b1886-7df23c5c926ce3d7a814950002dbc58776ad8fa51c9d9266110866d8faf25e4a3
ISSN 2692-8205
IngestDate Tue Jan 07 18:57:20 EST 2025
Thu Sep 04 17:30:09 EDT 2025
Sat Nov 22 01:41:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b1886-7df23c5c926ce3d7a814950002dbc58776ad8fa51c9d9266110866d8faf25e4a3
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-1477-5478
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.06.01.595856
PMID 38895267
PQID 3070803049
PQPubID 23479
PageCount 35
ParticipantIDs biorxiv_primary_2024_06_01_595856
proquest_miscellaneous_3070803049
pubmed_primary_38895267
PublicationCentury 2000
PublicationDate 2024-Jun-03
20240603
PublicationDateYYYYMMDD 2024-06-03
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-Jun-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References 41167192 - Cell Syst. 2025 Nov 19;16(11):101429. doi: 10.1016/j.cels.2025.101429.
Way, Kost-Alimova, Shibue, Harrington, Gill, Piccioni, Becker, Shafqat-Abbasi, Hahn, Carpenter (2024.06.01.595856v1.51) 2021; 32
Kobayashi, Cheveralls, Leonetti, Royer (2024.06.01.595856v1.26) 2022; 19
Cohen, Valm, Lippincott-Schwartz (2024.06.01.595856v1.9) 2018; 53
Zaritsky, Tseng, Angeles Rabadán, Krishna, Overholtzer, Danuser, Hall (2024.06.01.595856v1.12) 2017; 216
Yang, Zhou, Li, Liu (2024.06.01.595856v1.42) 2021; 2110
Grys, Lo, Sahin, Kraus, Morris, Boone, Andrews (2024.06.01.595856v1.15) 2017; 216
Wu, Gilkes, Phillip, Narkar, Cheng, Marchand, Lee, Li, Wirtz (2024.06.01.595856v1.3) 2020; 6
Shai, Yifrach, van Roermund, Cohen, Bibi, IJlst, Cavellini, Meurisse, Schuster, Zada (2024.06.01.595856v1.7) 2018; 9
Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich, Müller (2024.06.01.595856v1.43) 2021; 109
van Dijk, Arevalo, Babadi, Carpenter, Singh (2024.06.01.595856v1.31) 2023
Moshkov, Becker, Yang, Horvath, Dancik, Wagner, Clemons, Singh, Carpenter, Caicedo (2024.06.01.595856v1.20) 2023; 14
Wong, Logan, Hariharan, Stanton, Clevert, Kiruluta (2024.06.01.595856v1.47) 2023; 2
Friedman, Lackner, West, DiBenedetto, Nunnari, Voeltz (2024.06.01.595856v1.4) 2020; 334
Marin Zapata, Méndez-Lucio, Le, Beese, Wichard, Rouquié, Clevert (2024.06.01.595856v1.53) 2023; 2
Breunig, Kriegel, Ng, Sander (2024.06.01.595856v1.38) 2000
Chandola, Banerjee, Kumar (2024.06.01.595856v1.33) 2009; 41
Fernando, Gammulle, Denman, Sridharan, Fookes (2024.06.01.595856v1.34) 2021; 54
Ramezani, Bauman, Singh, Weisbart, Yong, Lozada, Way, Kavari, Diaz, Haghighi (2024.06.01.595856v1.50) 2023
Keren, Pincus, Allen, Barnhart, Marriott, Mogilner, Theriot (2024.06.01.595856v1.2) 2008; 453
Antwarg, Miller, Shapira, Rokach (2024.06.01.595856v1.49) 2021; 186
Weisbart, Kumar, Arevalo, Carpenter, Cimini, Singh (2024.06.01.595856v1.46) 2024; 2402
Bray, Gustafsdottir, Rohban, Singh, Ljosa, Sokolnicki, Bittker, Bodycombe, Dancík, Hasaka (2024.06.01.595856v1.11) 2017; 6
Soelistyo, Vallardi, Charras, Lowe (2024.06.01.595856v1.54) 2022; 4
Way, Natoli, Adeboye, Litichevskiy, Yang, Lu, Caicedo, Cimini, Karhohs, Logan (2024.06.01.595856v1.14) 2022; 13
Chandrasekaran, Ceulemans, Boyd, Carpenter (2024.06.01.595856v1.13) 2021; 20
Gong, Liu, Le, Saha, Mansour, Venkatesh, van den Hengel (2024.06.01.595856v1.55) 2019
Bray, Singh, Han, Davis, Borgeson, Hartland, Kost-Alimova, Gustafsdottir, Gibson, Carpenter (2024.06.01.595856v1.16) 2016; 11
Pincus, Theriot (2024.06.01.595856v1.1) 2007; 227
Rohban, Singh, Wu, Berthet, Bray, Shrestha, Varelas, Boehm, Carpenter (2024.06.01.595856v1.44) 2017; 6
Arevalo, Su, van Dijk, Carpenter, Singh (2024.06.01.595856v1.52) 2023
Matters (2024.06.01.595856v1.18) 2010; 16
Caicedo, Arevalo, Piccioni, Bray, Hartland, Wu, Brooks, Berger, Boehm, Carpenter (2024.06.01.595856v1.22) 2022; 33
Molitor, Krispin, Van-Zuiden, Danino, Rudberg, Bar, Amzallag, Lubliner, Siany, Eitan (2024.06.01.595856v1.29) 2024
Viana, Chen, Knijnenburg, Vasan, Yan, Arakaki, Bailey, Berry, Borensztejn, Brown (2024.06.01.595856v1.24) 2023; 613
Lu, Kraus, Cooper, Moses (2024.06.01.595856v1.30) 2019; 15
Ohnuki, Ogawa, Itto-Nakama, Lu, Ranjan, Kabbage, Gebre, Yamashita, Li, Yashiroda (2024.06.01.595856v1.21) 2022; 3
Hautamaki, Karkkainen, Franti (2024.06.01.595856v1.39) 2004; 3
Wu, Carvalho, Voeltz (2024.06.01.595856v1.6) 2018; 361
Stirling, Swain-Bowden, Lucas, Carpenter, Cimini, Goodman (2024.06.01.595856v1.17) 2021; 22
Naidoo, Marivate (2024.06.01.595856v1.36) 2020; 12066
Haghighi, Caicedo, Cimini, Carpenter, Singh (2024.06.01.595856v1.19) 2022; 19
Scorrano, De Matteis, Emr, Giordano, Hajnóczky, Kornmann, Lackner, Levine, Pellegrini, Reinisch (2024.06.01.595856v1.8) 2019; 10
Kraus, Kenyon-Dean, Saberian, Fallah, McLean, Leung, Sharma, Khan, Balakrishnan, Celik (2024.06.01.595856v1.32) 2023; 2309
Lundberg, Lee (2024.06.01.595856v1.48) 2017; 30
Razdaibiedina, Brechalov, Friesen, Usaj, Masinas, Suresh, Wang, Boone, Ba, Andrews (2024.06.01.595856v1.28) 2024
Schaduangrat, Lampa, Simeon, Gleeson, Spjuth, Nantasenamat (2024.06.01.595856v1.45) 2020; 12
Singh, Wu, Ljosa, Bray, Piccioni, Root, Doench, Boehm, Carpenter (2024.06.01.595856v1.23) 2015; 10
Moshkov, Bornholdt, Benoit, Smith, McQuin, Goodman, Senft, Han, Babadi, Horvath (2024.06.01.595856v1.27) 2024; 15
Pang, Shen, Cao, Van Den Hengel (2024.06.01.595856v1.41) 2021; 54
Subramanian, Narayan, Corsello, Peck, Natoli, Lu, Gould, Davis, Tubelli, Asiedu (2024.06.01.595856v1.56) 2017; 171
Thudumu, Branch, Jin, Singh (2024.06.01.595856v1.25) 2020; 7
Serrano, Chandrasekaran, Bunten, Brewer, Tomkinson, Kern, Bornholdt, Fleming, Pei, Arevalo (2024.06.01.595856v1.57) 2023; 2311
Liu, Ting, Zhou (2024.06.01.595856v1.40) 2008
Meira, Andrade, Praça, Carneiro, Bolón-Canedo, Alonso-Betanzos, Marreirosi (2024.06.01.595856v1.37) 2020
Han, Rundo, Murao, Noguchi, Shimahara, Milacski, Koshino, Sala, Nakayama (2024.06.01.595856v1.35) 2021; 22
Kraus, Grys, Ba, Chong, Frey, Boone, Andrews (2024.06.01.595856v1.5) 2017; 13
Caicedo, Cooper, Heigwer, Warchal, Qiu, Molnar, Vasilevich, Barry, Bansal, Kraus (2024.06.01.595856v1.10) 2017; 14
References_xml – reference: 41167192 - Cell Syst. 2025 Nov 19;16(11):101429. doi: 10.1016/j.cels.2025.101429.
– volume: 2402
  start-page: 02203
  year: 2024
  ident: 2024.06.01.595856v1.46
  article-title: Cell Painting Gallery: an open resource for image-based profiling
  publication-title: arXiv preprint arXiv
– start-page: 1705
  year: 2019
  end-page: 1714
  ident: 2024.06.01.595856v1.55
  article-title: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 109
  start-page: 756
  issue: 5
  year: 2021
  end-page: 795
  ident: 2024.06.01.595856v1.43
  article-title: A unifying review of deep and shallow anomaly detection
  publication-title: Proceedings of the IEEE
– start-page: 4477
  year: 2020
  end-page: 4489
  ident: 2024.06.01.595856v1.37
  article-title: “Performance evaluation of unsupervised techniques in cyber-attack anomaly detection”
  publication-title: Journal of ambient intelligence and humanized computing
– volume: 19
  start-page: 995
  issue: 8
  year: 2022
  end-page: 1003
  ident: 2024.06.01.595856v1.26
  article-title: Self-supervised deep learning encodes high-resolution features of protein subcellular localization
  publication-title: Nature methods
– volume: 11
  start-page: 1757
  issue: 9
  year: 2016
  end-page: 1774
  ident: 2024.06.01.595856v1.16
  article-title: Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
  publication-title: Nature protocols
– start-page: 2024
  year: 2024
  end-page: 01
  ident: 2024.06.01.595856v1.29
  article-title: “Organellomics: AI-driven deep organellar phenotyping of human neurons”
  publication-title: bioRxiv
– volume: 16
  start-page: 347
  issue: 4
  year: 2010
  end-page: 347
  ident: 2024.06.01.595856v1.18
  article-title: Mechanism matters
  publication-title: Nature med
– volume: 334
  start-page: 358
  year: 2020
  end-page: 362
  ident: 2024.06.01.595856v1.4
  article-title: “ER tubules mark sites of mitochondrial division”
  publication-title: Science
– volume: 20
  start-page: 145
  issue: 2
  year: 2021
  end-page: 159
  ident: 2024.06.01.595856v1.13
  article-title: Image-based profiling for drug discovery: due for a machine-learning upgrade?
  publication-title: Nature reviews drug discovery
– volume: 12
  start-page: 1
  year: 2020
  end-page: 30
  ident: 2024.06.01.595856v1.45
  article-title: Towards reproducible computational drug discovery
  publication-title: Journal of cheminformatics
– volume: 14
  start-page: 1967
  issue: 1
  year: 2023
  ident: 2024.06.01.595856v1.20
  article-title: Predicting compound activity from phenotypic profiles and chemical structures
  publication-title: Nature communications
– volume: 3
  start-page: 430
  year: 2004
  end-page: 433
  ident: 2024.06.01.595856v1.39
  article-title: “Outlier detection using k-nearest neighbour graph”
  publication-title: IEEE
– volume: 216
  start-page: 1543
  issue: 6
  year: 2017
  end-page: 1556
  ident: 2024.06.01.595856v1.12
  article-title: Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration
  publication-title: Journal of cell biology
– volume: 186
  start-page: 115736
  year: 2021
  ident: 2024.06.01.595856v1.49
  article-title: Explaining anomalies detected by autoencoders using Shapley Additive Explanations
  publication-title: Expert systems with applications
– start-page: 93
  year: 2000
  end-page: 104
  ident: 2024.06.01.595856v1.38
  article-title: LOF: identifying density-based local outliers
– volume: 14
  start-page: 849
  issue: 9
  year: 2017
  end-page: 863
  ident: 2024.06.01.595856v1.10
  article-title: Data-analysis strategies for image-based cell profiling
  publication-title: Nature methods
– volume: 41
  start-page: 1
  issue: 3
  year: 2009
  end-page: 58
  ident: 2024.06.01.595856v1.33
  article-title: Anomaly detection: A survey
  publication-title: ACM computing surveys (CSUR
– volume: 13
  start-page: 911
  issue: 11
  year: 2022
  end-page: 923
  ident: 2024.06.01.595856v1.14
  article-title: Morphology and gene expression profiling provide complementary information for mapping cell state
  publication-title: Cell systems
– volume: 10
  start-page: 7
  year: 2015
  ident: 2024.06.01.595856v1.23
  article-title: Morphological profiles of RNAi-induced gene knockdown are highly reproducible but dominated by seed effects
  publication-title: PloS one
– volume: 7
  start-page: 1
  year: 2020
  end-page: 30
  ident: 2024.06.01.595856v1.25
  article-title: A comprehensive survey of anomaly detection techniques for high dimensional big data
  publication-title: Journal of big data
– start-page: 1
  year: 2024
  end-page: 28
  ident: 2024.06.01.595856v1.28
  article-title: “PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data”
  publication-title: Molecular systems biology
– volume: 2
  start-page: 91
  issue: 1
  year: 2023
  end-page: 102
  ident: 2024.06.01.595856v1.53
  article-title: “Cell morphology-guided de novo hit design by conditioning GANs on phenotypic image features”
  publication-title: Digital discovery
– volume: 13
  start-page: 924
  issue: 4
  year: 2017
  ident: 2024.06.01.595856v1.5
  article-title: Automated analysis of high-content microscopy data with deep learning
  publication-title: Molecular systems biology
– volume: 6
  start-page: 12
  year: 2017
  ident: 2024.06.01.595856v1.11
  article-title: A dataset of images and morphological profiles of 30,000 small-molecule treatments using the Cell Painting assay
  publication-title: Gigascience
– year: 2023
  ident: 2024.06.01.595856v1.50
  article-title: A genome-wide atlas of human cell morphology
  publication-title: bioRxiv
– volume: 6
  year: 2017
  ident: 2024.06.01.595856v1.44
  article-title: Systematic morphological profiling of human gene and allele function via Cell Painting
  publication-title: Elife
– volume: 30
  year: 2017
  ident: 2024.06.01.595856v1.48
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in neural information processing systems
– volume: 9
  start-page: 1761
  issue: 1
  year: 2018
  ident: 2024.06.01.595856v1.7
  article-title: Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact
  publication-title: Nature communications
– volume: 10
  start-page: 1287
  issue: 1
  year: 2019
  ident: 2024.06.01.595856v1.8
  article-title: Coming together to define membrane contact sites
  publication-title: Nature communications
– volume: 53
  start-page: 84
  year: 2018
  end-page: 91
  ident: 2024.06.01.595856v1.9
  article-title: Interacting organelles
  publication-title: Current opinion in cell biology
– volume: 6
  start-page: 4
  year: 2020
  ident: 2024.06.01.595856v1.3
  article-title: Single-cell morphology encodes metastatic potential
  publication-title: Science advances
– volume: 22
  start-page: 1
  year: 2021
  end-page: 20
  ident: 2024.06.01.595856v1.35
  article-title: MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction
  publication-title: BMC bioinformatics
– start-page: 413
  year: 2008
  end-page: 422
  ident: 2024.06.01.595856v1.40
  article-title: Isolation forest
– volume: 12066
  start-page: 419
  year: 2020
  end-page: 430
  ident: 2024.06.01.595856v1.36
– volume: 2110
  start-page: 11334
  year: 2021
  ident: 2024.06.01.595856v1.42
  article-title: Generalized out-of-distribution detection: A survey
  publication-title: arXiv preprint arXiv
– volume: 22
  start-page: 1
  year: 2021
  end-page: 11
  ident: 2024.06.01.595856v1.17
  article-title: CellProfiler 4: improvements in speed, utility and usability
  publication-title: BMC bioinformatics
– volume: 19
  start-page: 1550
  issue: 12
  year: 2022
  end-page: 1557
  ident: 2024.06.01.595856v1.19
  article-title: High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations
  publication-title: Nature methods
– volume: 2
  start-page: 1354
  issue: 5
  year: 2023
  end-page: 1367
  ident: 2024.06.01.595856v1.47
  article-title: Deep representation learning determines drug mechanism of action from cell painting images
  publication-title: Digital Discovery
– start-page: 2023
  year: 2023
  end-page: 11
  ident: 2024.06.01.595856v1.31
  article-title: Capturing cell heterogeneity in representations of cell populations for image-based profiling using contrastive learning
  publication-title: bioRxiv
– year: 2023
  ident: 2024.06.01.595856v1.52
  article-title: Evaluating batch correction methods for image-based cell profiling
  publication-title: bioRxiv
– volume: 33
  start-page: 6
  year: 2022
  ident: 2024.06.01.595856v1.22
  article-title: Cell Painting predicts impact of lung cancer variants
  publication-title: Molecular biology of the cell
– volume: 361
  start-page: 6401
  year: 2018
  ident: 2024.06.01.595856v1.6
  article-title: Here, there, and everywhere: The importance of ER membrane contact sites
  publication-title: Science
– volume: 15
  start-page: 1594
  issue: 1
  year: 2024
  ident: 2024.06.01.595856v1.27
  article-title: Learning representations for image-based profiling of perturbations
  publication-title: Nature communications
– volume: 2311
  start-page: 13417
  year: 2023
  ident: 2024.06.01.595856v1.57
  article-title: Reproducible image-based profiling with Pycytominer
  publication-title: arXiv preprint arXiv
– volume: 15
  start-page: 9
  year: 2019
  ident: 2024.06.01.595856v1.30
  article-title: Learning unsupervised feature representations for single cell microscopy images with paired cell inpainting
  publication-title: PLoS computational biology
– volume: 32
  start-page: 995
  issue: 9
  year: 2021
  end-page: 1005
  ident: 2024.06.01.595856v1.51
  article-title: Predicting cell health phenotypes using image-based morphology profiling
  publication-title: Molecular biology of the cell
– volume: 227
  start-page: 140
  issue: 2
  year: 2007
  end-page: 156
  ident: 2024.06.01.595856v1.1
  article-title: Comparison of quantitative methods for cell-shape analysis
  publication-title: Journal of microscopy
– volume: 4
  start-page: 636
  issue: 7
  year: 2022
  end-page: 644
  ident: 2024.06.01.595856v1.54
  article-title: Learning biophysical determinants of cell fate with deep neural networks
  publication-title: Nature machine intelligence
– volume: 613
  start-page: 345
  issue: 7943
  year: 2023
  end-page: 354
  ident: 2024.06.01.595856v1.24
  article-title: Integrated intracellular organization and its variations in human iPS cells
  publication-title: Nature
– volume: 171
  start-page: 1437
  issue: 6
  year: 2017
  end-page: 1452
  ident: 2024.06.01.595856v1.56
  article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
  publication-title: Cell
– volume: 216
  start-page: 65
  issue: 1
  year: 2017
  end-page: 71
  ident: 2024.06.01.595856v1.15
  article-title: Machine learning and computer vision approaches for phenotypic profiling
  publication-title: Journal of cell biology
– volume: 2309
  start-page: 16064
  year: 2023
  ident: 2024.06.01.595856v1.32
  article-title: Masked autoencoders are scalable learners of cellular morphology
  publication-title: arXiv preprint arXiv
– volume: 3
  year: 2022
  ident: 2024.06.01.595856v1.21
  article-title: High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds
  publication-title: npj systems biology and applications
– volume: 453
  start-page: 475
  issue: 7194
  year: 2008
  end-page: 480
  ident: 2024.06.01.595856v1.2
  article-title: Mechanism of shape determination in motile cells
  publication-title: Nature
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  end-page: 38
  ident: 2024.06.01.595856v1.41
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM computing surveys (CSUR
– volume: 54
  start-page: 1
  issue: 7
  year: 2021
  end-page: 37
  ident: 2024.06.01.595856v1.34
  article-title: Deep learning for medical anomaly detection–a survey
  publication-title: ACM Computing Surveys (CSUR
SSID ssj0002961374
Score 1.8720495
SecondaryResourceType preprint
Snippet High-content image-based phenotypic profiling combines automated microscopy and analysis to identify phenotypic alterations in cell morphology and provide...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Bioinformatics
Title Anomaly detection for high-content image-based phenotypic cell profiling
URI https://www.ncbi.nlm.nih.gov/pubmed/38895267
https://www.proquest.com/docview/3070803049
https://www.biorxiv.org/content/10.1101/2024.06.01.595856
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: M7P
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: PIMPY
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYBhIviDsbUBkJ8VIFEudmPw7UMaQRoqmTylPkOM4aqUtC203tv-ec2EsrFaTxwEvUWI2TnC86Pjefj5D3bqQjX3q5g83MnUAJ1xEMvVZRKq3CXIuw7Mgm4iThk4lILWf7oqMTiOuar1ai_a9QwxiAjVtn_wHuflIYgN8AOhwBdjjeCXhw6K_kbD0s9FKrvpIQ2xI7WJeOuf_qCrSIgwtYMcQar2a5bis1xCD-0JB43y5o1mzNq-Z8Vd304ZhpW13aLYTHs61EfjMzuY1ENn3R71dwnk2QdSqnclMLrMG9lGbDECjjejv8wIKuTMrfaCkWCVCpzDWpab07tqujO24AnKvrnOp9DAX4LH_oh538yE4uzs6y8Wgy_tD-cpAqDFPqljdljxywOBSgyg4-j5L0vA-tMQE2Std_u38Qm8-GW3_auTF4PiDFOUjx715GZ22MH5NH1k2gxwbeJ-Serp-SB4Y4dP2MnFqQaQ8yBZDpNsh0C2S6AZkiyLQH-Tm5OBmNv5w6lhPDyT3OIycuSuarUAkWKe0XseTo4uJLF7kKeRxHsuClDD0lCoHGFzJpRThUslAH0n9B9uum1q8I9TxdMjcoJViBQa4UF2Xe8WMErp97WhySd1YuWWs6n2QouwwLIb3MyA7-cyuxDPQSvoKsdXO9yHAt4Zh3h3leGlH20_ici5BF8dEdrn5NHm4-uzdkfzm_1m_JfXWzrBbzAdmLJ3xgP4ABFu6mcJZ--57-_A0VtWKi
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly+detection+for+high-content+image-based+phenotypic+cell+profiling&rft.jtitle=bioRxiv&rft.au=Shpigler%2C+Alon&rft.au=Kolet%2C+Naor&rft.au=Golan%2C+Shahar&rft.au=Weisbart%2C+Erin&rft.date=2024-06-03&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.06.01.595856&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon