Large-scale classification of metagenomic samples: a comparative analysis of classical machine learning techniques vs a novel brain-inspired hyperdimensional computing approach

Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affectin...

Full description

Saved in:
Bibliographic Details
Published in:bioRxiv
Main Authors: Joshi, Jayadev, Cumbo, Fabio, Blankenberg, Daniel
Format: Journal Article Paper
Language:English
Published: United States Cold Spring Harbor Laboratory 07.07.2025
Edition:1.1
Subjects:
ISSN:2692-8205, 2692-8205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affecting models accuracy. To address this problem, we explore hyperdimensional computing (HDC), an emerging brain-inspired computational paradigm that leverages high-dimensional vectors and simple arithmetic operations to represent and manipulate complex patterns, as an alternative approach in the context of supervised machine learning. In this work, we present a comprehensive comparative analysis of HDC against established machine learning techniques across a range of classification tasks. As a representative use case, we focus on classifying heterogeneous metagenomic samples based on their quantitative microbial profiles, using publicly available microbiome datasets. Our results demonstrate that HDC achieves comparable, and in some cases, superior classification accuracy to classical methods. Furthermore, our findings highlight the potential of HDC for improved computational efficiency, particularly when dealing with large-scale datasets, suggesting the HDC-based classifier as a promising tool for bioinformatics research, particularly in areas characterized by high-dimensional data. We also offer a Galaxy powered toolset to analyze your own datasets and generate reproducible workflows and adopt these methods in your own research with ease. Our investigation into the application of a HDC-based supervised machine learning technique for classifying microbial profiles in metagenomic samples yielded promising results, demonstrating the potential of this novel computational paradigm to complement and, in some cases, surpass the performances of well established machine learning techniques.
AbstractList Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affecting models accuracy. To address this problem, we explore hyperdimensional computing (HDC), an emerging brain-inspired computational paradigm that leverages high-dimensional vectors and simple arithmetic operations to represent and manipulate complex patterns, as an alternative approach in the context of supervised machine learning. In this work, we present a comprehensive comparative analysis of HDC against established machine learning techniques across a range of classification tasks. As a representative use case, we focus on classifying heterogeneous metagenomic samples based on their quantitative microbial profiles, using publicly available microbiome datasets. Our results demonstrate that HDC achieves comparable, and in some cases, superior classification accuracy to classical methods. Furthermore, our findings highlight the potential of HDC for improved computational efficiency, particularly when dealing with large-scale datasets, suggesting the HDC-based classifier as a promising tool for bioinformatics research, particularly in areas characterized by high-dimensional data. We also offer a Galaxy powered toolset to analyze your own datasets and generate reproducible workflows and adopt these methods in your own research with ease. Our investigation into the application of a HDC-based supervised machine learning technique for classifying microbial profiles in metagenomic samples yielded promising results, demonstrating the potential of this novel computational paradigm to complement and, in some cases, surpass the performances of well established machine learning techniques.Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affecting models accuracy. To address this problem, we explore hyperdimensional computing (HDC), an emerging brain-inspired computational paradigm that leverages high-dimensional vectors and simple arithmetic operations to represent and manipulate complex patterns, as an alternative approach in the context of supervised machine learning. In this work, we present a comprehensive comparative analysis of HDC against established machine learning techniques across a range of classification tasks. As a representative use case, we focus on classifying heterogeneous metagenomic samples based on their quantitative microbial profiles, using publicly available microbiome datasets. Our results demonstrate that HDC achieves comparable, and in some cases, superior classification accuracy to classical methods. Furthermore, our findings highlight the potential of HDC for improved computational efficiency, particularly when dealing with large-scale datasets, suggesting the HDC-based classifier as a promising tool for bioinformatics research, particularly in areas characterized by high-dimensional data. We also offer a Galaxy powered toolset to analyze your own datasets and generate reproducible workflows and adopt these methods in your own research with ease. Our investigation into the application of a HDC-based supervised machine learning technique for classifying microbial profiles in metagenomic samples yielded promising results, demonstrating the potential of this novel computational paradigm to complement and, in some cases, surpass the performances of well established machine learning techniques.The growing complexity and dimensionality of biological data require more efficient and scalable machine learning approaches. HDC offers a novel alternative to conventional methods, showing resilience to high-dimensionality while maintaining competitive accuracy. This study demonstrates the effectiveness of HDC in classifying metagenomic samples based on their microbial composition. Our results suggest that HDC not only matches, but sometimes exceeds the performance of well-established methods. We make this approach accessible to the broader bioinformatics community with an open-source tool fully integrated into the Galaxy platform, facilitating its adoption and reproducibility, with the aim of integrating HDC into mainstream biological data analysis pipelines, especially for complex, high-dimensional tasks in microbiome research.ImportanceThe growing complexity and dimensionality of biological data require more efficient and scalable machine learning approaches. HDC offers a novel alternative to conventional methods, showing resilience to high-dimensionality while maintaining competitive accuracy. This study demonstrates the effectiveness of HDC in classifying metagenomic samples based on their microbial composition. Our results suggest that HDC not only matches, but sometimes exceeds the performance of well-established methods. We make this approach accessible to the broader bioinformatics community with an open-source tool fully integrated into the Galaxy platform, facilitating its adoption and reproducibility, with the aim of integrating HDC into mainstream biological data analysis pipelines, especially for complex, high-dimensional tasks in microbiome research.
Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affecting models accuracy. To address this problem, we explore hyperdimensional computing (HDC), an emerging brain-inspired computational paradigm that leverages high-dimensional vectors and simple arithmetic operations to represent and manipulate complex patterns, as an alternative approach in the context of supervised machine learning. In this work, we present a comprehensive comparative analysis of HDC against established machine learning techniques across a range of classification tasks. As a representative use case, we focus on classifying heterogeneous metagenomic samples based on their quantitative microbial profiles, using publicly available microbiome datasets. Our results demonstrate that HDC achieves comparable, and in some cases, superior classification accuracy to classical methods. Furthermore, our findings highlight the potential of HDC for improved computational efficiency, particularly when dealing with large-scale datasets, suggesting the HDC-based classifier as a promising tool for bioinformatics research, particularly in areas characterized by high-dimensional data. We also offer a Galaxy powered toolset to analyze your own datasets and generate reproducible workflows and adopt these methods in your own research with ease. Our investigation into the application of a HDC-based supervised machine learning technique for classifying microbial profiles in metagenomic samples yielded promising results, demonstrating the potential of this novel computational paradigm to complement and, in some cases, surpass the performances of well established machine learning techniques.
Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However, these techniques often struggle with high-dimensional data, where the increasing number of features leads to decreased performance, also affecting models accuracy. To address this problem, we explore hyperdimensional computing (HDC), an emerging brain-inspired computational paradigm that leverages high-dimensional vectors and simple arithmetic operations to represent and manipulate complex patterns, as an alternative approach in the context of supervised machine learning. In this work, we present a comprehensive comparative analysis of HDC against established machine learning techniques across a range of classification tasks. As a representative use case, we focus on classifying heterogeneous metagenomic samples based on their quantitative microbial profiles, using publicly available microbiome datasets. Our results demonstrate that HDC achieves comparable, and in some cases, superior classification accuracy to classical methods. Furthermore, our findings highlight the potential of HDC for improved computational efficiency, particularly when dealing with large-scale datasets, suggesting the HDC-based classifier as a promising tool for bioinformatics research, particularly in areas characterized by high-dimensional data. We also offer a Galaxy powered toolset to analyze your own datasets and generate reproducible workflows and adopt these methods in your own research with ease. Our investigation into the application of a HDC-based supervised machine learning technique for classifying microbial profiles in metagenomic samples yielded promising results, demonstrating the potential of this novel computational paradigm to complement and, in some cases, surpass the performances of well established machine learning techniques. The growing complexity and dimensionality of biological data require more efficient and scalable machine learning approaches. HDC offers a novel alternative to conventional methods, showing resilience to high-dimensionality while maintaining competitive accuracy. This study demonstrates the effectiveness of HDC in classifying metagenomic samples based on their microbial composition. Our results suggest that HDC not only matches, but sometimes exceeds the performance of well-established methods. We make this approach accessible to the broader bioinformatics community with an open-source tool fully integrated into the Galaxy platform, facilitating its adoption and reproducibility, with the aim of integrating HDC into mainstream biological data analysis pipelines, especially for complex, high-dimensional tasks in microbiome research.
Author Blankenberg, Daniel
Cumbo, Fabio
Joshi, Jayadev
Author_xml – sequence: 1
  givenname: Jayadev
  orcidid: 0000-0001-7589-5230
  surname: Joshi
  fullname: Joshi, Jayadev
  organization: Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 2
  givenname: Fabio
  orcidid: 0000-0003-2920-5838
  surname: Cumbo
  fullname: Cumbo, Fabio
  organization: Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0002-6833-9049
  surname: Blankenberg
  fullname: Blankenberg, Daniel
  organization: Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40672168$$D View this record in MEDLINE/PubMed
BookMark eNpVkcuO1DAQRSM0iHkwH8AGeckmjR8dO2GD0AgGpJbYwNoqO5VuI8cOdjqa_is-EUcNw7CqkurWqWvf6-oixIBV9YrRDWOUveWUNxuqNlRupBSi2z6rrrjseN1y2lw86S-r25x_UEp5J5lQ2xfV5ZZKxZlsr6pfO0h7rLMFj8R6yNkNzsLsYiBxICPOsMcQR2dJhnHymN8RIDaOE6SiWpBAAH_KLq_yM6CwyAj24AISj5CCC3syoz0E9_OImSy5IEJc0BOTwIXahTy5hD05nCZMvRsx5GKgYNZDx3ndh2lKsUBfVs8H8Blv_9Sb6vunj9_uPte7r_df7j7sasPadltb0ysqpFJ8kGgVF6213DbQgQFrac8Mlm6LjJkGbG9aI1GovqFD09Oh68RN9f7MnY5mxN5imBN4PSU3QjrpCE7_PwnuoPdx0Yxz2ZSDhfDmTDAupge3PO6uyWmqNJX6nNw_aXnj-kWzHl226D0EjMesBRe0Y1zx1dfrp74eoX8jFb8BJXGsCQ
Cites_doi 10.3390/nu13082638
10.1186/s40168-018-0531-3
10.7554/eLife.65088
10.1038/s41467-020-15457-9
10.1038/nbt.3960
10.1016/j.cels.2016.10.004
10.1038/ncomms7528
10.1038/nature18927
10.1136/fmch-2019-000262
10.1093/nar/gkac247
10.1093/bib/bbaf177
10.1016/j.chom.2018.06.005
10.1038/nature17672
10.1038/nmeth.4468
10.1038/s41467-018-07019-x
10.1038/s41467-017-02018-w
10.1093/nar/gkae410
10.1016/j.neuroimage.2019.06.023
10.1038/ismej.2016.37
10.1007/s41745-023-00370-z
10.1038/nature11450
10.1007/978-1-0716-2986-4_10
10.3390/a13090233
10.1038/s44220-023-00145-6
10.1146/annurev.genet.38.072902.091216
10.1186/s12859-022-04727-6
10.3389/fcimb.2024.1429197
10.1038/s41591-019-0458-7
10.1109/MCAS.2020.2988388
10.1038/s41467-017-00900-1
10.1016/j.chom.2018.06.007
10.1016/j.cell.2016.04.007
10.1136/gutjnl-2015-309800
10.1111/jgh.15502
10.1038/s41591-019-0406-6
10.21105/joss.05704
10.1186/s12934-022-01973-4
10.1038/s41591-020-0963-8
10.1038/s41522-020-00155-7
10.1016/j.cell.2016.10.020
10.1038/nbt.2939
10.1038/nbt.2942
10.7717/peerj-cs.2885
10.1038/nature23889
10.1016/j.csbj.2021.04.054
10.1038/s43705-022-00182-9
10.15252/msb.20145645
10.1016/j.nutres.2017.04.003
10.1038/nrg.2017.63
10.1093/gigascience/giad083
10.1093/gigascience/giz042
10.3390/foods12112140
10.1186/s13059-020-02020-4
10.1128/mBio.00434-20
10.1038/s41591-022-01695-5
10.1038/s41586-019-1560-1
10.1038/bjc.2015.465
10.1016/j.beth.2020.05.002
10.1186/s40168-017-0261-y
10.1111/jcpe.12087
10.1093/nar/gkab1019
10.1186/s12575-022-00179-7
10.1101/gr.4086505
10.1017/gmb.2023.14
10.1038/srep34826
10.1145/3558000
10.1371/journal.pcbi.1012426
10.1128/genomeA.00890-16
10.3389/fmicb.2023.1257002
ContentType Journal Article
Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
DOI 10.1101/2025.07.06.663394
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID PMC12265723
2025.07.06.663394v1
40672168
Genre Journal Article
Preprint
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U24 CA231877
– fundername: NHGRI NIH HHS
  grantid: U24 HG006620
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
5PM
AFFHD
ID FETCH-LOGICAL-b1884-cbd7036772f6ec7238cc2c5a9abacc0d1beaba4e11b5acdb8b6e37d50f5d0f993
ISSN 2692-8205
IngestDate Tue Nov 04 02:03:28 EST 2025
Sat Jul 12 18:20:13 EDT 2025
Fri Sep 05 15:40:33 EDT 2025
Sat Aug 02 01:40:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b1884-cbd7036772f6ec7238cc2c5a9abacc0d1beaba4e11b5acdb8b6e37d50f5d0f993
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: Daniel Blankenberg has a significant financial interest in GalaxyWorks, a company that may have a commercial interest in the results of this research and technology. This potential conflict of interest has been reviewed and is managed by the Cleveland Clinic.
ORCID 0000-0002-6833-9049
0000-0003-2920-5838
0000-0001-7589-5230
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC12265723
PMID 40672168
PQID 3230912729
PQPubID 23479
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12265723
biorxiv_primary_2025_07_06_663394
proquest_miscellaneous_3230912729
pubmed_primary_40672168
PublicationCentury 2000
PublicationDate 2025-Jul-07
20250707
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-Jul-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Topçuoğlu, Lesniak, Ruffin, Wiens, Schloss (2025.07.06.663394v1.68) 2020; 11
Dai, Zhu, Sun, Li, Liu, Wu (2025.07.06.663394v1.6) 2022; 50
Cumbo, Chicco (2025.07.06.663394v1.19) 2025; 11
Feng, Liang, Jia, Stadlmayr, Tang, Lan (2025.07.06.663394v1.54) 2015; 6
Li, Luo, Ji, Nielsen (2025.07.06.663394v1.11) 2022; 21
Nam, Do, Loan Trinh, Lee (2025.07.06.663394v1.1) 2023; 12
Wu, Peters, Dominianni, Zhang, Pei, Yang (2025.07.06.663394v1.61) 2016; 10
Ge, Parhi (2025.07.06.663394v1.20) 2020; 20
Rubel, Abbas, Taylor, Connell, Tanes, Bittinger (2025.07.06.663394v1.36) 2020; 21
Vangay, Hillmann, Knights (2025.07.06.663394v1.17) 2019; 8
Hernández Medina, Kutuzova, Nielsen, Johansen, Hansen, Nielsen (2025.07.06.663394v1.15) 2022; 2
Stock, Van Criekinge, Boeckaerts, Taelman, Van Haeverbeke, Dewulf (2025.07.06.663394v1.18) 2024; 20
Liu, Zhang, Wu, Cai, Huang, Chen (2025.07.06.663394v1.42) 2016; 6
Shanahan, Shah, Koloski, Walker, Talley, Morrison (2025.07.06.663394v1.63) 2018; 6
Yu, Feng, Wong, Zhang, Liang, Qin (2025.07.06.663394v1.31) 2017; 66
Lewis, Lewis (2025.07.06.663394v1.8) 2016; 4
Shao, Forster, Tsaliki, Vervier, Strang, Simpson (2025.07.06.663394v1.50) 2019; 574
Ke, Wang, Ratanatharathorn, Huang, Roberts, Grodstein (2025.07.06.663394v1.56) 2023; 1
(2025.07.06.663394v1.27) 2016; 3
Barber, Mego, Sabater, Vallejo, Bendezu, Masihy (2025.07.06.663394v1.59) 2021; 13
Riesenfeld, Schloss, Handelsman (2025.07.06.663394v1.2) 2004; 38
Chowdhury, Turin (2025.07.06.663394v1.26) 2020; 8
Joshi, Blankenberg (2025.07.06.663394v1.66) 2022; 23
Kim (2025.07.06.663394v1.4) 2023; 2629
Yachida, Mizutani, Shiroma, Shiba, Nakajima, Sakamoto (2025.07.06.663394v1.55) 2019; 25
Qin, Li, Cai, Li, Zhu, Zhang (2025.07.06.663394v1.34) 2012; 490
Notting, Pirovano, Sybesma, Kort (2025.07.06.663394v1.57) 2023; 4
Lloyd-Price, Mahurkar, Rahnavard, Crabtree, Orvis, Hall (2025.07.06.663394v1.7) 2017; 550
Jie, Xia, Zhong, Feng, Li, Liang (2025.07.06.663394v1.35) 2017; 8
Zeller, Tap, Voigt, Sunagawa, Kultima, Costea (2025.07.06.663394v1.53) 2014
Giardine, Riemer, Hardison, Burhans, Elnitski, Shah (2025.07.06.663394v1.65) 2005; 15
D’Elia, Truu, Lahti, Berland, Papoutsoglou, Ceci (2025.07.06.663394v1.16) 2023; 14
Lee, Cappellato, Di Camillo (2025.07.06.663394v1.69) 2022; 12
Zhu, Ju, Wang, Wang, Guo, Ma (2025.07.06.663394v1.33) 2020; 11
(2025.07.06.663394v1.40) 2018; 24
(2025.07.06.663394v1.64) 2022; 50
(2025.07.06.663394v1.58) 2017; 41
Hansen, Roager, Søndertoft, Gøbel, Kristensen, Vallès-Colomer (2025.07.06.663394v1.39) 2018; 9
Beghini, McIver, Blanco-Míguez, Dubois, Asnicar, Maharjan (2025.07.06.663394v1.23) 2021; 10
Hall, Tolonen, Xavier (2025.07.06.663394v1.47) 2017; 18
Lee, Thomas, Bolte, Björk, de Ruijter, Armanini (2025.07.06.663394v1.41) 2022; 28
Kleyko, Rachkovskij, Osipov, Rahimi (2025.07.06.663394v1.22) 2023; 55
Pehrsson, Tsukayama, Patel, Mejía-Bautista, Sosa-Soto, Navarrete (2025.07.06.663394v1.48) 2016; 533
Wu, Chen, Li, Li, Zhao, Su (2025.07.06.663394v1.13) 2021; 19
Cumbo, Cappelli, Weitschek (2025.07.06.663394v1.24) 2020; 13
Navgire, Goel, Sawhney, Sharma, Kaushik, Mohanta (2025.07.06.663394v1.3) 2022; 24
Pasolli, Schiffer, Manghi, Renson, Obenchain, Truong (2025.07.06.663394v1.10) 2017; 14
Keohane, Ghosh, Jeffery, Molloy, O’Toole, Shanahan (2025.07.06.663394v1.28) 2020; 26
Ghensi, Manghi, Zolfo, Armanini, Pasolli, Bolzan (2025.07.06.663394v1.29) 2020; 6
Sengupta, Sivabalan, Mahesh, Palanikumar, Kuppa Baskaran, Raman (2025.07.06.663394v1.9) 2023
Cumbo, Truglia, Weitschek, Blankenberg (2025.07.06.663394v1.25) 2025; 26
(2025.07.06.663394v1.52) 2016; 165
Cheung, Yu (2025.07.06.663394v1.5) 2021; 36
Brooks, Olm, Firek, Baker, Thomas, Morowitz (2025.07.06.663394v1.51) 2017; 8
(2025.07.06.663394v1.62) 2019; 200
Cumbo, Weitschek (2025.07.06.663394v1.70) 2023; 8
Chen, Wu, Ye, Li (2025.07.06.663394v1.14) 2024; 14
Bizzarro, Loos, Laine, Crielaard, Zaura (2025.07.06.663394v1.60) 2013; 40
Community (2025.07.06.663394v1.67) 2024; 52
Vogtmann, Goedert (2025.07.06.663394v1.30) 2016; 114
(2025.07.06.663394v1.43) 2016; 167
(2025.07.06.663394v1.45) 2018; 24
Li, Jia, Cai, Zhong, Feng, Sunagawa (2025.07.06.663394v1.46) 2014; 32
Aygun, Moghadam, Najafi, Imani (2025.07.06.663394v1.21) 2023
Nielsen, Almeida, Juncker, Rasmussen, Li, Sunagawa (2025.07.06.663394v1.32) 2014; 32
Nagy-Szakal, Williams, Mishra, Che, Lee, Bateman (2025.07.06.663394v1.38) 2017; 5
Brito, Yilmaz, Huang, Xu, Jupiter, Jenkins (2025.07.06.663394v1.44) 2016; 535
Costea, Zeller, Sunagawa, Pelletier, Alberti, Levenez (2025.07.06.663394v1.49) 2017; 35
Wirbel, Pyl, Kartal, Zych, Kashani, Milanese (2025.07.06.663394v1.37) 2019; 25
Jiang, Gradus, Rosellini (2025.07.06.663394v1.12) 2020; 51
References_xml – volume: 13
  start-page: 2638
  year: 2021
  ident: 2025.07.06.663394v1.59
  article-title: Differential Effects of Western and Mediterranean-Type Diets on Gut Microbiota: A Metagenomics and Metabolomics Approach
  publication-title: Nutrients
  doi: 10.3390/nu13082638
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: 2025.07.06.663394v1.63
  article-title: Influence of cigarette smoking on the human duodenal mucosa-associated microbiota
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0531-3
– volume: 10
  year: 2021
  ident: 2025.07.06.663394v1.23
  article-title: Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3
  publication-title: Elife
  doi: 10.7554/eLife.65088
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: 2025.07.06.663394v1.33
  article-title: Metagenome-wide association of gut microbiome features for schizophrenia
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-15457-9
– volume: 35
  start-page: 1069
  year: 2017
  end-page: 1076
  ident: 2025.07.06.663394v1.49
  article-title: Towards standards for human fecal sample processing in metagenomic studies
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3960
– volume: 3
  start-page: 572
  year: 2016
  end-page: 584.e3
  ident: 2025.07.06.663394v1.27
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2016.10.004
– volume: 6
  start-page: 1
  year: 2015
  end-page: 13
  ident: 2025.07.06.663394v1.54
  article-title: Gut microbiome development along the colorectal adenoma–carcinoma sequence
  publication-title: Nature Communications
  doi: 10.1038/ncomms7528
– volume: 535
  start-page: 435
  year: 2016
  end-page: 439
  ident: 2025.07.06.663394v1.44
  article-title: Mobile genes in the human microbiome are structured from global to individual scales
  publication-title: Nature
  doi: 10.1038/nature18927
– volume: 8
  start-page: e000262
  year: 2020
  ident: 2025.07.06.663394v1.26
  article-title: Variable selection strategies and its importance in clinical prediction modelling
  publication-title: Fam Med Community Health
  doi: 10.1136/fmch-2019-000262
– volume: 50
  start-page: W345
  year: 2022
  end-page: W351
  ident: 2025.07.06.663394v1.64
  article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac247
– volume: 26
  year: 2025
  ident: 2025.07.06.663394v1.25
  article-title: Feature selection with vector-symbolic architectures: a case study on microbial profiles of shotgun metagenomic samples of colorectal cancer
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbaf177
– volume: 24
  start-page: 133
  year: 2018
  end-page: 145.e5
  ident: 2025.07.06.663394v1.45
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2018.06.005
– volume: 533
  start-page: 212
  year: 2016
  end-page: 216
  ident: 2025.07.06.663394v1.48
  article-title: Interconnected microbiomes and resistomes in low-income human habitats
  publication-title: Nature
  doi: 10.1038/nature17672
– volume: 14
  start-page: 1023
  year: 2017
  end-page: 1024
  ident: 2025.07.06.663394v1.10
  article-title: Accessible, curated metagenomic data through ExperimentHub
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4468
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: 2025.07.06.663394v1.39
  article-title: A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-07019-x
– volume: 8
  start-page: 1
  year: 2017
  end-page: 7
  ident: 2025.07.06.663394v1.51
  article-title: Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02018-w
– volume: 52
  start-page: W83
  year: 2024
  end-page: W94
  ident: 2025.07.06.663394v1.67
  article-title: The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkae410
– volume: 200
  start-page: 121
  year: 2019
  end-page: 131
  ident: 2025.07.06.663394v1.62
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.023
– volume: 10
  start-page: 2435
  year: 2016
  end-page: 2446
  ident: 2025.07.06.663394v1.61
  article-title: Cigarette smoking and the oral microbiome in a large study of American adults
  publication-title: ISME J
  doi: 10.1038/ismej.2016.37
– start-page: 1
  year: 2023
  end-page: 17
  ident: 2025.07.06.663394v1.9
  article-title: Big Data for a Small World: A Review on Databases and Resources for Studying Microbiomes
  publication-title: J Indian Inst Sci
  doi: 10.1007/s41745-023-00370-z
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  ident: 2025.07.06.663394v1.34
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 2629
  start-page: 183
  year: 2023
  end-page: 229
  ident: 2025.07.06.663394v1.4
  article-title: Bioinformatic and Statistical Analysis of Microbiome Data
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-2986-4_10
– volume: 13
  issue: 233
  year: 2020
  ident: 2025.07.06.663394v1.24
  article-title: A Brain-Inspired Hyperdimensional Computing Approach for Classifying Massive DNA Methylation Data of Cancer
  publication-title: Algorithms
  doi: 10.3390/a13090233
– volume: 1
  start-page: 900
  year: 2023
  end-page: 913
  ident: 2025.07.06.663394v1.56
  article-title: Association of probable post-traumatic stress disorder with dietary pattern and gut microbiome in a cohort of women
  publication-title: Nature Mental Health
  doi: 10.1038/s44220-023-00145-6
– volume: 38
  start-page: 525
  year: 2004
  end-page: 552
  ident: 2025.07.06.663394v1.2
  article-title: Metagenomics: genomic analysis of microbial communities
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.38.072902.091216
– volume: 23
  issue: 197
  year: 2022
  ident: 2025.07.06.663394v1.66
  article-title: PDAUG: a Galaxy based toolset for peptide library analysis, visualization, and machine learning modeling
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-022-04727-6
– volume: 14
  issue: 1429197
  year: 2024
  ident: 2025.07.06.663394v1.14
  article-title: Editorial: Machine learning and deep learning applications in pathogenic microbiome research
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2024.1429197
– volume: 25
  start-page: 968
  year: 2019
  end-page: 976
  ident: 2025.07.06.663394v1.55
  article-title: Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer
  publication-title: Nature Medicine
  doi: 10.1038/s41591-019-0458-7
– volume: 20
  start-page: 30
  year: 2020
  end-page: 47
  ident: 2025.07.06.663394v1.20
  article-title: Classification Using Hyperdimensional Computing: A Review. IEEE Circuits and Systems Magazine
  publication-title: . Secondquarter
  doi: 10.1109/MCAS.2020.2988388
– volume: 8
  start-page: 1
  year: 2017
  end-page: 12
  ident: 2025.07.06.663394v1.35
  article-title: The gut microbiome in atherosclerotic cardiovascular disease
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-00900-1
– volume: 24
  start-page: 146
  year: 2018
  end-page: 154.e4
  ident: 2025.07.06.663394v1.40
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2018.06.007
– volume: 165
  start-page: 842
  year: 2016
  end-page: 853
  ident: 2025.07.06.663394v1.52
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.007
– volume: 66
  start-page: 70
  year: 2017
  end-page: 78
  ident: 2025.07.06.663394v1.31
  article-title: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-309800
– volume: 36
  start-page: 817
  year: 2021
  end-page: 822
  ident: 2025.07.06.663394v1.5
  article-title: Machine learning on microbiome research in gastrointestinal cancer
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/jgh.15502
– volume: 25
  start-page: 679
  year: 2019
  end-page: 689
  ident: 2025.07.06.663394v1.37
  article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer
  publication-title: Nature Medicine
  doi: 10.1038/s41591-019-0406-6
– volume: 8
  start-page: 5704
  year: 2023
  ident: 2025.07.06.663394v1.70
  article-title: Blankenberg D. hdlib: A Python library for designing Vector-Symbolic Architectures
  publication-title: J Open Source Softw
  doi: 10.21105/joss.05704
– volume: 21
  issue: 241
  year: 2022
  ident: 2025.07.06.663394v1.11
  article-title: Machine learning for data integration in human gut microbiome
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-022-01973-4
– volume: 26
  start-page: 1089
  year: 2020
  end-page: 1095
  ident: 2025.07.06.663394v1.28
  article-title: Microbiome and health implications for ethnic minorities after enforced lifestyle changes
  publication-title: Nature Medicine
  doi: 10.1038/s41591-020-0963-8
– year: 2023
  ident: 2025.07.06.663394v1.21
  article-title: Learning from Hypervectors: A Survey on Hypervector Encoding
  publication-title: arxiv
– volume: 6
  start-page: 1
  year: 2020
  end-page: 12
  ident: 2025.07.06.663394v1.29
  article-title: Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics
  publication-title: npj Biofilms and Microbiomes
  doi: 10.1038/s41522-020-00155-7
– volume: 167
  start-page: 1125
  year: 2016
  end-page: 1136.e8
  ident: 2025.07.06.663394v1.43
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.020
– volume: 32
  start-page: 822
  year: 2014
  end-page: 828
  ident: 2025.07.06.663394v1.32
  article-title: Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2939
– volume: 32
  start-page: 834
  year: 2014
  end-page: 841
  ident: 2025.07.06.663394v1.46
  article-title: An integrated catalog of reference genes in the human gut microbiome
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2942
– volume: 11
  start-page: e2885
  year: 2025
  ident: 2025.07.06.663394v1.19
  article-title: Hyperdimensional computing in biomedical sciences: a brief review
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.2885
– volume: 550
  start-page: 61
  year: 2017
  end-page: 66
  ident: 2025.07.06.663394v1.7
  article-title: Strains, functions and dynamics in the expanded Human Microbiome Project
  publication-title: Nature
  doi: 10.1038/nature23889
– volume: 19
  start-page: 2742
  year: 2021
  end-page: 2749
  ident: 2025.07.06.663394v1.13
  article-title: Towards multi-label classification: Next step of machine learning for microbiome research
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.04.054
– volume: 2
  issue: 98
  year: 2022
  ident: 2025.07.06.663394v1.15
  article-title: Machine learning and deep learning applications in microbiome research
  publication-title: ISME Commun
  doi: 10.1038/s43705-022-00182-9
– year: 2014
  ident: 2025.07.06.663394v1.53
  article-title: Potential of fecal microbiota for early-stage detection of colorectal cancer
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.20145645
– volume: 41
  start-page: 86
  year: 2017
  end-page: 96
  ident: 2025.07.06.663394v1.58
  publication-title: Nutrition Research
  doi: 10.1016/j.nutres.2017.04.003
– volume: 18
  start-page: 690
  year: 2017
  end-page: 699
  ident: 2025.07.06.663394v1.47
  article-title: Human genetic variation and the gut microbiome in disease
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg.2017.63
– volume: 12
  year: 2022
  ident: 2025.07.06.663394v1.69
  article-title: Machine learning-based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease
  publication-title: Gigascience
  doi: 10.1093/gigascience/giad083
– volume: 8
  year: 2019
  ident: 2025.07.06.663394v1.17
  article-title: Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks
  publication-title: Gigascience
  doi: 10.1093/gigascience/giz042
– volume: 12
  year: 2023
  ident: 2025.07.06.663394v1.1
  article-title: Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions
  publication-title: Foods
  doi: 10.3390/foods12112140
– volume: 21
  start-page: 1
  year: 2020
  end-page: 32
  ident: 2025.07.06.663394v1.36
  article-title: Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians
  publication-title: Genome Biology
  doi: 10.1186/s13059-020-02020-4
– volume: 11
  year: 2020
  ident: 2025.07.06.663394v1.68
  article-title: A Framework for Effective Application of Machine Learning to Microbiome-Based Classification Problems
  publication-title: . mBio
  doi: 10.1128/mBio.00434-20
– volume: 28
  start-page: 535
  year: 2022
  end-page: 544
  ident: 2025.07.06.663394v1.41
  article-title: Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma
  publication-title: Nature Medicine
  doi: 10.1038/s41591-022-01695-5
– volume: 574
  start-page: 117
  year: 2019
  end-page: 121
  ident: 2025.07.06.663394v1.50
  article-title: Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth
  publication-title: Nature
  doi: 10.1038/s41586-019-1560-1
– volume: 114
  start-page: 237
  year: 2016
  end-page: 242
  ident: 2025.07.06.663394v1.30
  article-title: Epidemiologic studies of the human microbiome and cancer
  publication-title: British Journal of Cancer
  doi: 10.1038/bjc.2015.465
– volume: 51
  start-page: 675
  year: 2020
  end-page: 687
  ident: 2025.07.06.663394v1.12
  article-title: Supervised Machine Learning: A Brief Primer
  publication-title: Behav Ther
  doi: 10.1016/j.beth.2020.05.002
– volume: 5
  start-page: 1
  year: 2017
  end-page: 17
  ident: 2025.07.06.663394v1.38
  article-title: Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0261-y
– volume: 40
  start-page: 483
  year: 2013
  end-page: 492
  ident: 2025.07.06.663394v1.60
  article-title: Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing
  publication-title: Journal of Clinical Periodontology
  doi: 10.1111/jcpe.12087
– volume: 50
  start-page: D777
  year: 2022
  end-page: D784
  ident: 2025.07.06.663394v1.6
  article-title: GMrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1019
– volume: 24
  issue: 18
  year: 2022
  ident: 2025.07.06.663394v1.3
  article-title: Analysis and Interpretation of metagenomics data: an approach
  publication-title: Biol Proced Online
  doi: 10.1186/s12575-022-00179-7
– volume: 15
  start-page: 1451
  year: 2005
  end-page: 1455
  ident: 2025.07.06.663394v1.65
  article-title: Galaxy: a platform for interactive large-scale genome analysis
  publication-title: Genome Res
  doi: 10.1101/gr.4086505
– volume: 4
  start-page: e16
  year: 2023
  ident: 2025.07.06.663394v1.57
  article-title: The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders
  publication-title: Gut Microbiome
  doi: 10.1017/gmb.2023.14
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  ident: 2025.07.06.663394v1.42
  article-title: Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis
  publication-title: Scientific Reports
  doi: 10.1038/srep34826
– volume: 55
  start-page: 1
  year: 2023
  end-page: 52
  ident: 2025.07.06.663394v1.22
  article-title: A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges
  publication-title: ACM Computing Surveys
  doi: 10.1145/3558000
– volume: 20
  start-page: e1012426
  year: 2024
  ident: 2025.07.06.663394v1.18
  article-title: Hyperdimensional computing: A fast, robust, and interpretable paradigm for biological data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1012426
– volume: 4
  year: 2016
  ident: 2025.07.06.663394v1.8
  article-title: A New Catalog of Microbiological Tools for Women’s Infectious Disease Research
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00890-16
– volume: 14
  issue: 1257002
  year: 2023
  ident: 2025.07.06.663394v1.16
  article-title: Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1257002
SSID ssj0002961374
Score 1.9140456
SecondaryResourceType preprint
Snippet Classical machine learning techniques have revolutionized bioinformatics, enabling researchers to extract knowledge from complex biological data. However,...
SourceID pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Microbiology
Title Large-scale classification of metagenomic samples: a comparative analysis of classical machine learning techniques vs a novel brain-inspired hyperdimensional computing approach
URI https://www.ncbi.nlm.nih.gov/pubmed/40672168
https://www.proquest.com/docview/3230912729
https://www.biorxiv.org/content/10.1101/2025.07.06.663394
https://pubmed.ncbi.nlm.nih.gov/PMC12265723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: M7P
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: PIMPY
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XUB7Qbwpj8pI3KJAkyZxwg2qXQHqVtFqkcopsh2HrWiTqmmj7l_ixE9kxnk0LXsAJA6NUjd1pHyfnRl75htCXvsy8LjArX-ROKbj28qET2LCu1okbuIxKbWI65hNJv50GoSdzo86F6aYszT1t9tg-V-hhjYAG1Nn_wLuplNogHMAHY4AOxz_CPgxxnabOTx7ZUi0jTEYqDEMF2rNUZcVQ-JzjtLAeZnvLFsy4LylVFJ2gUgudNylqgtNfDMa_dfcKHLoIs0KNTcEFp0wZylu4YM1ewWOLpBwgYHyetVR6joSOjey0jNvG8hill1sZ8UusCfXVYeNz_yax6ppH20WQi_ynnFRRpLpNYU5T7_vQtbK9Pn2uobt6hhYtgsvyuZgcOvFTcxnggFhjMthkVXx0UrPkrYXwJRu69ztG94Hug4Bdq8lWr03YGANy6rKLSosF5oLDm5LW2WVnwMR7vB8ZIGh6jJ7eESObeYGfpccfzidhBfNip4dgGnEnGrrHO789rf7npA79U3A34Lns4InepNvcxii27J5Lu-Ru5WzQt-XJLtPOip9QG6X5UuvH5KfLarRfarRLKEtqtGKau8opy2i0ZpoeHlDNFoRjdZEozui0SKHLjTR6D7R6CHRaEM0WhPtEflydno5-mhWFUBMYfm-Y0oRo0AceICJpyTWx4OpQ7o84IJLOYgtoeDMUZYlXC5j4QtPDVnsDhI3HiRgej8m3TRL1VNCHQHOcwzuu6tsRwYyELFrOwlDAT8Wx16PvKrwiJalzkuE8EUDFg28qIQPrqmRimAWxq01nqpsk0dD8OQDywZPtUeelMg13dSI94i_h2lzASq87_-Szq600nvNuWf__tfn5GQ3ul6Q7nq1US_JLVmsZ_mqT47Y1O9XTO5j4HMI38JP5-HXX1JR3k0
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+classification+of+metagenomic+samples%3A+a+comparative+analysis+of+classical+machine+learning+techniques+vs+a+novel+brain-inspired+hyperdimensional+computing+approach&rft.jtitle=bioRxiv&rft.au=Joshi%2C+Jayadev&rft.au=Cumbo%2C+Fabio&rft.au=Blankenberg%2C+Daniel&rft.date=2025-07-07&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.07.06.663394&rft_id=info%3Apmid%2F40672168&rft.externalDocID=PMC12265723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon