Scalable nonparametric clustering with unified marker gene selection for single-cell RNA-seq data
Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on pos...
Uložené v:
| Vydané v: | bioRxiv |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Cold Spring Harbor Laboratory Press
12.02.2024
Cold Spring Harbor Laboratory |
| Vydanie: | 1.1 |
| Predmet: | |
| ISSN: | 2692-8205, 2692-8205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. Through simulations and analyses of publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations. |
|---|---|
| AbstractList | Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations. Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. Through simulations and analyses of publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations. Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations.Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations. Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations.Competing Interest StatementSR holds equity in Amgen and receives research funding from Microsoft. All other authors have declared that no competing interests exist.Footnotes* https://github.com/microsoft/nclusion* http://microsoft.github.io/nclusion |
| Author | Ramseier, Michelle L Fusi, Nicolo Crawford, Lorin Amini, Ava P Nwizu, Chibuikem Shalek, Alex K Hughes, Madeline Navia, Andrew W Raghavan, Srivatsan Winter, Peter S |
| Author_xml | – sequence: 1 givenname: Chibuikem orcidid: 0000-0002-2075-1747 surname: Nwizu fullname: Nwizu, Chibuikem organization: Warren Alpert Medical School of Brown University, Providence, RI, USA – sequence: 2 givenname: Madeline surname: Hughes fullname: Hughes, Madeline organization: Microsoft Research, Cambridge, MA, USA – sequence: 3 givenname: Michelle L orcidid: 0000-0002-9201-7656 surname: Ramseier fullname: Ramseier, Michelle L organization: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA – sequence: 4 givenname: Andrew W orcidid: 0000-0002-5429-8012 surname: Navia fullname: Navia, Andrew W organization: Broad Institute of MIT and Harvard, Cambridge, MA, USA – sequence: 5 givenname: Alex K orcidid: 0000-0001-5670-8778 surname: Shalek fullname: Shalek, Alex K organization: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA – sequence: 6 givenname: Nicolo orcidid: 0000-0002-4102-0169 surname: Fusi fullname: Fusi, Nicolo organization: Microsoft Research, Cambridge, MA, USA – sequence: 7 givenname: Srivatsan orcidid: 0000-0002-5374-9918 surname: Raghavan fullname: Raghavan, Srivatsan organization: Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA – sequence: 8 givenname: Peter S orcidid: 0000-0002-6557-3219 surname: Winter fullname: Winter, Peter S organization: Broad Institute of MIT and Harvard, Cambridge, MA, USA – sequence: 9 givenname: Ava P orcidid: 0000-0002-8601-6040 surname: Amini fullname: Amini, Ava P organization: Microsoft Research, Cambridge, MA, USA – sequence: 10 givenname: Lorin orcidid: 0000-0003-0178-8242 surname: Crawford fullname: Crawford, Lorin organization: Microsoft Research, Cambridge, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38405697$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkElPxDAMhSMEYp0fwAVF4sKlQ5Y2aY4IsUkjkFjOlZO6EOi0Q9Ky_HuChk2cbEufn5_fFlnt-g4J2eVsyjnjh4KJfMpEGqaFNqU0K2RTKCOyUrBi9U-_QSYxPjLGhFFc6nydbMgyZ4UyepPAjYMWbIs0yS8gwByH4B117RgHDL67p69-eKBj5xuPNZ1DeMJA77FDGrFFN_i-o00faExsi5nDtqXXl0dZxGdawwA7ZK2BNuLkq26Tu9OT2-PzbHZ1dnF8NMssV8xkmkmVc-YkKFsYB67mymmlZYPO8gKwLBTXjWVcWOFqcAxQ19qCtYAMuNwmB0td6_vw5l-qRfDJ7Xv1GVTFRMV5tQzqF12E_nnEOFRzHz-NQ4f9GCthZFqSKbyE7v9DH_sxdOmRRIlClFKZPFF7X9Ro51j_nP7OWX4AEAuAuA |
| Cites_doi | 10.1038/s41587-020-00811-5 10.1186/s12859-016-0984-y 10.1214/12-BA703 10.1093/bioinformatics/btac757 10.1214/009053604000000238 10.1214/11-BA631 10.1038/s41592-019-0654-x 10.1126/science.aaa1934 10.15252/msb.20188746 10.1186/s13059-017-1382-0 10.1038/s41592-018-0229-2 10.1038/s41467-017-00470-2 10.1093/nar/gkz826 10.1038/80859 10.1126/science.abl5197 10.1038/s41467-017-01605-1 10.1371/journal.pcbi.1004575 10.1038/nmeth.4612 10.1214/11-AOAS455 10.1038/s41587-019-0379-5 10.1038/nmeth.4236 10.1038/s41467-021-23196-8 10.1016/j.immuni.2020.12.003 10.1016/S0198-8859(98)00098-6 10.1214/06-BA104 10.1186/s13059-015-0604-6 10.1038/ncomms14049 10.1186/s12865-023-00547-2 10.1073/pnas.1817715116 10.1371/journal.pbio.3000722 10.1038/ni1582 10.1016/j.cell.2018.09.009 10.1038/nrg3833 10.1080/01621459.2017.1285773 10.1214/17-AOAS1046 10.1093/bioinformatics/bti525 10.1038/ni.2927 10.1080/01621459.2022.2116331 10.1038/s41467-020-17900-3 10.1038/s41576-018-0088-9 10.1186/s13059-022-02622-0 10.1186/1471-2105-14-128 10.1016/j.rmed.2013.10.005 10.1093/intimm/8.2.275 10.1371/journal.pgen.1009754 10.1093/database/baaa073 10.1186/s13059-020-1926-6 10.1038/nbt.3192 10.1038/nature14966 10.12688/f1000research.9501.2 10.1093/biostatistics/kxac047 10.1016/0008-8749(90)90260-X 10.1038/nn.4216 10.1186/s13073-017-0467-4 10.1038/s41592-023-01933-9 10.1084/jem.20111908 10.1038/s41581-021-00463-x 10.1038/nmeth.4207 10.1038/75556 |
| ContentType | Journal Article Paper |
| Copyright | 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. |
| DOI | 10.1101/2024.02.11.579839 |
| DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv |
| DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2024.02.11.579839v1 38405697 |
| Genre | Journal Article Preprint Working Paper/Pre-Print |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM128596 – fundername: NCI NIH HHS grantid: K08 CA260442 |
| GroupedDBID | 8FE 8FH AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO FX. |
| ID | FETCH-LOGICAL-b1609-7036410c3a6b59cacd16c7673fecb15ae85617fb012b2cdac0ae7d7babbae0a13 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:52:28 EST 2025 Fri Sep 05 12:12:55 EDT 2025 Fri Jul 25 09:21:10 EDT 2025 Fri Nov 21 01:40:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1609-7036410c3a6b59cacd16c7673fecb15ae85617fb012b2cdac0ae7d7babbae0a13 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: SR holds equity in Amgen and receives research funding from Microsoft. All other authors have declared that no competing interests exist. |
| ORCID | 0000-0002-9201-7656 0000-0002-5429-8012 0000-0002-4102-0169 0000-0002-8601-6040 0000-0002-2075-1747 0000-0002-5374-9918 0000-0002-6557-3219 0000-0003-0178-8242 0000-0001-5670-8778 |
| OpenAccessLink | https://www.proquest.com/docview/2925283694?pq-origsite=%requestingapplication% |
| PMID | 38405697 |
| PQID | 2925283694 |
| PQPubID | 2050091 |
| PageCount | 37 |
| ParticipantIDs | biorxiv_primary_2024_02_11_579839 proquest_miscellaneous_2932023820 proquest_journals_2925283694 pubmed_primary_38405697 |
| PublicationCentury | 2000 |
| PublicationDate | 20240212 |
| PublicationDateYYYYMMDD | 2024-02-12 |
| PublicationDate_xml | – month: 02 year: 2024 text: 20240212 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationTitleAlternate | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | McInnes, Healy, Melville (2024.02.11.579839v1.13) 2020 Luecken, Theis (2024.02.11.579839v1.20) 2019; 15 Ma, Sun, Shang, Keller, Chen, Zhou (2024.02.11.579839v1.75) 1585; 11 (2024.02.11.579839v1.43) 2023 Lopez, Regier, Cole, Jordan, Yosef (2024.02.11.579839v1.14) 2018; 15 Lähnemann, Köster, Szczurek, McCarthy, Hicks, Robinson, Vallejos, Campbell, Beerenwinkel, Mahfouz, Pinello, Skums, Stamatakis, Attolini, Aparicio, Baaijens, Balvert, de Barbanson, Cappuccio, Corleone, Dutilh, Florescu, Guryev, Holmer, Jahn, Lobo, Keizer, Khatri, Kielbasa, Korbel, Kozlov, Kuo, Lelieveldt, Mandoiu, Marioni, Marschall, Mölder, Niknejad, Raczkowski, Reinders, de Ridder, Saliba, Somarakis, Stegle, Theis, Yang, Zelikovsky, McHardy, Raphael, Shah, Schönhuth (2024.02.11.579839v1.21) 2020; 21 Zhang, Fan, Christina Fan, Rosenfeld, Tse (2024.02.11.579839v1.27) 2018; 19 Blei, Jordan (2024.02.11.579839v1.30) 2006; 1 Choi, Lee, Sohn, Kim (2024.02.11.579839v1.49) 2023; 24 Prabhakaran, Azizi, Carr, Pe’er (2024.02.11.579839v1.32) 2016; 48 Weber, Saha, Datta, Hansen (2024.02.11.579839v1.79) 4059; 14 Wang, Zhu, Pierson, Ramazzotti, Batzoglou (2024.02.11.579839v1.11) 2017; 14 Meng, Lowell (2024.02.11.579839v1.64) 1997; 185 Fang, Liu, Peltz (2024.02.11.579839v1.96) 2023; 39 Stegle, Teichmann, Marioni (2024.02.11.579839v1.6) 2015; 16 Sun, Chen, Xin, Jiang, Huang, Cillo, Tabib, Kolls, Bruno, Lafyatis (2024.02.11.579839v1.33) 1649; 10 Hughes, Kim, Sudderth (2024.02.11.579839v1.84) 2015; 9 Alexander Wolf, Angerer, Theis (2024.02.11.579839v1.89) 2018; 19 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (2024.02.11.579839v1.41) 2011; 12 Evren, Ringqvist, Tripathi, Sleiers, Rives, Alisjahbana, Gao, Sarhan, Halle, Sorini, Lepzien, Marquardt, Michaëlsson, Smed-Sörensen, Botling, Karlsson, Villablanca, Willinger (2024.02.11.579839v1.54) 2021; 54 Neubert, Homann, Wendelborn, Bär, Krampert, Trum, Schröder, Ebner, Weichselbaum, Schatz, Linz, Veelken, Schulte-Schrepping, Aschenbrenner, Quast, Kurts, Geisberger, Kunzelmann, Hammer, Binger, Titze, Müller, Kolanus, Schultze, Wagner, Jantsch (2024.02.11.579839v1.68) 2020; 18 Mookerjee-Basu, Kappes (2024.02.11.579839v1.71) 2014; 15 Neufeld, Gao, Popp, Battle, Witten (2024.02.11.579839v1.23) 2022 Alexander Wolf, Angerer, Theis (2024.02.11.579839v1.2) 2018; 19 Carbonetto, Stephens (2024.02.11.579839v1.38) 2012; 7 Zhu, Lei, Klei, Devlin, Roeder (2024.02.11.579839v1.42) 2019; 116 (2024.02.11.579839v1.59) 2023 Willis, Tellier, Liao, Trezise, Light, O’Donnell, Garrett-Sinha, Shi, Tarlinton, Nutt (2024.02.11.579839v1.51) 2017; 8 Reich, Bondell (2024.02.11.579839v1.80) 2011; 67 Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu, Gregory, Shuga, Montesclaros, Underwood, Masquelier, Nishimura, Schnall-Levin, Wyatt, Hindson, Bharadwaj, Wong, Ness, Beppu, Joachim Deeg, McFarland, Loeb, Valente, Ericson, Stevens, Radich, Mikkelsen, Hindson, Bielas (2024.02.11.579839v1.45) 2017; 8 William Townes, Hicks, Aryee, Irizarry (2024.02.11.579839v1.29) 2019; 20 Grün, Lyubimova, Kester, Wiebrands, Basak, Sasaki, Clevers, van Oudenaarden (2024.02.11.579839v1.16) 2015; 525 Tasic, Menon, Nguyen, Kim, Jarsky, Yao, Levi, Gray, Sorensen, Dolbeare, Bertagnolli, Goldy, Shapovalova, Parry, Lee, Smith, Bernard, Madisen, Sunkin, Hawrylycz, Koch, Zeng (2024.02.11.579839v1.17) 2016; 19 Durinck, Moreau, Kasprzyk, Davis, De Moor, Brazma, Huber (2024.02.11.579839v1.56) 2005; 21 Jiang, Zhong, Gilvary, Corliss, Hong-Geller, Wei, Djeu (2024.02.11.579839v1.63) 2000; 1 Zhu, Stephens (2024.02.11.579839v1.83) 2017; 11 Peet (2024.02.11.579839v1.94) 1974; 5 Gibeon, Zhu, Sogbesan, Banya, Rossios, Saito, Rocha, Hull, Menzies-Gow, Bhavsar, Chung (2024.02.11.579839v1.69) 2014; 108 Zhou, Carbonetto, Stephens (2024.02.11.579839v1.82) 2013; 9 Zuccolo, Deng, Unruh, Sanyal, Bau, Storek, Demetrick, Luider, Auer-Grzesiak, Mansoor, Deans (2024.02.11.579839v1.52) 2013; 4 Cohen, Giladi, Gorki, Solodkin, Zada, Hladik, Miklosi, Salame, Halpern, David, Itzkovitz, Harkany, Knapp, Amit (2024.02.11.579839v1.67) 2018; 175 Vinh, Epps, Bailey (2024.02.11.579839v1.95) 2009 Jaiswal, Dubey, Swain, Croft (2024.02.11.579839v1.70) 1996; 8 Zhang, Shahbaba, Zhao (2024.02.11.579839v1.78) 2018; 13 Simpson (2024.02.11.579839v1.92) 1949; 163 Svensson (2024.02.11.579839v1.87) 2020; 38 Guo, Wang, Steven Potter, Whitsett, Xu (2024.02.11.579839v1.3) 2015; 11 Haque, Engel, Teichmann, Lönnberg (2024.02.11.579839v1.5) 2017; 9 Gao, Bien, Witten (2024.02.11.579839v1.22) 2022 Paul, Lal (2024.02.11.579839v1.61) 2017; 8 Vavoulis, Francescatto, Heutink, Gough (2024.02.11.579839v1.72) 2015; 16 Sun, Wang, Deng, Wang, Lafyatis, Ding, Hu, Chen (2024.02.11.579839v1.35) 2018; 34 Demetci, Cheng, Darnell, Zhou, Ramachandran, Crawford (2024.02.11.579839v1.39) 2021; 17 McIntosh (2024.02.11.579839v1.93) 1967; 48 Norris, Doherty, Collins, McEntee, Traynor, Hegarty, O’Farrelly (2024.02.11.579839v1.50) 1999; 60 Baume, Caligiuri, Manley, Daley, Ritz (2024.02.11.579839v1.48) 1990; 131 Chen, Yu, Yan, Guo, Zhang, Liu, Lei, Zhang, Zhou, Gao, Yang, Li, Zhou, Fan, Ye, Li, Xu, Xiao (2024.02.11.579839v1.53) 2021; 12 Vandenbon, Diez (2024.02.11.579839v1.25) 2020; 11 Jaeger, Donadieu, Cognet, Bernat, Ordoñez-Rueda, Barlogis, Mahlaoui, Fenis, Narni-Mancinelli, Beaupain, Bellanné-Chantelot, Bajénoff, Malissen, Malissen, Vivier, Ugolini (2024.02.11.579839v1.62) 2012; 209 Zeisel, Muñoz-Manchado, Codeluppi, Lönnerberg, La Manno, Juréus, Marques, Munguba, He, Betsholtz, Rolny, Castelo-Branco, Hjerling-Leffler, Linnarsson (2024.02.11.579839v1.19) 2015; 347 van der Maaten, Hinton (2024.02.11.579839v1.12) 2008; 9 Vivier, Tomasello, Baratin, Walzer, Ugolini (2024.02.11.579839v1.60) 2008; 9 Kiselev, Andrews, Hemberg (2024.02.11.579839v1.7) 2019; 20 Guan, Stephens (2024.02.11.579839v1.81) 2011; 5 Cheng, Easton, Rosencrance, Li, Ju, Williams, Mulder, Pang, Chen, Chen (2024.02.11.579839v1.10) 2019; 47 Amezquita, Lun, Becht, Carey, Carpp, Geistlinger, Marini, Rue-Albrecht, Risso, Soneson, Waldron, Pagès, Smith, Huber, Morgan, Gottardo, Hicks (2024.02.11.579839v1.8) 2020; 17 žurauskienė, Yau (2024.02.11.579839v1.18) 2016; 17 Miao, Humphreys, McMahon, Kim (2024.02.11.579839v1.1) 2021; 17 Grabski, Street, Irizarry (2024.02.11.579839v1.24) 2023; 20 Blei, Kucukelbir, McAuliffe (2024.02.11.579839v1.40) 2017; 112 Soneson, Robinson (2024.02.11.579839v1.73) 2018; 15 Yu, Cao, Yang, Yang (2024.02.11.579839v1.90) 2022; 23 Wand, Ormerod, Padoan, Frühwirth (2024.02.11.579839v1.86) 2011; 6 Gelman, Carlin, Stern, Dunson, Vehtari, Rubin, Analysis (2024.02.11.579839v1.31) 2013 Ashburner, Ball, Blake, Botstein, Butler, Michael Cherry, Davis, Dolinski, Dwight, Eppig, Harris, Hill, Issel-Tarver, Kasarskis, Lewis, Matese, Richardson, Ringwald, Rubin, Sherlock (2024.02.11.579839v1.58) 2000; 25 Wagner, Wagner (2024.02.11.579839v1.91) 2007 Duan, Pinto, Xie (2024.02.11.579839v1.34) 2019; 35 Barbieri, Berger (2024.02.11.579839v1.36) 2004; 32 Zeng, Zhou (2024.02.11.579839v1.37) 2017; 8 Michielsen, Reinders, Mahfouz (2024.02.11.579839v1.47) 2021; 12 Svensson (2024.02.11.579839v1.88) 2021; 39 Cohen (2024.02.11.579839v1.85) 2013 Domínguez Conde, Xu, Jarvis, Rainbow, Wells, Gomes, Howlett, Suchanek, Polanski, King, Mamanova, Huang, Szabo, Richardson, Bolt, Fasouli, Mahbubani, Prete, Tuck, Richoz, Tuong, Campos, Mousa, Needham, Pritchard, Li, Elmentaite, Park, Rahmani, Chen, Menon, Bayraktar, James, Meyer, Yosef, Clatworthy, Sims, Farber, Saeb-Parsy, Jones, Teichmann (2024.02.11.579839v1.66) 2022; 376 Blei, Kucukelbir, McAuliffe (2024.02.11.579839v1.76) 2017; 112 Kiselev, Kirschner, Schaub, Andrews, Yiu, Chandra, Natarajan, Reik, Barahona, Green, Hemberg (2024.02.11.579839v1.15) 2017; 14 Chen, Tan, Kou, Duan, Wang, Meirelles, Clark, Ma’ayan (2024.02.11.579839v1.57) 2013; 14 Baer, Dillner, Schwartz, Sedon, Nedospasov, Johnson (2024.02.11.579839v1.65) 1998; 18 Fang, Liu, Peltz (2024.02.11.579839v1.55) 2023; 39 Vargo, Gilbert (2024.02.11.579839v1.46) 2020; 21 Lun, McCarthy, Marioni (2024.02.11.579839v1.4) 2016; 5 Lall, Ray, Bandyopadhyay (2024.02.11.579839v1.28) 2021; 17 Svensson, da Veiga Beltrame, Pachter (2024.02.11.579839v1.44) 2020 Zhu, Stephens (2024.02.11.579839v1.74) 4361; 9 Satija, Farrell, Gennert, Schier, Regev (2024.02.11.579839v1.9) 2015; 33 Zhang, Kamath, Tse David (2024.02.11.579839v1.26) 2019; 9 Giordano, Broderick, Jordan (2024.02.11.579839v1.77) 2018; 19 |
| References_xml | – volume: 39 start-page: 160 issue: 2 year: 2021 end-page: 160 ident: 2024.02.11.579839v1.88 article-title: Reply to: Umi or not umi, that is the question for scrna-seq zero-inflation publication-title: Nature Biotechnology doi: 10.1038/s41587-020-00811-5 – volume: 17 issue: 1 140 year: 2016 ident: 2024.02.11.579839v1.18 article-title: pcareduce: hierarchical clustering of single cell transcriptional profiles publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0984-y – volume: 17 start-page: e1009464 issue: 10 year: 2021 ident: 2024.02.11.579839v1.28 article-title: Rgcop-a regularized copula based method for gene selection in single-cell rna-seq data publication-title: PLOS Computational Biology – volume: 7 start-page: 73 year: 2012 end-page: 108 ident: 2024.02.11.579839v1.38 article-title: Scalable variational inference for bayesian variable selection in regression, and its accuracy in genetic association studies publication-title: Bayesian Analysis doi: 10.1214/12-BA703 – volume: 39 start-page: btac757 issue: 1 year: 2023 ident: 2024.02.11.579839v1.96 article-title: Gseapy: a comprehensive package for performing gene set enrichment analysis in python publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac757 – volume: 9 start-page: 2579 issue: 86 year: 2008 end-page: 2605 ident: 2024.02.11.579839v1.12 article-title: Visualizing data using t-sne publication-title: Journal of Machine Learning Research – volume: 32 start-page: 870 issue: 3 year: 2004 end-page: 897 ident: 2024.02.11.579839v1.36 article-title: Optimal predictive model selection publication-title: The Annals of Statistics doi: 10.1214/009053604000000238 – volume: 6 start-page: 847 issue: 4 year: 2011 end-page: 900 ident: 2024.02.11.579839v1.86 article-title: Mean field variational bayes for elaborate distributions publication-title: Bayesian Analysis doi: 10.1214/11-BA631 – volume: 17 start-page: 137 issue: 22 year: 2020 end-page: 145 ident: 2024.02.11.579839v1.8 article-title: Orchestrating single-cell analysis with bioconductor publication-title: Nature Methods doi: 10.1038/s41592-019-0654-x – volume: 347 start-page: 1138 issue: 6226 year: 2015 end-page: 1142 ident: 2024.02.11.579839v1.19 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 15 start-page: e8746 issue: 6 year: 2019 ident: 2024.02.11.579839v1.20 article-title: Current best practices in single-cell rna-seq analysis: a tutorial publication-title: Molecular Systems Biology doi: 10.15252/msb.20188746 – year: 2023 ident: 2024.02.11.579839v1.43 publication-title: Support: single cell gene expression datasets – volume: 19 issue: 1 15 year: 2018 ident: 2024.02.11.579839v1.2 article-title: Scanpy: large-scale single-cell gene expression data analysis publication-title: Genome Biology doi: 10.1186/s13059-017-1382-0 – volume: 15 start-page: 1053 issue: 12 year: 2018 end-page: 1058 ident: 2024.02.11.579839v1.14 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nature Methods doi: 10.1038/s41592-018-0229-2 – volume: 8 start-page: 456 issue: 1 year: 2017 ident: 2024.02.11.579839v1.37 article-title: Non-parametric genetic prediction of complex traits with latent dirichlet process regression models publication-title: Nature Communications doi: 10.1038/s41467-017-00470-2 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: 2024.02.11.579839v1.41 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 47 start-page: e143 issue: 22 year: 2019 ident: 2024.02.11.579839v1.10 article-title: Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell rna-seq data publication-title: Nucleic Acids Research doi: 10.1093/nar/gkz826 – volume: 48 start-page: 392 issue: 3 year: 1967 end-page: 404 ident: 2024.02.11.579839v1.93 article-title: An index of diversity and the relation of certain concepts to diversity publication-title: Ecology – volume: 4 year: 2013 ident: 2024.02.11.579839v1.52 article-title: Expression of ms4a and tmem176 genes in human b lymphocytes publication-title: Frontiers in Immunology – volume: 1 start-page: 419 issue: 55 year: 2000 end-page: 425 ident: 2024.02.11.579839v1.63 article-title: Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells publication-title: Nature Immunology doi: 10.1038/80859 – volume: 376 start-page: eabl5197 issue: 6594 year: 2022 ident: 2024.02.11.579839v1.66 article-title: Cross-tissue immune cell analysis reveals tissue-specific features in humans publication-title: Science doi: 10.1126/science.abl5197 – volume: 8 start-page: 1426 issue: 11 year: 2017 ident: 2024.02.11.579839v1.51 article-title: Environmental sensing by mature b cells is controlled by the transcription factors pu.1 and spib publication-title: Nature Communications doi: 10.1038/s41467-017-01605-1 – volume: 14 start-page: 2023 issue: 1 year: 4059 ident: 2024.02.11.579839v1.79 article-title: and Stephanie C Hicks. nnsvg for the scalable identification of spatially variable genes using nearest-neighbor gaussian processes publication-title: Nature Communications – volume: 11 start-page: e1004575 issue: 11 year: 2015 ident: 2024.02.11.579839v1.3 article-title: Sincera: A pipeline for single-cell rna-seq profiling analysis publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004575 – year: 2023 ident: 2024.02.11.579839v1.59 publication-title: Gene ontology data archive – volume: 15 start-page: 255 issue: 44 year: 2018 end-page: 261 ident: 2024.02.11.579839v1.73 article-title: Bias, robustness and scalability in single-cell differential expression analysis publication-title: Nature Methods doi: 10.1038/nmeth.4612 – volume: 5 start-page: 1780 issue: 3 year: 2011 end-page: 1815 ident: 2024.02.11.579839v1.81 article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems publication-title: The Annals Applied Statistics doi: 10.1214/11-AOAS455 – volume: 38 start-page: 147 issue: 2 year: 2020 end-page: 150 ident: 2024.02.11.579839v1.87 article-title: Droplet scrna-seq is not zero-inflated publication-title: Nature Biotechnology doi: 10.1038/s41587-019-0379-5 – volume: 14 start-page: 483 issue: 55 year: 2017 end-page: 486 ident: 2024.02.11.579839v1.15 article-title: Sc3: consensus clustering of single-cell rna-seq data publication-title: Nature Methods doi: 10.1038/nmeth.4236 – volume: 12 start-page: 2799 issue: 11 year: 2021 ident: 2024.02.11.579839v1.47 article-title: Hierarchical progressive learning of cell identities in single-cell data publication-title: Nature Communications doi: 10.1038/s41467-021-23196-8 – volume: 34 start-page: 139 issue: 1 year: 2018 end-page: 146 ident: 2024.02.11.579839v1.35 article-title: Dimm-sc: a dirichlet mixture model for clustering droplet-based single cell transcriptomic data publication-title: Bioinformatics – volume: 19 issue: 1 15 year: 2018 ident: 2024.02.11.579839v1.89 article-title: Scanpy: large-scale single-cell gene expression data analysis publication-title: Genome Biology doi: 10.1186/s13059-017-1382-0 – volume: 54 start-page: 259 issue: 2 year: 2021 end-page: 275 ident: 2024.02.11.579839v1.54 article-title: Distinct developmental pathways from blood monocytes generate human lung macrophage diversity publication-title: Immunity doi: 10.1016/j.immuni.2020.12.003 – volume: 60 start-page: 20 issue: 1 year: 1999 end-page: 31 ident: 2024.02.11.579839v1.50 article-title: Natural t cells in the human liver: cytotoxic lymphocytes with dual t cell and natural killer cell phenotype and function are phenotypically heterogenous and include vα24-jαq and γδ t cell receptor bearing cells publication-title: Human Immunology doi: 10.1016/S0198-8859(98)00098-6 – volume: 1 start-page: 121 issue: 1 year: 2006 end-page: 143 ident: 2024.02.11.579839v1.30 article-title: Variational inference for dirichlet process mixtures publication-title: Bayesian Analysis doi: 10.1214/06-BA104 – volume: 16 issue: 1 39 year: 2015 ident: 2024.02.11.579839v1.72 article-title: Dgeclust: differential expression analysis of clustered count data publication-title: Genome Biology doi: 10.1186/s13059-015-0604-6 – volume: 8 start-page: 14049 issue: 11 year: 2017 ident: 2024.02.11.579839v1.45 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nature Communications doi: 10.1038/ncomms14049 – volume: 11 start-page: 2020 issue: 1 year: 1585 ident: 2024.02.11.579839v1.75 article-title: Integrative differential expression and gene set enrichment analysis using summary statistics for scrna-seq studies publication-title: Nature Communications – volume: 8 year: 2017 ident: 2024.02.11.579839v1.61 article-title: The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy publication-title: Frontiers in Immunology – volume: 24 start-page: 15 issue: 1 year: 2023 ident: 2024.02.11.579839v1.49 article-title: Cd40 ligand stimulation affects the number and memory phenotypes of human peripheral cd8+ t cells publication-title: BMC Immunology doi: 10.1186/s12865-023-00547-2 – volume: 116 start-page: 466 issue: 2 year: 2019 end-page: 471 ident: 2024.02.11.579839v1.42 article-title: Semisoft clustering of single-cell data publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1817715116 – volume: 18 start-page: e3000722 issue: 6 year: 2020 ident: 2024.02.11.579839v1.68 article-title: Ncx1 represents an ionic na+ sensing mechanism in macrophages publication-title: PLoS Biology doi: 10.1371/journal.pbio.3000722 – volume: 5 start-page: 285 issue: 1 year: 1974 end-page: 307 ident: 2024.02.11.579839v1.94 article-title: The measurement of species diversity publication-title: Annual review of ecology and systematics – volume: 112 start-page: 859 issue: 518 year: 2017 end-page: 877 ident: 2024.02.11.579839v1.76 article-title: Variational inference: A review for statisticians publication-title: Journal of the American Statistical Association – volume: 9 start-page: 503 issue: 55 year: 2008 end-page: 510 ident: 2024.02.11.579839v1.60 article-title: Functions of natural killer cells publication-title: Nature Immunology doi: 10.1038/ni1582 – volume: 48 start-page: 1070 year: 2016 end-page: 1079 ident: 2024.02.11.579839v1.32 article-title: Dirichlet process mixture model for correcting technical variation in single-cell gene expression data publication-title: JMLR Workshop and Conference Proceedings – volume: 175 start-page: 1031 issue: 4 year: 2018 end-page: 1044 ident: 2024.02.11.579839v1.67 article-title: Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting publication-title: Cell doi: 10.1016/j.cell.2018.09.009 – volume: 16 start-page: 133 issue: 33 year: 2015 end-page: 145 ident: 2024.02.11.579839v1.6 article-title: Computational and analytical challenges in single-cell transcriptomics publication-title: Nature Reviews Genetics doi: 10.1038/nrg3833 – volume: 112 start-page: 859 issue: 518 year: 2017 end-page: 877 ident: 2024.02.11.579839v1.40 article-title: Variational inference: A review for statisticians publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2017.1285773 – volume: 9 year: 2015 ident: 2024.02.11.579839v1.84 article-title: Reliable and scalable variational inference for the hierarchical dirichlet process publication-title: Artificial Intelligence and Statistics, page – volume: 11 start-page: 1561 issue: 3 year: 2017 end-page: 1592 ident: 2024.02.11.579839v1.83 article-title: Bayesian large-scale multiple regression with summary statistics from genome-wide association studies publication-title: The Annals Applied Statistics doi: 10.1214/17-AOAS1046 – volume: 21 start-page: 3439 issue: 16 year: 2005 end-page: 3440 ident: 2024.02.11.579839v1.56 article-title: Biomart and bioconductor: a powerful link between biological databases and microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti525 – volume: 19 start-page: 1 issue: 1 year: 2018 end-page: 12 ident: 2024.02.11.579839v1.27 article-title: An interpretable framework for clustering single-cell rna-seq datasets publication-title: BMC bioinformatics – year: 2013 ident: 2024.02.11.579839v1.85 publication-title: Statistical Power Analysis for the Behavioral Sciences – volume: 15 start-page: 593 issue: 77 year: 2014 end-page: 594 ident: 2024.02.11.579839v1.71 article-title: New ingredients for brewing cd4+t (cells): Tcf-1 and lef-1 publication-title: Nature Immunology doi: 10.1038/ni.2927 – volume: 67 start-page: 381 issue: 2 year: 2011 end-page: 390 ident: 2024.02.11.579839v1.80 article-title: A spatial dirichlet process mixture model for clustering population genetics data publication-title: Biometrics – start-page: 2116331 year: 2022 ident: 2024.02.11.579839v1.22 article-title: Selective inference for hierarchical clustering publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2022.2116331 – volume: 163 start-page: 688 issue: 4148 year: 1949 end-page: 688 ident: 2024.02.11.579839v1.92 article-title: Measurement of diversity publication-title: nature – volume: 13 issue: 2 485 year: 2018 ident: 2024.02.11.579839v1.78 article-title: Variational hamiltonian monte carlo via score matching publication-title: Bayesian Analysis – year: 2007 ident: 2024.02.11.579839v1.91 publication-title: Comparing clusterings - an overview – start-page: 1073 year: 2009 end-page: 1080 ident: 2024.02.11.579839v1.95 article-title: Information theoretic measures for clusterings comparison: is a correction for chance necessary? – volume: 11 start-page: 4318 issue: 11 year: 2020 ident: 2024.02.11.579839v1.25 article-title: A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data publication-title: Nature Communications doi: 10.1038/s41467-020-17900-3 – volume: 20 start-page: 273 issue: 55 year: 2019 end-page: 282 ident: 2024.02.11.579839v1.7 article-title: Challenges in unsupervised clustering of single-cell rna-seq data publication-title: Nature Reviews Genetics doi: 10.1038/s41576-018-0088-9 – volume: 20 start-page: 1 year: 2019 end-page: 16 ident: 2024.02.11.579839v1.29 article-title: Feature selection and dimension reduction for single-cell rna-seq based on a multinomial model publication-title: Genome Biology – volume: 18 start-page: 5678 issue: 10 year: 1998 end-page: 5689 ident: 2024.02.11.579839v1.65 article-title: Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces nf-κb p50 publication-title: Molecular and Cellular Biology – volume: 23 issue: 1 49 year: 2022 ident: 2024.02.11.579839v1.90 article-title: Benchmarking clustering algorithms on estimating the number of cell types from single-cell rna-sequencing data publication-title: Genome Biology doi: 10.1186/s13059-022-02622-0 – volume: 35 start-page: 953 issue: 6 year: 2019 end-page: 961 ident: 2024.02.11.579839v1.34 article-title: Parallel clustering of single cell transcriptomic data with split-merge sampling on dirichlet process mixtures publication-title: Bioinformatics – volume: 14 issue: 128 year: 2013 ident: 2024.02.11.579839v1.57 article-title: Enrichr: interactive and collaborative html5 gene list enrichment analysis tool publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-128 – volume: 108 start-page: 71 issue: 1 year: 2014 end-page: 77 ident: 2024.02.11.579839v1.69 article-title: Lipid-laden bronchoalveolar macrophages in asthma and chronic cough publication-title: Respiratory Medicine doi: 10.1016/j.rmed.2013.10.005 – volume: 9 start-page: 383 issue: 4 year: 2019 end-page: 392 ident: 2024.02.11.579839v1.26 article-title: Valid post-clustering differential analysis for single-cell rna-seq publication-title: Cell Systems – volume: 10 start-page: 2019 issue: 1 year: 1649 ident: 2024.02.11.579839v1.33 article-title: A bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies publication-title: Nature communications – volume: 8 start-page: 275 issue: 2 year: 1996 end-page: 285 ident: 2024.02.11.579839v1.70 article-title: Regulation of cd40 ligand expression on naive cd4 t cells: a role for tcr but not co-stimulatory signals publication-title: International Immunology doi: 10.1093/intimm/8.2.275 – volume: 17 start-page: e1009754 issue: 8 year: 2021 ident: 2024.02.11.579839v1.39 article-title: Multi-scale inference of genetic trait architecture using biologically annotated neural networks publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1009754 – start-page: baaa073 year: 2020 ident: 2024.02.11.579839v1.44 article-title: A curated database reveals trends in single-cell transcriptomics publication-title: Database: The Journal of Biological Databases and Curation doi: 10.1093/database/baaa073 – volume: 19 issue: 51 year: 2018 ident: 2024.02.11.579839v1.77 article-title: Covariances, robustness and variational bayes publication-title: Journal of Machine Learning Research – volume: 9 start-page: e1003264 issue: 2 year: 2013 ident: 2024.02.11.579839v1.82 article-title: Polygenic modeling with Bayesian sparse linear mixed models publication-title: PLOS Genetics – volume: 21 issue: 1 31 year: 2020 ident: 2024.02.11.579839v1.21 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biology doi: 10.1186/s13059-020-1926-6 – volume: 33 start-page: 495 year: 2015 end-page: 502 ident: 2024.02.11.579839v1.9 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nature Biotechnology doi: 10.1038/nbt.3192 – volume: 185 start-page: 1661 issue: 9 year: 1997 end-page: 1670 ident: 2024.02.11.579839v1.64 article-title: Lipopolysaccharide (lps)-induced macrophage activation and signal transduction in the absence of src-family kinases hck, fgr, and lyn publication-title: The Journal of Experimental Medicine – volume: 525 start-page: 251 issue: 75687568 year: 2015 end-page: 255 ident: 2024.02.11.579839v1.16 article-title: Single-cell messenger rna sequencing reveals rare intestinal cell types publication-title: Nature doi: 10.1038/nature14966 – volume: 5 start-page: 2122 year: 2016 ident: 2024.02.11.579839v1.4 article-title: A step-by-step workflow for low-level analysis of single-cell rna-seq data with bioconductor publication-title: F1000Research doi: 10.12688/f1000research.9501.2 – year: 2013 ident: 2024.02.11.579839v1.31 publication-title: Third Edition – year: 2022 ident: 2024.02.11.579839v1.23 article-title: Inference after latent variable estimation for single-cell rna sequencing data publication-title: Biostatistics doi: 10.1093/biostatistics/kxac047 – volume: 131 start-page: 352 issue: 2 year: 1990 end-page: 365 ident: 2024.02.11.579839v1.48 article-title: Differential expression of cd8α and cd8β associated with mhc-restricted and non-mhc-restricted cytolytic effector cells publication-title: Cellular Immunology doi: 10.1016/0008-8749(90)90260-X – volume: 19 start-page: 335 issue: 22 year: 2016 end-page: 346 ident: 2024.02.11.579839v1.17 article-title: Adult mouse cortical cell taxonomy revealed by single cell transcriptomics publication-title: Nature Neuroscience doi: 10.1038/nn.4216 – volume: 9 start-page: 75 issue: 1 year: 2017 ident: 2024.02.11.579839v1.5 article-title: A practical guide to single-cell rna-sequencing for biomedical research and clinical applications publication-title: Genome Medicine doi: 10.1186/s13073-017-0467-4 – volume: 39 start-page: btac757 issue: 1 year: 2023 ident: 2024.02.11.579839v1.55 article-title: Gseapy: a comprehensive package for performing gene set enrichment analysis in python publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac757 – volume: 20 start-page: 1196 issue: 88 year: 2023 end-page: 1202 ident: 2024.02.11.579839v1.24 article-title: Significance analysis for clustering with single-cell rna-sequencing data publication-title: Nature Methods doi: 10.1038/s41592-023-01933-9 – volume: 12 year: 2021 ident: 2024.02.11.579839v1.53 article-title: Pnoc expressed by b cells in cholangio-carcinoma was survival related and lair2 could be a t cell exhaustion biomarker in tumor microenvironment: Characterization of immune microenvironment combining single-cell and bulk sequencing technology publication-title: Frontiers in Immunology – year: 2020 ident: 2024.02.11.579839v1.13 publication-title: Umap: Uniform manifold approximation and projection for dimension reduction – volume: 209 start-page: 565 issue: 3 year: 2012 end-page: 580 ident: 2024.02.11.579839v1.62 article-title: Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20111908 – volume: 9 start-page: 2018 issue: 1 year: 4361 ident: 2024.02.11.579839v1.74 article-title: Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes publication-title: Nature Communications – volume: 17 start-page: 710 issue: 11 year: 2021 end-page: 724 ident: 2024.02.11.579839v1.1 article-title: Multi-omics integration in the age of million single-cell data publication-title: Nature Reviews Nephrology doi: 10.1038/s41581-021-00463-x – volume: 21 start-page: 1 issue: 1 year: 2020 end-page: 51 ident: 2024.02.11.579839v1.46 article-title: A rank-based marker selection method for high through-put scrna-seq data publication-title: BMC bioinformatics – volume: 14 start-page: 414 issue: 44 year: 2017 end-page: 416 ident: 2024.02.11.579839v1.11 article-title: Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning publication-title: Nature Methods doi: 10.1038/nmeth.4207 – volume: 25 start-page: 25 issue: 11 year: 2000 end-page: 29 ident: 2024.02.11.579839v1.58 article-title: Gene ontology: tool for the unification of biology publication-title: Nature Genetics doi: 10.1038/75556 |
| SSID | ssj0002961374 |
| Score | 1.8600233 |
| SecondaryResourceType | preprint |
| Snippet | Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main... |
| SourceID | biorxiv proquest pubmed |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Bayesian analysis Bioinformatics Transcriptomics |
| Title | Scalable nonparametric clustering with unified marker gene selection for single-cell RNA-seq data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38405697 https://www.proquest.com/docview/2925283694 https://www.proquest.com/docview/2932023820 https://www.biorxiv.org/content/10.1101/2024.02.11.579839 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: M7P dateStart: 20131107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: BENPR dateStart: 20131107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2692-8205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: PIMPY dateStart: 20131107 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLpU48S4LZWUkrobE8SM-IUCt4MAqKiAtp8h2bGmldnebdCv498x40-UEF45RIseZ8XgennwfwGuhVUomFtzq6Ln01nO0IiIz64JTMnWpdplswszn9WJhm7HgNoxtlbd7Yt6ou3WgGvlbYQXhkGgr322uOLFG0enqSKFxABNCSahy616zr7EIi84qAzELbdHwRaHGg01ciJT2S8LrLMs3ytia6MKP_HLd_1ze_D3czG7n7P7_TvgBTBq3if1DuBNXj-BoRzz56zG4r6ga-mmKYfZP6N-XRKwVWLjYEnACujNGBVq2XS0Txqjskpp4eoaLLbIhM-egOhnGu4xKDReRU_2fnc_f8yFeMeo6fQLfz06_ffzER7IF7ktdWE5AXLIsQuW0Vza40JU6GG2qFIMvlYs1RlomeXRoXoTOhcJF0xnvvHexcGX1FA5xyvEZMBVE5aVU1mGskqL2wlVRFp1MHsMlVU3h1SjndrOD1GhJF20hMB9pd7qYwsmtVNvRqob2j0hxiP1ttAf6SLeK6y09kxnhUddTON5pbv-WCrNZpa15_u_BX8A9mg_PtC8ncHjdb-NLuBturpdDP4MDs6hnMPlwOm_OZ3nB4VXz-Uvz4zeAHtz5 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLhWc-IaFAkaCoyFx_LE-IEShVauWaFWK1FtqO460Uru7TbqF_il-IzNJdnuCWw-cEzl25s14PLbfA3grtKoqExNudfRceus5ehGJmZXBKVmV1ci1YhMmz0fHx3a8Br-Xd2HoWOUyJraBupwFqpF_EFYQD4m28tP8nJNqFO2uLiU0Oljsx6ufuGRrPu59Rfu-E2Jn--jLLu9VBbhPdWI5MU7JNAmZ017Z4EKZ6mC0yaoYfKpcHGFKYSqPkduLULqQuGhK4533LiYuzbDdWzCQmTToV4Ot7Xx8uKrqCIvTY0v9LLTFUCMS1W-lIvSp0CCJITRN3ytjRyRQvuEns_rX5PLvCW470e3c-99-0X0YjN081g9gLU4fwkYnrXn1CNx3BB9dC2PT2ZT4zc9IOiywcLogagicsBmVoNliOqkwC2dndEypZuhOkTWtNhAClmFGz6iYcho57XCww_wzb-I5o3O1j-HHjYzqCaxjl-MzYCqIzEuprMNsrIraC5dFmZSy8pgQqmwIb3q7FvOONKQg2xeJwBVX0dl-CJtLKxZ93GiKaxNiE6vH6PE0SDeNswW902reI7aG8LRDyuorGa7Xlbbm-b8bfw13do--HRQHe_n-C7hLfeOtyM0mrF_Ui_gSbofLi0lTv-oBzuDkpgHzB8RbOWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+nonparametric+clustering+with+unified+marker+gene+selection+for+single-cell+RNA-seq+data&rft.jtitle=bioRxiv&rft.au=Nwizu%2C+Chibuikem&rft.au=Hughes%2C+Madeline&rft.au=Ramseier%2C+Michelle+L&rft.au=Navia%2C+Andrew+W&rft.date=2024-02-12&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.02.11.579839&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |