Using MAP-Elites to Optimize Self-Assembling Behaviors in a Swarm of Bio-micro-robots

We are interested in programming a swarm of molecular robots that can perform self-assembly to form specific shapes at a specific location. Programming such robot swarms is challenging for two reasons. First, the goal is to optimize both the parameters and the structure of chemical reaction networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv
Hauptverfasser: Cazenille, Leo, Bredeche, Nicolas, Aubert-Kato, Nathanael
Format: Paper
Sprache:Englisch
Veröffentlicht: Cold Spring Harbor Cold Spring Harbor Laboratory Press 17.11.2019
Cold Spring Harbor Laboratory
Ausgabe:1.1
Schlagworte:
ISSN:2692-8205, 2692-8205
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are interested in programming a swarm of molecular robots that can perform self-assembly to form specific shapes at a specific location. Programming such robot swarms is challenging for two reasons. First, the goal is to optimize both the parameters and the structure of chemical reaction networks. Second, the search space is both high-dimensional and deceptive. In this paper, we show that MAP-Elites, an algorithm that searches for both high-performing and diverse solutions, outperforms previous state-of-the-art optimization methods.
Bibliographie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2692-8205
2692-8205
DOI:10.1101/845594