Jointly efficient encoding and decoding in neural populations
The efficient coding approach proposes that neural systems represent as much sensory information as biological constraints allow. It aims at formalizing encoding as a constrained optimal process. A different approach, that aims at formalizing decoding, proposes that neural systems instantiate a gene...
Uloženo v:
| Vydáno v: | bioRxiv |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Paper |
| Jazyk: | angličtina |
| Vydáno: |
Cold Spring Harbor Laboratory
04.05.2024
|
| Vydání: | 1.2 |
| Témata: | |
| ISSN: | 2692-8205 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The efficient coding approach proposes that neural systems represent as much sensory information as biological constraints allow. It aims at formalizing encoding as a constrained optimal process. A different approach, that aims at formalizing decoding, proposes that neural systems instantiate a generative model of the sensory world. Here, we put forth a normative framework that characterizes neural systems as jointly optimizing encoding and decoding. It takes the form of a variational autoencoder: sensory stimuli are encoded in the noisy activity of neurons to be interpreted by a flexible decoder; encoding must allow for an accurate stimulus reconstruction from neural activity. Jointly, neural activity is required to represent the statistics of latent features which are mapped by the decoder into distributions over sensory stimuli; decoding correspondingly optimizes the accuracy of the generative model. This framework yields in a family of encoding-decoding models, which result in equally accurate generative models, indexed by a measure of the stimulus-induced deviation of neural activity from the marginal distribution over neural activity. Each member of this family predicts a specific relation between properties of the sensory neurons—such as the arrangement of the tuning curve means (preferred stimuli) and widths (degrees of selectivity) in the population—as a function of the statistics of the sensory world. Our approach thus generalizes the efficient coding approach. Notably, here, the form of the constraint on the optimization derives from the requirement of an accurate generative model, while it is arbitrary in efficient coding models. Moreover, solutions do not require the knowledge of the stimulus distribution, but are learned on the basis of data samples; the constraint further acts as regularizer, allowing the model to generalize beyond the training data. Finally, we characterize the family of models we obtain through alternate measures of performance, such as the error in stimulus reconstruction. We find that a range of models admits comparable performance; in particular, a population of sensory neurons with broad tuning curves as observed experimentally yields both low reconstruction stimulus error and an accurate generative model that generalizes robustly to unseen data.
Our brain represents the sensory world in the activity of populations of neurons. Two theories have addressed the nature of these representations. The first theory—efficient coding—posits that neurons encode as much information as possible about sensory stimuli, subject to resource constraints such as limits on energy consumption. The second one—generative modeling—focuses on decoding, and is organized around the idea that neural activity plays the role of a latent variable from which sensory stimuli can be simulated. Our work subsumes the two approaches in a unifying framework based on the mathematics of variational autoencoders. Unlike in efficient coding, which assumes full knowledge of stimulus statistics, here representations are learned from examples, in a joint optimization of encoding and decoding. This new framework yields a range of optimal representations, corresponding to different models of neural selectivity and reconstruction performances, depending on the resource constraint. The form of the constraint is not arbitrary but derives from the optimization framework, and its strength tunes the ability of the model to generalize beyond the training example. Central to the approach, and to the nature of the representations it implies, is the interplay of encoding and decoding, itself central to brain processing. |
|---|---|
| AbstractList | The efficient coding approach proposes that neural systems represent as much sensory information as biological constraints allow. It aims at formalizing encoding as a constrained optimal process. A different approach, that aims at formalizing decoding, proposes that neural systems instantiate a generative model of the sensory world. Here, we put forth a normative framework that characterizes neural systems as jointly optimizing encoding and decoding. It takes the form of a variational autoencoder: sensory stimuli are encoded in the noisy activity of neurons to be interpreted by a flexible decoder; encoding must allow for an accurate stimulus reconstruction from neural activity. Jointly, neural activity is required to represent the statistics of latent features which are mapped by the decoder into distributions over sensory stimuli; decoding correspondingly optimizes the accuracy of the generative model. This framework yields in a family of encoding-decoding models, which result in equally accurate generative models, indexed by a measure of the stimulus-induced deviation of neural activity from the marginal distribution over neural activity. Each member of this family predicts a specific relation between properties of the sensory neurons—such as the arrangement of the tuning curve means (preferred stimuli) and widths (degrees of selectivity) in the population—as a function of the statistics of the sensory world. Our approach thus generalizes the efficient coding approach. Notably, here, the form of the constraint on the optimization derives from the requirement of an accurate generative model, while it is arbitrary in efficient coding models. Moreover, solutions do not require the knowledge of the stimulus distribution, but are learned on the basis of data samples; the constraint further acts as regularizer, allowing the model to generalize beyond the training data. Finally, we characterize the family of models we obtain through alternate measures of performance, such as the error in stimulus reconstruction. We find that a range of models admits comparable performance; in particular, a population of sensory neurons with broad tuning curves as observed experimentally yields both low reconstruction stimulus error and an accurate generative model that generalizes robustly to unseen data.
Our brain represents the sensory world in the activity of populations of neurons. Two theories have addressed the nature of these representations. The first theory—efficient coding—posits that neurons encode as much information as possible about sensory stimuli, subject to resource constraints such as limits on energy consumption. The second one—generative modeling—focuses on decoding, and is organized around the idea that neural activity plays the role of a latent variable from which sensory stimuli can be simulated. Our work subsumes the two approaches in a unifying framework based on the mathematics of variational autoencoders. Unlike in efficient coding, which assumes full knowledge of stimulus statistics, here representations are learned from examples, in a joint optimization of encoding and decoding. This new framework yields a range of optimal representations, corresponding to different models of neural selectivity and reconstruction performances, depending on the resource constraint. The form of the constraint is not arbitrary but derives from the optimization framework, and its strength tunes the ability of the model to generalize beyond the training example. Central to the approach, and to the nature of the representations it implies, is the interplay of encoding and decoding, itself central to brain processing. |
| Author | Woodford, Michael Malerba, Simone Blanco da Silveira, Rava Azeredo Micheli, Aurora |
| Author_xml | – sequence: 1 givenname: Simone Blanco orcidid: 0000-0002-4467-5988 surname: Malerba fullname: Malerba, Simone Blanco email: simone.bmalerba@gmail.com organization: Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf – sequence: 2 givenname: Aurora surname: Micheli fullname: Micheli, Aurora organization: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS,3 Sorbonne Université, Université de Paris – sequence: 3 givenname: Michael surname: Woodford fullname: Woodford, Michael organization: Department of Economics, Columbia University – sequence: 4 givenname: Rava Azeredo surname: da Silveira fullname: da Silveira, Rava Azeredo organization: Faculty of Science, University of Basel |
| BookMark | eNotT01LxDAUDKLguu4P8Jajl9aXr7fJwYMsfrLgRc8lbV4lUpPSdsX991Z3mcMwzDDMXLDTlBMxdiWgFALEjQSpSsBSitJoY7U9YQuJThZWgjlnq3H8BADpUKi1XrDblxzT1O05tW1sIqWJU2pyiOmD-xR4oKOIiSfaDb7jfe53nZ9iTuMlO2t9N9LqyEv2_nD_tnkqtq-Pz5u7bVHPm2xhTa2BZBNw3ZI0jXA4IyirwXmPNZI3rhZ2jljjkPDfFmpeqRRaUkt2feitYx5-4nfVD_HLD_vq720FWElRHd6qX8LqSt8 |
| Cites_doi | 10.1162/neco.1995.7.5.889 10.1038/s41467-022-35659-7 10.1073/pnas.1918386117/-/DCSupplemental.y 10.1162/089976699300016809 10.1038/s41467-021-26751-5 10.1101/2022.12.12.519538 10.1016/j.neuron.2016.09.038 10.1162/NECOa00804 10.1515/znc-1981-9-1040 10.1101/399246 10.1038/nn.2901 10.48550/arXiv.1312.6114 10.1007/BF00188924 10.1126/science.1195870 10.1007/BF00962720 10.48550/arXiv.1602.02282 10.1109/TPAMI.2017.2784440 10.1371/journal.pcbi.1008146 10.1038/nn.4105 10.1073/pnas.1004906107/-/DCSupplemental 10.1038/360068a0 10.1038/s41562-023-01584-y 10.1162/089976698300017115 10.1101/2020.05.29.124453 10.1523/JNEUROSCI.1032-14.2014 10.1162/089976698300017818 10.48550/arXiv.1401.4082 10.1101/2022.01.06.475186 10.1038/nature23020 10.48550/arXiv.1609.02200 10.1016/j.cobeha.2019.03.004 10.1371/journal.pcbi.1007476 10.48550/arXiv.1412.6980 10.1038/nn1790 10.1097/00006324-192711000-00011 10.1146/annurev-neuro-120320-082744 10.1038/nature04701 10.1162/neco.2008.03-07-486 10.1073/pnas.90.22.10749 10.7551/mitpress/9780262518420.003.0013 10.1038/236 10.1162/08997660260293247 10.1038/nature02768 10.1038/s41593-023-01458-6 10.1162/neco.1990.2.3.308 10.48550/arXiv.1906.00331 10.1162/NECOa00638 10.1007/s10957-009-9522-7 10.1111/j.2517-6161.1983.tb01251.x 10.1101/178418 10.1038/nn831 10.1364/JOSAA.20.001434 10.1038/s41593-019-0554-5 10.1097/00004647-200110000-00001 10.1038/381607a0 10.1016/j.neuron.2016.03.020 10.1561/2200000056 |
| ContentType | Paper |
| Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2023.06.21.545848 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.2 |
| ExternalDocumentID | 2023.06.21.545848v2 |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
| ID | FETCH-LOGICAL-b1108-85b40e2cd67fe25c196969d38409aa6b6ea59b18e2c8596e66969d132963368e3 |
| IngestDate | Tue Jan 07 18:51:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b1108-85b40e2cd67fe25c196969d38409aa6b6ea59b18e2c8596e66969d132963368e3 |
| Notes | Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-4467-5988 |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2023.06.21.545848 |
| PageCount | 49 |
| ParticipantIDs | biorxiv_primary_2023_06_21_545848 |
| PublicationCentury | 2000 |
| PublicationDate | 20240504 |
| PublicationDateYYYYMMDD | 2024-05-04 |
| PublicationDate_xml | – month: 5 year: 2024 text: 20240504 day: 4 |
| PublicationDecade | 2020 |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory |
| References | Gjorgjieva, Meister, Sompolinsky (2023.06.21.545848v2.35) 2019; 15 Barlow (2023.06.21.545848v2.1) 1961; 1 Hahn, Wei (2023.06.21.545848v2.60) 2022 Hoyer, Hyvärinen (2023.06.21.545848v2.22) 2003; 15 Wei, Stocker (2023.06.21.545848v2.58) 2016; 28 Csikor, Meszéna, Szabó, Orbán (2023.06.21.545848v2.18) 2022 Schaffner, Bao, Tobler, Hare, Polania (2023.06.21.545848v2.30) 2023; 7 Dayan, Abbott (2023.06.21.545848v2.15) 2001 Sharpee, Berkowitz (2023.06.21.545848v2.45) 2019; 29 Jang, Gu, Poole (2023.06.21.545848v2.82) 2016 Orbán, Berkes, Fiser, Lengyel (2023.06.21.545848v2.17) 2016; 92 Lewicki (2023.06.21.545848v2.6) 2002; 5 Attwell, Laughlin (2023.06.21.545848v2.9) 2001; 21 Sønderby, Raiko, Maaløe, Sønderby, Winther (2023.06.21.545848v2.46) 2016; 30 Ma, Beck, Latham, Pouget (2023.06.21.545848v2.73) 2006; 9 Zemel, Dayan, Pouget (2023.06.21.545848v2.20) 1998; 10 Achille, Soatto (2023.06.21.545848v2.50) 2018; 40 Bozkurt, Esmaeili, Tristan, Brooks, Dy, van de Meent (2023.06.21.545848v2.70) 2021; 130 Arrow, Azawa, Hurwicz, Uzawa, Chenery, Johnson (2023.06.21.545848v2.80) 1958; 2 Tkačik, Prentice, Balasubramanian, Schneidman (2023.06.21.545848v2.37) 2010; 107 Kingma, Ba (2023.06.21.545848v2.48) 2015; 3 Barello, Charles, Pillow (2023.06.21.545848v2.26) 2018 Wei, Stocker (2023.06.21.545848v2.33) 2012; 7552 Laughlin (2023.06.21.545848v2.2) 1981; 36 Haefner, Berkes, Fiser (2023.06.21.545848v2.72) 2016; 90 van Hateren (2023.06.21.545848v2.5) 1992; 360 Benjamin, Zhang, Qiu, Stocker, Kording (2023.06.21.545848v2.27) 2022; 13 Wang, Stocker, Lee (2023.06.21.545848v2.29) 2012; 25 Ganguli, Simoncelli (2023.06.21.545848v2.57) 2016 Aridor, Grechi, Woodford (2023.06.21.545848v2.67) 2020 Ganguli, Simoncelli (2023.06.21.545848v2.10) 2014; 26 Zhaoping (2023.06.21.545848v2.7) 2014 Higgins, Chang, Langston, Hassabis, Summerfield, Tsao (2023.06.21.545848v2.66) 2021; 12 Boyd, Boyd, Vandenberghe (2023.06.21.545848v2.78) 2004 Rezende, Mohamed, Wierstra (2023.06.21.545848v2.24) 2014; 31 Bethge, Rotermund, Pawelzik (2023.06.21.545848v2.51) 2002; 14 Lin, Jin, Jordan (2023.06.21.545848v2.79) 2020; 37 Dayan, Hinton, Neal, Zemel (2023.06.21.545848v2.14) 1995; 7 Von Helmholtz (2023.06.21.545848v2.13) 1927; 4 van Hateren (2023.06.21.545848v2.4) 1992; 171 Wainwright, Simoncelli (2023.06.21.545848v2.16) 1999; 12 Yerxa, Kee, DeWeese, Cooper (2023.06.21.545848v2.56) 2020; 16 Rolfe (2023.06.21.545848v2.83) 2016 Walker, Cotton, Ma, Tolias (2023.06.21.545848v2.39) 2020; 23 Kingma, Welling (2023.06.21.545848v2.23) 2014; 2 Azeredo da Silveira, Rieke (2023.06.21.545848v2.42) 2021; 44 Moore (2023.06.21.545848v2.61) 1973; 54 Zhao, Ren, Yuan, Song, Goodman, Ermon (2023.06.21.545848v2.69) 2018; 32 Nedić, Ozdaglar (2023.06.21.545848v2.77) 2009; 142 Higgins, Matthey, Pal, Burgess, Glorot, Botvinick (2023.06.21.545848v2.47) 2017; 5 Rozell, Johnson, Baraniuk, Olshausen (2023.06.21.545848v2.63) 2008; 20 Schneidman, Berry, Segev, Bialek (2023.06.21.545848v2.36) 2006; 440 Panzeri, Moroni, Safaai, Harvey (2023.06.21.545848v2.43) 2022; 23 Maddison, Mnih, Teh (2023.06.21.545848v2.81) 2016 Dechant, Sasa (2023.06.21.545848v2.76) 2020; 117 Vertes, Sahani (2023.06.21.545848v2.19) 2018; 31 Blanco Malerba, Pieropan, Burak, Azeredo da Silveira (2023.06.21.545848v2.53) 2022 Morais, Pillow (2023.06.21.545848v2.59) 2018; 31 Atick, Redlich (2023.06.21.545848v2.3) 1990; 2 Wei, Stocker (2023.06.21.545848v2.55) 2015; 18 Laughlin, de Ruyter van Steveninck, Anderson (2023.06.21.545848v2.8) 1998; 1 Zhang, Sejnowski (2023.06.21.545848v2.75) 1999; 11 Lee, Mumford (2023.06.21.545848v2.21) 2003; 20 Brunel, Nadal (2023.06.21.545848v2.31) 1998; 10 Aitchison, Hennequin, Lengyel (2023.06.21.545848v2.65) 2018 Seung, Sompolinsky (2023.06.21.545848v2.74) 1993; 90 Wei, Stocker (2023.06.21.545848v2.54) 2012; 25 Shu, Bui, Zhao, Kochenderfer, Ermon (2023.06.21.545848v2.68) 2018; 231 Kingma, Welling (2023.06.21.545848v2.25) 2019; 12 Goodfellow, Bengio, Courville (2023.06.21.545848v2.41) 2016 Salinas, Abbott (2023.06.21.545848v2.44) 1994; 1 Alemi, Poole, Fischer, Dillon, Saurous, Murphy (2023.06.21.545848v2.28) 2018; 35 Dalal, Hall (2023.06.21.545848v2.40) 1983; 45 Harper, McAlpine (2023.06.21.545848v2.32) 2004; 430 Runyan, Piasini, Panzeri, Harvey (2023.06.21.545848v2.38) 2017; 548 Prat-Carrabin, Woodford (2023.06.21.545848v2.12) 2021; 34 Gjorgjieva, Sompolinsky, Meister (2023.06.21.545848v2.34) 2014; 34 Olshausen, Field (2023.06.21.545848v2.64) 1996; 381 Sreenivasan, Fiete (2023.06.21.545848v2.52) 2011; 14 Tomczak, Welling (2023.06.21.545848v2.49) 2017 Lange, Shivkumar, Chattoraj, Haefner (2023.06.21.545848v2.62) 2023; 26 Berkes, Orbán, Lengyel, Fiser (2023.06.21.545848v2.71) 2011; 331 Park, Pillow (2023.06.21.545848v2.11) 2020 |
| References_xml | – volume: 7 start-page: 889 issue: 5 year: 1995 end-page: 904 ident: 2023.06.21.545848v2.14 article-title: The Helmholtz Machine publication-title: Neural Computation doi: 10.1162/neco.1995.7.5.889 – volume: 35 year: 2018 ident: 2023.06.21.545848v2.28 article-title: Fixing a Broken ELBO publication-title: International Conference on Machine Learning – volume: 13 issue: 1 year: 2022 ident: 2023.06.21.545848v2.27 article-title: Efficient neural codes naturally emerge through gradient descent learning publication-title: Nature Communications doi: 10.1038/s41467-022-35659-7 – volume: 117 start-page: 6430 issue: 12 year: 2020 end-page: 6436 ident: 2023.06.21.545848v2.76 article-title: Fluctuation-response inequality out of equilibrium publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1918386117/-/DCSupplemental.y – volume: 231 start-page: 4393 year: 2018 end-page: 4402 ident: 2023.06.21.545848v2.68 article-title: Amortized Inference Regularization publication-title: Advances in Neural Information Processing Systems – year: 2016 ident: 2023.06.21.545848v2.57 article-title: Neural and perceptual signatures of efficient sensory coding publication-title: arXiv preprint – volume: 11 start-page: 75 issue: 1 year: 1999 end-page: 84 ident: 2023.06.21.545848v2.75 article-title: Neuronal Tuning: To Sharpen or Broaden? publication-title: Neural Computation doi: 10.1162/089976699300016809 – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 14 ident: 2023.06.21.545848v2.66 article-title: Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons publication-title: Nature Communications doi: 10.1038/s41467-021-26751-5 – volume: 15 start-page: 293 year: 2003 end-page: 300 ident: 2023.06.21.545848v2.22 article-title: Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior publication-title: Advances in Neural Information Processing Systems – year: 2022 ident: 2023.06.21.545848v2.60 article-title: A unifying theory explains seemingly contradicting biases in perceptual estimation publication-title: bioRxiv doi: 10.1101/2022.12.12.519538 – volume: 92 start-page: 530 issue: 2 year: 2016 end-page: 543 ident: 2023.06.21.545848v2.17 article-title: Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex publication-title: Neuron doi: 10.1016/j.neuron.2016.09.038 – volume: 28 start-page: 305 issue: 2 year: 2016 end-page: 326 ident: 2023.06.21.545848v2.58 article-title: Mutual information, fisher information, and efficient coding publication-title: Neural Computation doi: 10.1162/NECOa00804 – volume: 36 start-page: 910 issue: 9-10 year: 1981 end-page: 912 ident: 2023.06.21.545848v2.2 article-title: A simple coding procedure enhances a neuron’s information capacity publication-title: Zeitschrift für Naturforschung doi: 10.1515/znc-1981-9-1040 – start-page: 399246 year: 2018 ident: 2023.06.21.545848v2.26 article-title: Sparse-Coding Variational Auto-Encoders publication-title: bioRxiv doi: 10.1101/399246 – volume: 14 start-page: 1330 issue: 10 year: 2011 end-page: 1337 ident: 2023.06.21.545848v2.52 article-title: Grid cells generate an analog error-correcting code for singularly precise neural computation publication-title: Nature Neuroscience doi: 10.1038/nn.2901 – volume: 25 start-page: 1304 year: 2012 end-page: 1312 ident: 2023.06.21.545848v2.54 article-title: Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference publication-title: Advances in Neural Information Processing Systems – year: 2016 ident: 2023.06.21.545848v2.82 article-title: Categorical reparameterization with gumbel-softmax publication-title: arXiv preprint – volume: 2 year: 2014 ident: 2023.06.21.545848v2.23 article-title: Auto-Encoding Variational Bayes publication-title: International Conference on Learning Representations doi: 10.48550/arXiv.1312.6114 – volume: 130 start-page: 3880 year: 2021 end-page: 3888 ident: 2023.06.21.545848v2.70 article-title: Rate-Regularization and Generalization in Variational Autoencoders publication-title: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics – volume: 171 start-page: 157 issue: 2 year: 1992 end-page: 170 ident: 2023.06.21.545848v2.4 article-title: Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation publication-title: Journal of Comparative Physiology A doi: 10.1007/BF00188924 – volume: 331 start-page: 83 issue: 6013 year: 2011 end-page: 88 ident: 2023.06.21.545848v2.71 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science doi: 10.1126/science.1195870 – volume: 1 start-page: 89 issue: 1 year: 1994 end-page: 107 ident: 2023.06.21.545848v2.44 article-title: Vector reconstruction from firing rates publication-title: Journal of Computational Neuroscience doi: 10.1007/BF00962720 – volume: 30 start-page: 3745 year: 2016 end-page: 3753 ident: 2023.06.21.545848v2.46 article-title: Ladder Variational Autoencoders publication-title: Advances in Neural Information Processing Systems doi: 10.48550/arXiv.1602.02282 – volume: 40 start-page: 2897 issue: 12 year: 2018 end-page: 2905 ident: 2023.06.21.545848v2.50 article-title: Information Dropout: Learning Optimal Representations Through Noisy Computation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2784440 – year: 2004 ident: 2023.06.21.545848v2.78 publication-title: Convex optimization – volume: 16 start-page: e1008146 issue: 9 year: 2020 ident: 2023.06.21.545848v2.56 article-title: Efficient sensory coding of multidimensional stimuli publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1008146 – volume: 18 start-page: 1509 issue: 10 year: 2015 end-page: 1517 ident: 2023.06.21.545848v2.55 article-title: A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts publication-title: Nature Neuroscience doi: 10.1038/nn.4105 – volume: 107 start-page: 14419 issue: 32 year: 2010 end-page: 14424 ident: 2023.06.21.545848v2.37 article-title: Optimal population coding by noisy spiking neurons publication-title: PNAS doi: 10.1073/pnas.1004906107/-/DCSupplemental – year: 2022 ident: 2023.06.21.545848v2.18 article-title: Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder publication-title: arXiv preprint – volume: 54 start-page: 610 issue: 3 year: 1973 end-page: 619 ident: 2023.06.21.545848v2.61 article-title: Frequency difference limens for short-duration tones publication-title: The Journal of the Acoustical Society of America – volume: 360 start-page: 68 issue: 6399 year: 1992 end-page: 70 ident: 2023.06.21.545848v2.5 article-title: Real and optimal neural images in early vision publication-title: Nature doi: 10.1038/360068a0 – volume: 7 start-page: 1135 issue: 7 year: 2023 end-page: 1151 ident: 2023.06.21.545848v2.30 article-title: Sensory perception relies on fitness-maximizing codes publication-title: Nature Human Behaviour doi: 10.1038/s41562-023-01584-y – volume: 10 start-page: 1731 issue: 7 year: 1998 end-page: 1757 ident: 2023.06.21.545848v2.31 article-title: Mutual Information, Fisher Information, and Population Coding publication-title: Neural Computation doi: 10.1162/089976698300017115 – start-page: 2020 year: 2020 ident: 2023.06.21.545848v2.67 article-title: Adaptive Efficient Coding: A Variational Auto-encoder Approach publication-title: bioRxiv doi: 10.1101/2020.05.29.124453 – volume: 34 start-page: 12127 issue: 36 year: 2014 end-page: 12144 ident: 2023.06.21.545848v2.34 article-title: Benefits of pathway splitting in sensory coding publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1032-14.2014 – volume: 10 start-page: 403 issue: 2 year: 1998 end-page: 430 ident: 2023.06.21.545848v2.20 article-title: Probabilistic Interpretation of Population Codes publication-title: Neural Computation doi: 10.1162/089976698300017818 – volume: 31 start-page: 1278 year: 2014 end-page: 1286 ident: 2023.06.21.545848v2.24 article-title: Stochastic backpropagation and approximate inference in deep generative models publication-title: International conference on machine learning doi: 10.48550/arXiv.1401.4082 – start-page: 2022 year: 2022 ident: 2023.06.21.545848v2.53 article-title: Random Compressed Coding with Neurons publication-title: bioRxiv doi: 10.1101/2022.01.06.475186 – year: 2018 ident: 2023.06.21.545848v2.65 article-title: Sampling-based probabilistic inference emerges from learning in neural circuits with a cost on reliability publication-title: arXiv preprint – volume: 34 start-page: 23793 year: 2021 end-page: 23805 ident: 2023.06.21.545848v2.12 article-title: Bias and variance of the Bayesian-mean decoder publication-title: Advances in Neural Information Processing Systems – volume: 548 start-page: 92 issue: 7665 year: 2017 end-page: 96 ident: 2023.06.21.545848v2.38 article-title: Distinct timescales of population coding across cortex publication-title: Nature doi: 10.1038/nature23020 – year: 2016 ident: 2023.06.21.545848v2.83 article-title: Discrete Variational Autoencoders publication-title: arXiv preprint doi: 10.48550/arXiv.1609.02200 – volume: 29 start-page: 37 year: 2019 end-page: 44 ident: 2023.06.21.545848v2.45 article-title: Linking neural responses to behavior with information-preserving population vectors publication-title: Current Opinion in Behavioral Sciences doi: 10.1016/j.cobeha.2019.03.004 – volume: 31 start-page: 5071 year: 2018 end-page: 5080 ident: 2023.06.21.545848v2.59 article-title: Power-law efficient neural codes provide general link between perceptual bias and discriminability publication-title: Advances in Neural Information Processing Systems – year: 2014 ident: 2023.06.21.545848v2.7 publication-title: Theory, Models, and Data – volume: 15 start-page: 1 issue: 11 year: 2019 end-page: 38 ident: 2023.06.21.545848v2.35 article-title: Functional diversity among sensory neurons from efficient coding principles publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1007476 – volume: 3 year: 2015 ident: 2023.06.21.545848v2.48 article-title: Adam: A Method for Stochastic Optimization publication-title: International Conference on Learning Representations doi: 10.48550/arXiv.1412.6980 – year: 2016 ident: 2023.06.21.545848v2.81 article-title: The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables publication-title: arXiv preprint – volume: 25 year: 2012 ident: 2023.06.21.545848v2.29 article-title: Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum L p Loss publication-title: Advances in neural information processing systems – volume: 9 start-page: 1432 issue: 11 year: 2006 end-page: 1438 ident: 2023.06.21.545848v2.73 article-title: Bayesian inference with probabilistic population codes publication-title: Nature Neuroscience doi: 10.1038/nn1790 – volume: 4 issue: 11 year: 1927 ident: 2023.06.21.545848v2.13 article-title: Helmholtz’s treatise on physiological optics publication-title: Optometry and Vision Science doi: 10.1097/00006324-192711000-00011 – volume: 23 start-page: 551 issue: 9 year: 2022 end-page: 567 ident: 2023.06.21.545848v2.43 article-title: The structures and functions of correlations in neural population codes publication-title: Nature Reviews Neuroscience – volume: 31 start-page: 4166 year: 2018 end-page: 4175 ident: 2023.06.21.545848v2.19 article-title: Flexible and accurate inference and learning for deep generative models publication-title: Advances in Neural Information Processing Systems – volume: 5 year: 2017 ident: 2023.06.21.545848v2.47 article-title: beta-VAE: Learning basic visual concepts with a constrained variational framework publication-title: International Conference on Learning Representations – start-page: 1214 year: 2017 end-page: 1223 ident: 2023.06.21.545848v2.49 article-title: VAE with a VampPrior publication-title: International Conference on Artificial Intelligence and Statistics – volume: 44 start-page: 403 year: 2021 end-page: 424 ident: 2023.06.21.545848v2.42 article-title: The Geometry of Information Coding in Correlated Neural Populations publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-120320-082744 – volume: 440 start-page: 1007 issue: 7087 year: 2006 end-page: 1012 ident: 2023.06.21.545848v2.36 article-title: Weak pairwise correlations imply strongly correlated network states in a neural population publication-title: Nature doi: 10.1038/nature04701 – volume: 20 start-page: 2526 issue: 10 year: 2008 end-page: 2563 ident: 2023.06.21.545848v2.63 article-title: Sparse coding via thresholding and local competition in neural circuits publication-title: Neural Computation doi: 10.1162/neco.2008.03-07-486 – volume: 90 start-page: 10749 issue: 22 year: 1993 end-page: 10753 ident: 2023.06.21.545848v2.74 article-title: Simple models for reading neuronal population codes publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.90.22.10749 – volume: 1 start-page: 216 issue: 1 year: 1961 end-page: 234 ident: 2023.06.21.545848v2.1 article-title: Possible Principles Underlying the Transformations of Sensory Messages publication-title: Sensory Communication doi: 10.7551/mitpress/9780262518420.003.0013 – volume: 1 start-page: 36 issue: 1 year: 1998 end-page: 41 ident: 2023.06.21.545848v2.8 article-title: The metabolic cost of neural information publication-title: Nature Neuroscience doi: 10.1038/236 – volume: 14 start-page: 2317 issue: 10 year: 2002 end-page: 2351 ident: 2023.06.21.545848v2.51 article-title: Optimal Short-Term Population Coding: When Fisher Information Fails publication-title: Neural Computation doi: 10.1162/08997660260293247 – volume: 430 start-page: 682 issue: 7000 year: 2004 end-page: 686 ident: 2023.06.21.545848v2.32 article-title: Optimal neural population coding of an auditory spatial cue publication-title: Nature doi: 10.1038/nature02768 – volume: 26 start-page: 2063 issue: 12 year: 2023 end-page: 2072 ident: 2023.06.21.545848v2.62 article-title: Bayesian encoding and decoding as distinct perspectives on neural coding publication-title: Nature Neuroscience doi: 10.1038/s41593-023-01458-6 – volume: 2 year: 1958 ident: 2023.06.21.545848v2.80 publication-title: Studies in linear and non-linear programming – volume: 2 start-page: 308 issue: 3 year: 1990 end-page: 320 ident: 2023.06.21.545848v2.3 article-title: Towards a Theory of Early Visual Processing publication-title: Neural Computation doi: 10.1162/neco.1990.2.3.308 – volume: 32 year: 2018 ident: 2023.06.21.545848v2.69 article-title: Bias and Generalization in Deep Generative Models: An Empirical Study publication-title: Advances in Neural Information Processing Systems – volume: 37 year: 2020 ident: 2023.06.21.545848v2.79 article-title: On gradient descent ascent for nonconvex-concave minimax problems publication-title: International Conference on Machine Learning doi: 10.48550/arXiv.1906.00331 – volume: 26 start-page: 2103 issue: 10 year: 2014 end-page: 2134 ident: 2023.06.21.545848v2.10 article-title: Efficient Sensory Encoding and Bayesian Inference with Heterogeneous Neural Populations publication-title: Neural Computation doi: 10.1162/NECOa00638 – volume: 142 start-page: 205 issue: 1 year: 2009 end-page: 228 ident: 2023.06.21.545848v2.77 article-title: Subgradient methods for saddle-point problems publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-009-9522-7 – volume: 45 issue: 2 year: 1983 ident: 2023.06.21.545848v2.40 article-title: Approximating Priors by Mixtures of Natural Conjugate Priors publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1983.tb01251.x – start-page: 178418 year: 2020 ident: 2023.06.21.545848v2.11 article-title: Bayesian Efficient Coding publication-title: bioRxiv doi: 10.1101/178418 – volume: 7552 start-page: 523 year: 2012 end-page: 530 ident: 2023.06.21.545848v2.33 article-title: Bayesian inference with efficient neural population codes publication-title: In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 5 start-page: 356 issue: 4 year: 2002 end-page: 363 ident: 2023.06.21.545848v2.6 article-title: Efficient coding of natural sounds publication-title: Nature Neuroscience doi: 10.1038/nn831 – volume: 20 start-page: 1434 issue: 7 year: 2003 end-page: 1448 ident: 2023.06.21.545848v2.21 article-title: Hierarchical Bayesian inference in the visual cortex publication-title: JOSA A doi: 10.1364/JOSAA.20.001434 – volume: 23 start-page: 122 issue: 1 year: 2020 end-page: 129 ident: 2023.06.21.545848v2.39 article-title: A neural basis of probabilistic computation in visual cortex publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0554-5 – year: 2001 ident: 2023.06.21.545848v2.15 publication-title: Computational and Mathematical Modeling of Neural Systems – year: 2016 ident: 2023.06.21.545848v2.41 publication-title: Deep learning – volume: 21 start-page: 1133 issue: 10 year: 2001 end-page: 1145 ident: 2023.06.21.545848v2.9 article-title: An energy budget for signaling in the grey matter of the brain publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1097/00004647-200110000-00001 – volume: 381 start-page: 607 issue: 6583 year: 1996 end-page: 609 ident: 2023.06.21.545848v2.64 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 90 start-page: 649 issue: 3 year: 2016 end-page: 660 ident: 2023.06.21.545848v2.72 article-title: Perceptual Decision-Making as Probabilistic Inference by Neural Sampling publication-title: Neuron doi: 10.1016/j.neuron.2016.03.020 – volume: 12 start-page: 307 issue: 4 year: 2019 end-page: 392 ident: 2023.06.21.545848v2.25 article-title: An introduction to variational autoencoders publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000056 – volume: 12 start-page: 855 year: 1999 end-page: 861 ident: 2023.06.21.545848v2.16 article-title: Scale mixtures of Gaussians and the statistics of natural images publication-title: Advances in Neural Information Processing Systems |
| SSID | ssj0002961374 |
| Score | 1.721186 |
| SecondaryResourceType | preprint |
| Snippet | The efficient coding approach proposes that neural systems represent as much sensory information as biological constraints allow. It aims at formalizing... |
| SourceID | biorxiv |
| SourceType | Open Access Repository |
| SubjectTerms | Neuroscience |
| Title | Jointly efficient encoding and decoding in neural populations |
| URI | https://www.biorxiv.org/content/10.1101/2023.06.21.545848 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZLtoXe2rSlTR-40Nvidi3bsnRMQkJow7KkacnNyJYWDMZanI3Z5Nfnk_xY0-SQHnoRtiTLSN8gzYzmQchXmVEwoSvuKxEyP8IR4oOUIx9nI1_FcZLPXY6lP-fJYsGvrsRyMvnZ-8I0ZVJVfLsV6_8KNeoAtnWd_Qe4h0FRgWeAjhKwo3wS8D9MUW3KW2upUThvx5mNVal6Z0Slu5eimtlgltYTa0jidT3mVbPCXGyLZqezLgGB4zV_AWAwp0clSMYM7c6o1BkHHN7Upt7t98ao3oR-bKVvzWclxiobXdQtDysbOTu8s-lDzVgdQSNn_LdTRx6bEnyy00laNyTQ8ey8pWbTmTVrt7lRJkAV1LlcP7KNu_QBNrO7Da5Kg2_2eq-NyPlXdOwHfRqcx1OaxAJb3PToZLG8GFRuVIB3SaLubhv_-P7ga0hBWNwaizviMi5fkulSrnX9ikx0tU-et2lCb1-THlJvgNTrIfUAqddD6hWV10LqjSB9Q36fnlwen_ld2gs_sz4ZPo-zaK5prliy0jTOXQAjoUIrikvJMqZlLLKAowuPBdPMNQchpheGjOvwLdmrQAXviAdpWSdJQOdZpCLJId3muaLophhTUoTvyZduuum6DW6S2iVJ5yylQdouycET-nwgL3a08JHsbeob_Yk8y5tNcV1_7nC4ByN8QEc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+efficient+encoding+and+decoding+in+neural+populations&rft.jtitle=bioRxiv&rft.au=Malerba%2C+Simone+Blanco&rft.au=Micheli%2C+Aurora&rft.au=Woodford%2C+Michael&rft.au=da+Silveira%2C+Rava+Azeredo&rft.date=2024-05-04&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.06.21.545848&rft.externalDocID=2023.06.21.545848v2 |