Marangoni-like tissue flows enhance symmetry breaking of embryonic organoids

During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the later body plan is defined. Several signaling pathways are known to control body axis formation. Here, we show, however, that also tissue mechani...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Gsell, Simon, Tlili, Sham, Merkel, Matthias, Lenne, Pierre-François
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Laboratory 11.03.2025
Vydanie:1.2
Predmet:
ISSN:2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the later body plan is defined. Several signaling pathways are known to control body axis formation. Here, we show, however, that also tissue mechanics plays an important role during this process. We focus on the emergence of a primary axis in initially spherical aggregates of mouse embryonic stem cells, which mirrors events in the early mouse embryo. These aggregates break rotational symmetry to establish an axial organization with domains of different expression profiles, e.g. of the transcription factor T/Bra and the adhesion molecule E-cadherin. Combining quantitative microscopy and physical modeling, we identify large-scale tissue flows with a recirculation component and demonstrate that they significantly contribute to symmetry breaking. We show that the recirculating flows are explained by a difference in tissue surface tension across domains, akin to Marangoni flows, which we further confirm by aggregate fusion experiments. Our work highlights that body axis formation is not only driven by biochemical processes, but that it can also be amplified by tissue flows. We expect that this type of amplification may operate in many other organoid and in-vivo systems.
AbstractList During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the later body plan is defined. Several signaling pathways are known to control body axis formation. Here, we show, however, that also tissue mechanics plays an important role during this process. We focus on the emergence of a primary axis in initially spherical aggregates of mouse embryonic stem cells, which mirrors events in the early mouse embryo. These aggregates break rotational symmetry to establish an axial organization with domains of different expression profiles, e.g. of the transcription factor T/Bra and the adhesion molecule E-cadherin. Combining quantitative microscopy and physical modeling, we identify large-scale tissue flows with a recirculation component and demonstrate that they significantly contribute to symmetry breaking. We show that the recirculating flows are explained by a difference in tissue surface tension across domains, akin to Marangoni flows, which we further confirm by aggregate fusion experiments. Our work highlights that body axis formation is not only driven by biochemical processes, but that it can also be amplified by tissue flows. We expect that this type of amplification may operate in many other organoid and in-vivo systems.
Author Merkel, Matthias
Gsell, Simon
Lenne, Pierre-François
Tlili, Sham
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0003-4195-7792
  surname: Gsell
  fullname: Gsell, Simon
  email: simon.gsell@univ-amu.fr
  organization: Aix Marseille Univ, CNRS, Centrale Med, IRPHE (UMR 7342), Turing Centre for Living Systems
– sequence: 2
  givenname: Sham
  orcidid: 0000-0001-6018-9923
  surname: Tlili
  fullname: Tlili, Sham
  organization: Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems
– sequence: 3
  givenname: Matthias
  orcidid: 0000-0001-9118-1270
  surname: Merkel
  fullname: Merkel, Matthias
  organization: Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems
– sequence: 4
  givenname: Pierre-François
  orcidid: 0000-0003-1066-7506
  surname: Lenne
  fullname: Lenne, Pierre-François
  organization: Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living systems
BookMark eNotj71OwzAURi0EEqX0Adg8siRcX8eJM6IKKFIRC8yRnVwX08ZGdvnJ21NUpjN9R9-5YKchBmLsSkApBIgbBJQltCViqVQLIE_YDOsWC42gztki53cAwLYWsqlmbP1kkgmbGHyx81vie5_zJ3G3i9-ZU3gzoSeep3GkfZq4TWS2Pmx4dJxGm6bDrucxbUyIfsiX7MyZXabFP-fs9f7uZbkq1s8Pj8vbdWEPF2VRO6ugqhTooeq1qlzf1FYLC6pRvaNGg5Fu0EaDFqLXiDUJQo3t4HAgknLOro9e62P68V_dR_KjSVP3F99B2yF2x3j5C5AiUWE
Cites_doi 10.1101/2023.01.27.525895
10.1038/s41586-020-2024-3
10.1016/j.stem.2023.04.018
10.1101/2022.08.01.502159
ContentType Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2023.09.22.559003
DatabaseName bioRxiv
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2023.09.22.559003v2
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b1103-6fb5044508d4c854fc76b81b0575cfe780a3fd8a80811c8226e1e2829df2dee33
IngestDate Tue Jan 07 18:53:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b1103-6fb5044508d4c854fc76b81b0575cfe780a3fd8a80811c8226e1e2829df2dee33
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-4195-7792
0000-0001-6018-9923
0000-0003-1066-7506
0000-0001-9118-1270
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.09.22.559003
PageCount 13
ParticipantIDs biorxiv_primary_2023_09_22_559003
PublicationCentury 2000
PublicationDate 2025-03-11
PublicationDateYYYYMMDD 2025-03-11
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-11
  day: 11
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Mongera, Rowghanian, Gustafson, Shelton, Kealhofer, Carn, Serwane, Lucio, Giammona, Campàs (2023.09.22.559003v2.54) 2018; 561
Townes, Holtfreter (2023.09.22.559003v2.42) 1955; 128
de Jong, Adegeest, Bérenger-Currias, Mircea, Merks, Semrau (2023.09.22.559003v2.47) 2023
van den Brink, Baillie-Johnson, Balayo, Hadjantonakis, Nowotschin, Turner, Martinez Arias (2023.09.22.559003v2.6) 2014; 141
Beccari, Moris, Girgin, Turner, Baillie-Johnson, Cossy, Lutolf, Duboule, Arias (2023.09.22.559003v2.7) 2018; 562
Manning, Foty, Steinberg, Schoetz (2023.09.22.559003v2.45) 2010; 107
Stirbat, Mgharbel, Bodennec, Ferri, Mertani, Rieu, Delanoë-Ayari (2023.09.22.559003v2.50) 2013; 8
van den Brink, Alemany, van Batenburg, Moris, Blotenburg, Vivié, Baillie-Johnson, Nichols, Sonnen, Martinez Arias, van Oudenaarden (2023.09.22.559003v2.8) 2020
Underhill, Toettcher (2023.09.22.559003v2.27) 2023
Harris (2023.09.22.559003v2.44) 1976; 61
Flenner, Janosi, Barz, Neagu, Forgacs, Kosztin (2023.09.22.559003v2.38) 2012; 85
Oriola, Marin-Riera, Anlaş, Gritti, Sanaki-Matsumiya, Aalderink, Ebisuya, Sharpe, Trivedi (2023.09.22.559003v2.39) 2022; 18
Saadaoui, Rocancourt, Roussel, Corson, Gros (2023.09.22.559003v2.24) 2020; 367
Dominguez, Krup, Muncie, Bruneau (2023.09.22.559003v2.3) 2022
Turner, Girgin, Alonso-Crisostomo, Trivedi, Baillie-Johnson, Glodowski, Hayward, Collignon, Gustavsen, Serup (2023.09.22.559003v2.26) 2017; 144
Rozbicki, Chuai, Karjalainen, Song, Sang, Martin, Knölker, Macdonald, Weijer (2023.09.22.559003v2.19) 2015; 17
Tlili, Yin, Rupprecht, Mendieta-Serrano, Weissbart, Verma, Teng, Toyama, Prost, Saunders (2023.09.22.559003v2.22) 2019; 116
Rossi, Broguiere, Miyamoto, Boni, Guiet, Girgin, Kelly, Kwon, Lutolf (2023.09.22.559003v2.15) 2021; 28
van den Brink, Alemany, van Batenburg, Moris, Blotenburg, Vivie, Baillie-Johnson, Nichols, Sonnen, Martinez Arias (2023.09.22.559003v2.12) 2020; 582
Veenvliet, Bolondi, Kretzmer, Haut, Scholze-Wittler, Schifferl, Koch, Guignard, Kumar, Pustet (2023.09.22.559003v2.13) 2020; 370
Maitre, Berthoumieux, Krens, Salbreux, Julicher, Paluch, Heisenberg (2023.09.22.559003v2.32) 2012; 338
Steinberg (2023.09.22.559003v2.43) 1963; 141
Ibrahimi, Merkel (2023.09.22.559003v2.51) 2023; 25
Gsell, D’Ortona, Favier (2023.09.22.559003v2.36) 2021; 429
Gsell, Merkel (2023.09.22.559003v2.48) 2022; 18
van den Brink, van Oudenaarden (2023.09.22.559003v2.11) 2021; 31
Gehrels, Chakrabortty, Perrin, Merkel, Lecuit (2023.09.22.559003v2.21) 2023; 120
Schötz, Burdine, Jülicher, Steinberg, Heisenberg, Foty (2023.09.22.559003v2.49) 2008; 2
Cachat, Liu, Martin, Yuan, Yin, Hohenstein, Davies (2023.09.22.559003v2.33) 2016; 6
Moris, Martinez Arias, Steventon (2023.09.22.559003v2.10) 2020; 64
Williams, Solnica-Krezel (2023.09.22.559003v2.53) 2020; 9
Foty, Steinberg (2023.09.22.559003v2.30) 2005; 278
Schmitt, Stark (2023.09.22.559003v2.40) 2016; 28
Saykali, Mathiah, Nahaboo, Racu, Hammou, Defrance, Migeotte (2023.09.22.559003v2.5) 2019; 8
Saadaoui, Rocancourt, Roussel, Corson, Gros (2023.09.22.559003v2.20) 2020; 367
Steinberg (2023.09.22.559003v2.29) 1963; 141
Amack, Manning (2023.09.22.559003v2.31) 2012; 338
McDole, Guignard, Amat, Berger, Malandain, Royer, Turaga, Branson, Keller (2023.09.22.559003v2.4) 2018; 175
Gsell, D’Ortona, Favier (2023.09.22.559003v2.35) 2020; 101
Velarde, Zeytounian, Velarde, Sayir, Schneider, Schrefler, Bianchi, Tasso (2023.09.22.559003v2.37) 2002; 428
Fulton, Trivedi, Attardi, Anlas, Dingare, Arias, Steventon (2023.09.22.559003v2.52) 2020; 30
Yadav, Yousafzai, Amiri, Style, Dufresne, Murrell (2023.09.22.559003v2.55) 2022; 7
Moris, Anlas, van den Brink, Alemany, Schröder, Ghimire, Balayo, van Oudenaarden, Martinez Arias (2023.09.22.559003v2.9) 2020; 582
Tiribocchi, Wittkowski, Marenduzzo, Cates (2023.09.22.559003v2.34) 2015; 115
Etournay, Popović, Merkel, Nandi, Blasse, Aigouy, Brandl, Myers, Salbreux, Jülicher, Eaton (2023.09.22.559003v2.18) 2015; 4
Bao, Cornwall-Scoones, Sanchez-Vasquez, Cox, Chen, De Jonghe, Shadkhoo, Hollfelder, Thomson, Glover (2023.09.22.559003v2.46) 2022; 24
Lucas, Kanade (2023.09.22.559003v2.28) 1981
Holtfreter (2023.09.22.559003v2.41) 1939; 169
Hashmi, Tlili, Perrin, Lowndes, Peradziryi, Brickman, Martínez Arias, Lenne (2023.09.22.559003v2.16) 2022; 11
Arnold, Robertson (2023.09.22.559003v2.2) 2009; 10
Caldarelli, Chamolly, Alegria-Prevot, Gros, Corson (2023.09.22.559003v2.25) 2021
Voiculescu, Bertocchini, Wolpert, Keller, Stern (2023.09.22.559003v2.23) 2007; 449
Suppinger, Zinner, Aizarani, Lukonin, Ortiz, Azzi, Stadler, Vianello, Palla, Kohler, Mayran, Lutolf, Liberali (2023.09.22.559003v2.17) 2023
Solnica-Krezel, Sepich (2023.09.22.559003v2.1) 2012; 28
Matsuda, Yamanaka, Uemura, Osawa, Saito, Nagahashi, Nishio, Guo, Ikegawa, Sakurai (2023.09.22.559003v2.14) 2020; 580
Sutherland (2023.09.22.559003v2.56) 2016; 55
References_xml – volume: 120
  start-page: e2214205120
  year: 2023
  ident: 2023.09.22.559003v2.21
  publication-title: Proceedings of the National Academy of Sciences
– volume: 4
  start-page: e07090
  year: 2015
  ident: 2023.09.22.559003v2.18
  publication-title: eLife
– volume: 141
  start-page: 401
  year: 1963
  ident: 2023.09.22.559003v2.29
  publication-title: Science
– start-page: 674
  year: 1981
  end-page: 679
  ident: 2023.09.22.559003v2.28
  publication-title: in Proceedings of the 7th international joint conference on Artificial intelligence - Volume 2, IJCAI’81
– volume: 18
  start-page: 2672
  year: 2022
  ident: 2023.09.22.559003v2.48
  publication-title: Soft Matter
– volume: 144
  start-page: 3894
  year: 2017
  ident: 2023.09.22.559003v2.26
  publication-title: Development
– volume: 28
  start-page: 687
  year: 2012
  ident: 2023.09.22.559003v2.1
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 128
  start-page: 53
  year: 1955
  ident: 2023.09.22.559003v2.42
  publication-title: Journal of Experimental Zoology
– volume: 141
  start-page: 401
  year: 1963
  ident: 2023.09.22.559003v2.43
  publication-title: Science (New York, N.Y
– volume: 429
  start-page: 109943
  year: 2021
  ident: 2023.09.22.559003v2.36
  publication-title: Journal of Computational Physics
– volume: 2
  start-page: 42
  year: 2008
  ident: 2023.09.22.559003v2.49
  publication-title: HFSP J
– volume: 30
  start-page: 2984
  year: 2020
  ident: 2023.09.22.559003v2.52
  publication-title: Current Biology
– volume: 580
  start-page: 124
  year: 2020
  ident: 2023.09.22.559003v2.14
  publication-title: Nature
– volume: 85
  start-page: 031907
  year: 2012
  ident: 2023.09.22.559003v2.38
  publication-title: Physical Review E
– volume: 28
  start-page: 230
  year: 2021
  ident: 2023.09.22.559003v2.15
  publication-title: Cell stem cell
– volume: 278
  start-page: 255
  year: 2005
  ident: 2023.09.22.559003v2.30
  publication-title: Developmental Biology
– volume: 370
  start-page: eaba4937
  year: 2020
  ident: 2023.09.22.559003v2.13
  publication-title: Science
– volume: 11
  start-page: e59371
  year: 2022
  ident: 2023.09.22.559003v2.16
  publication-title: eLife
– volume: 107
  start-page: 12517
  year: 2010
  ident: 2023.09.22.559003v2.45
  publication-title: Proceedings of the National Academy of Sciences
– volume: 55
  start-page: 89
  year: 2016
  end-page: 98
  ident: 2023.09.22.559003v2.56
  publication-title: in Seminars in cell & developmental biology
– volume: 367
  start-page: 453
  year: 2020
  ident: 2023.09.22.559003v2.24
  publication-title: Science
– volume: 175
  start-page: 859
  year: 2018
  ident: 2023.09.22.559003v2.4
  publication-title: Cell
– year: 2021
  ident: 2023.09.22.559003v2.25
  publication-title: bioRxiv
– year: 2023
  ident: 2023.09.22.559003v2.27
  publication-title: bioRxiv
  doi: 10.1101/2023.01.27.525895
– volume: 101
  start-page: 023309
  year: 2020
  ident: 2023.09.22.559003v2.35
  publication-title: Physical Review E
– volume: 9
  start-page: 1
  year: 2020
  ident: 2023.09.22.559003v2.53
  publication-title: eLife
– volume: 115
  start-page: 188302
  year: 2015
  ident: 2023.09.22.559003v2.34
  publication-title: Physical Review Letters
– volume: 18
  start-page: 3771
  year: 2022
  ident: 2023.09.22.559003v2.39
  publication-title: Soft Matter
– volume: 169
  year: 1939
  ident: 2023.09.22.559003v2.41
  publication-title: Arch Exptl Zellforsch Gewebezucht
– year: 2020
  ident: 2023.09.22.559003v2.8
  publication-title: Nature
  doi: 10.1038/s41586-020-2024-3
– volume: 10
  start-page: 91
  year: 2009
  ident: 2023.09.22.559003v2.2
  publication-title: Nature reviews. Molecular cell biology
– year: 2023
  ident: 2023.09.22.559003v2.17
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2023.04.018
– volume: 116
  start-page: 25430
  year: 2019
  ident: 2023.09.22.559003v2.22
  publication-title: Proceedings of the National Academy of Sciences
– volume: 562
  start-page: 272
  year: 2018
  ident: 2023.09.22.559003v2.7
  publication-title: Nature
– year: 2022
  ident: 2023.09.22.559003v2.3
  publication-title: bioRxiv
  doi: 10.1101/2022.08.01.502159
– volume: 61
  start-page: 267
  year: 1976
  ident: 2023.09.22.559003v2.44
  publication-title: Journal of theoretical biology
– volume: 449
  start-page: 1049
  year: 2007
  ident: 2023.09.22.559003v2.23
  publication-title: Nature
– volume: 17
  start-page: 397
  year: 2015
  ident: 2023.09.22.559003v2.19
  publication-title: Nature Cell Biology
– volume: 28
  year: 2016
  ident: 2023.09.22.559003v2.40
  publication-title: Physics of Fluids
– volume: 7
  start-page: L031101
  year: 2022
  ident: 2023.09.22.559003v2.55
  publication-title: Phys. Rev. Fluids
– year: 2023
  ident: 2023.09.22.559003v2.47
  publication-title: A combination of convergent extension and differential adhesion explains the shapes of elongating gastruloids
– volume: 338
  start-page: 253
  year: 2012
  ident: 2023.09.22.559003v2.32
  publication-title: Science
– volume: 64
  start-page: 78
  year: 2020
  ident: 2023.09.22.559003v2.10
  publication-title: Current Opinion in Genetics & Development Cell Reprogramming, Regeneration and Repair
– volume: 582
  start-page: 410
  year: 2020
  ident: 2023.09.22.559003v2.9
  publication-title: Nature
– volume: 6
  start-page: 1
  year: 2016
  ident: 2023.09.22.559003v2.33
  publication-title: Scientific Reports
– volume: 31
  start-page: 747
  year: 2021
  ident: 2023.09.22.559003v2.11
  publication-title: Trends in Cell Biology
– volume: 582
  start-page: 405
  year: 2020
  ident: 2023.09.22.559003v2.12
  publication-title: Nature
– volume: 367
  start-page: 453
  year: 2020
  ident: 2023.09.22.559003v2.20
  publication-title: Science
– volume: 141
  start-page: 4231
  year: 2014
  ident: 2023.09.22.559003v2.6
  publication-title: Development
– volume: 428
  year: 2002
  ident: 2023.09.22.559003v2.37
  publication-title: Interfacial Phenomena and the Marangoni Effect, CISM International Centre for Mechanical Sciences
– volume: 8
  start-page: e52554
  year: 2013
  ident: 2023.09.22.559003v2.50
  publication-title: PloS one
– volume: 338
  start-page: 212
  year: 2012
  ident: 2023.09.22.559003v2.31
  publication-title: Science
– volume: 25
  start-page: 013022
  year: 2023
  ident: 2023.09.22.559003v2.51
  publication-title: New Journal of Physics
– volume: 8
  start-page: e42434
  year: 2019
  ident: 2023.09.22.559003v2.5
  publication-title: eLife
– volume: 24
  start-page: 1341
  year: 2022
  ident: 2023.09.22.559003v2.46
  publication-title: Nature Cell Biology
– volume: 561
  start-page: 401
  year: 2018
  ident: 2023.09.22.559003v2.54
  publication-title: Nature
SSID ssj0002961374
Score 2.472579
SecondaryResourceType preprint
Snippet During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Biophysics
Title Marangoni-like tissue flows enhance symmetry breaking of embryonic organoids
URI https://www.biorxiv.org/content/10.1101/2023.09.22.559003
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hBCRu5SWgpVokbtaCvV6_rlStOIQoaoPUm-W1Z6nV2I6ckCb_npm141CVQzlwsSzLz_nWO9_uzOzH2CeKtiCrlsKVkAilslzQsulCKgg0qCLydGHFJqLpNL6-Tma9vNXKyglEdR1vt8nyv0KNxxBsKp39B7iHm-IB3EfQcYuw4_ZRwH_P0P38xF9VLMpbcNbWso5ZNHcrB-obWyKw2lUVrNudgwNiK0dFnBEq3e6sII6VemrKrgZ4T1112Vxuy82QsLPqIxZXZXUI5c8XZVdvfXWTVQOY0N52yQBWXbzMBh4_oW7eEln0zi0IotE2dB815b0JCRlQRpZ3mJA4axbIlO2sJBUiYUt2Jl17bvrEZrDdmwyxhSD_CP7ekVsBAdJ2p2VopfwckLypf_BaQy7hg3M26JHHkgKOIzb-ej6dXQ6TbjJB9hKpPrqNz_jy4GocB6E9W7TnHzxjfsTGs2wJ7Qv2BOqX7FknFLp7xSb3QeUdqNyCyntQ-R5UvgeVN4YPoPIB1Nfsx8X5_Oyb6HUwhMZ39EVodOAqhVS6UHkcKJNHocbhBlHt3EAUu5lvijgjERUvR8YXggcUIS-MLAB8_w0b1U0NbxkvcPyq_SSgvEYVakg0-jekJF4GrokL84597L8-XXarnaRkodRNUinTzkLvH3HOMXt-aBonbLRuf8EH9jTfoH3a0x6W3yeCR-Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marangoni-like+tissue+flows+enhance+symmetry+breaking+of+embryonic+organoids&rft.jtitle=bioRxiv&rft.au=Gsell%2C+Simon&rft.au=Tlili%2C+Sham&rft.au=Merkel%2C+Matthias&rft.au=Lenne%2C+Pierre-Fran%C3%A7ois&rft.date=2025-03-11&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.09.22.559003&rft.externalDocID=2023.09.22.559003v2