Uncovering Interpretable Fine-Grained Phenotypes of Subcellular Dynamics through Unsupervised Self-Training of Deep Neural Networks
Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained...
Uložené v:
| Vydané v: | bioRxiv |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
13.01.2024
Cold Spring Harbor Laboratory |
| Vydanie: | 1.2 |
| Predmet: | |
| ISSN: | 2692-8205, 2692-8205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity.Competing Interest StatementThe authors have declared no competing interest.Footnotes* New Figure 6; Other figures and manuscript were extensively revised; Supplemental files updated. |
|---|---|
| AbstractList | Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity.Competing Interest StatementThe authors have declared no competing interest.Footnotes* New Figure 6; Other figures and manuscript were extensively revised; Supplemental files updated. Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity. |
| Author | Wang, Chuangqi Choi, Hee June Woodbury, Lucy Lee, Kwonmoo |
| Author_xml | – sequence: 1 givenname: Chuangqi surname: Wang fullname: Wang, Chuangqi – sequence: 2 givenname: Hee surname: Choi middlename: June fullname: Choi, Hee June – sequence: 3 givenname: Lucy surname: Woodbury fullname: Woodbury, Lucy – sequence: 4 givenname: Kwonmoo surname: Lee fullname: Lee, Kwonmoo |
| BookMark | eNpNkE9PwkAUxDdGExH5AN428eKldf-23aMBQRKiJsC52bavUCy7dbdFOfvFLcGDp98cZua9zA26NNYAQneUhJQS-sgIoyGRIZOhEDJS6gINWKRYkDAiL__pazTyfkcIYSqiPBYD9LM2uT2Aq8wGz00LrnHQ6qwGPK0MBDOnexT4fQvGtscGPLYlXnZZDnXd1drhydHofZV73G6d7TZbvDa-a8AdKt_nllCXwepUcjrQRycADX6Fzum6R_tl3Ye_RVelrj2M_jhE6-nzavwSLN5m8_HTIsgoESqQidB5nBBOpRZaJVnBeZLzKBZZESkKTMUFyfJcJBEjNOKiVJyWMdekVHGeCD5ED-ferLLuuzqkjav22h3T034pkSmT6Xm_3np_tjbOfnbg23RnO2f673oT50SqpOcvCwxynQ |
| Cites_doi | 10.1088/1478-3975/abffbe 10.1016/j.cub.2008.12.045 10.1002/humu.22080 10.1038/ncomms12990 10.1016/j.cels.2021.05.003 10.1038/ncb3092 10.1126/science.153.3731.34 10.1126/science.1242072 |
| ContentType | Paper |
| Copyright | 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
| DOI | 10.1101/2021.05.25.445699 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.2 |
| ExternalDocumentID | 2021.05.25.445699v2 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1049-584ac780315a4a98bd338c3674bd691e297d0bcc486201634f931f73a0f97c843 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:51:50 EST 2025 Fri Jul 25 09:21:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1049-584ac780315a4a98bd338c3674bd691e297d0bcc486201634f931f73a0f97c843 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0001-6838-7094 |
| OpenAccessLink | https://www.proquest.com/docview/2533059825?pq-origsite=%requestingapplication% |
| PQID | 2533059825 |
| PQPubID | 2050091 |
| PageCount | 45 |
| ParticipantIDs | biorxiv_primary_2021_05_25_445699 proquest_journals_2533059825 |
| PublicationCentury | 2000 |
| PublicationDate | 20240113 |
| PublicationDateYYYYMMDD | 2024-01-13 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240113 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Leithner (2021.05.25.445699v2.31) 2016; 18 Taniuchi, Furihata, Hanazaki, Saito, Saibara (2021.05.25.445699v2.29) 2014; 5 Zoph (2021.05.25.445699v2.37) 2020; 33 Zaritsky (2021.05.25.445699v2.25) 2021; 12 Akanuma, Chen, Sato, Merks, Sato (2021.05.25.445699v2.2) 2016; 7 Pollard, Borisy (2021.05.25.445699v2.57) 2003; 112 Keogh, Lin, Fu (2021.05.25.445699v2.75) Mori, Mendiburu, Lozano (2021.05.25.445699v2.74) 2016 Rodriguez, Laio (2021.05.25.445699v2.54) 2014; 344 Ioannou (2021.05.25.445699v2.30) 2015; 208 Hansen, Mullins (2021.05.25.445699v2.60) 2010; 191 Caruana (2021.05.25.445699v2.50) 1997; 28 Xie, Luong, Hovy, Le (2021.05.25.445699v2.38) 2020 Wilson (2021.05.25.445699v2.61) 2010; 465 Hochreiter, Schmidhuber (2021.05.25.445699v2.51) 1997; 9 McInnes, Healy, Melville (2021.05.25.445699v2.68) 2018 Xing, Xie, Su, Liu, Yang (2021.05.25.445699v2.7) 2017; 29 Keogh, Lin, Fu (2021.05.25.445699v2.72) 2005 Shafqat-Abbasi (2021.05.25.445699v2.33) 2016; 5 Lee (2021.05.25.445699v2.48) 2013; 3 Kimmel, Chang, Brack, Marshall (2021.05.25.445699v2.10) 2018; 14 Rousseeuw (2021.05.25.445699v2.56) 1987; 20 Le, Patterson, White (2021.05.25.445699v2.47) 2018 Machacek, Danuser (2021.05.25.445699v2.35) 2006; 90 Robinson (2021.05.25.445699v2.14) 2012; 33 Fischer, Gardel, Ma, Adelstein, Waterman (2021.05.25.445699v2.64) 2009; 19 Rottner, Behrendt, Small, Wehland (2021.05.25.445699v2.58) 1999; 1 Rosvall, Bergstrom (2021.05.25.445699v2.43) 2008; 105 Scudder (2021.05.25.445699v2.36) 1965; 11 Sundar, Pahwa, Das, Deshmukh, Robinson (2021.05.25.445699v2.70) 2016; 5 Bengio, Courville, Vincent (2021.05.25.445699v2.18) 2013; 35 Lin, Keogh, Lonardi, Chiu (2021.05.25.445699v2.42) 2003 Hansen, Mullins (2021.05.25.445699v2.59) 2015; 4 Wager, Blocker, Cardin (2021.05.25.445699v2.46) 2015; 9 Morikawa (2021.05.25.445699v2.26) 2015; 8 Caron, Bojanowski, Joulin, Douze (2021.05.25.445699v2.45) 2018 Yosinski, Clune, Bengio, Lipson (2021.05.25.445699v2.19) 2014; 27 Nolen (2021.05.25.445699v2.67) 2009; 460 Choi (2021.05.25.445699v2.4) 2021 Wang (2021.05.25.445699v2.12) 2020; 6 Fortunato (2021.05.25.445699v2.55) 2010; 486 Vincent, Larochelle, Lajoie, Bengio, Manzagol (2021.05.25.445699v2.20) 2010; 11 (2021.05.25.445699v2.28) 2016; 37 Bellman (2021.05.25.445699v2.16) 1966; 153 Wang (2021.05.25.445699v2.6) 2018; 9 Ling, Nie, Yu, Li (2021.05.25.445699v2.21) 2023 Aggarwal, Hinneburg, Keim (2021.05.25.445699v2.17) 2001 San-Miguel (2021.05.25.445699v2.15) 2016; 7 Choi (2021.05.25.445699v2.66) 2008; 10 Lin, Keogh, Lonardi, Chiu (2021.05.25.445699v2.71) 2003 Spiller, Wood, Rand, White (2021.05.25.445699v2.1) 2010; 465 Chandrasekaran, Ceulemans, Boyd, Carpenter (2021.05.25.445699v2.8) 2021; 20 Arrieta (2021.05.25.445699v2.24) 2020; 58 Antonello, Reiff, Ballesta-Illan, Dominguez (2021.05.25.445699v2.27) 2015; 34 Doersch (2021.05.25.445699v2.44) 2016 Elliott (2021.05.25.445699v2.63) 2015; 17 Ghiasi, Zoph, Cubuk, Le, Lin (2021.05.25.445699v2.39) 2021 McQuin (2021.05.25.445699v2.9) 2018; 16 Manak (2021.05.25.445699v2.34) 2018; 2 Pierpaolo, Maharaj (2021.05.25.445699v2.73) 2009; 160 Kuo, Han, Hsiao, Yates, Waterman (2021.05.25.445699v2.65) 2011; 13 Wang, Ding, Fu (2021.05.25.445699v2.22) Schuster, Paliwal (2021.05.25.445699v2.52) 1997; 45 Ruderman (2021.05.25.445699v2.3) 2017; 33 Lee (2021.05.25.445699v2.5) 2015; 1 Ng, Besser, Danuser, Brugge (2021.05.25.445699v2.62) 2012; 199 Hermans (2021.05.25.445699v2.32) 2013; 5 Gordonov (2021.05.25.445699v2.11) 2016; 8 Huang (2021.05.25.445699v2.69) 1998; 454 Machacek (2021.05.25.445699v2.40) 2009; 461 Wu (2021.05.25.445699v2.13) 2022; 33 Covert, Lundberg, Lee (2021.05.25.445699v2.53) 2020; 33 Rudin (2021.05.25.445699v2.23) 2019; 1 Huang (2021.05.25.445699v2.41) 1998; 454 Wei, Shen, Chen, Ma (2021.05.25.445699v2.49) 2020 |
| References_xml | – volume: 27 year: 2014 ident: 2021.05.25.445699v2.19 article-title: How transferable are features in deep neural networks? publication-title: Advances in neural information processing systems – volume: 20 start-page: 145 year: 2021 end-page: 159 ident: 2021.05.25.445699v2.8 article-title: Image-based profiling for drug discovery: due for a machine-learning upgrade? publication-title: Nature Reviews Drug Discovery – volume: 90 start-page: 1439 year: 2006 end-page: 1452 ident: 2021.05.25.445699v2.35 article-title: Morphodynamic profiling of protrusion phenotypes publication-title: Biophysical journal – year: 2018 ident: 2021.05.25.445699v2.68 article-title: Umap: Uniform manifold approximation and projection for dimension reduction – year: 2021 ident: 2021.05.25.445699v2.4 article-title: Emerging machine learning approaches to phenotyping cellular motility and morphodynamics publication-title: Phys Biol doi: 10.1088/1478-3975/abffbe – volume: 191 start-page: 571 year: 2010 end-page: 584 ident: 2021.05.25.445699v2.60 article-title: VASP is a processive actin polymerase that requires monomeric actin for barbed end association publication-title: Journal of Cell Biology – volume: 13 start-page: 383 year: 2011 end-page: 393 ident: 2021.05.25.445699v2.65 article-title: Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation publication-title: Nature cell biology – volume: 461 start-page: 99 year: 2009 ident: 2021.05.25.445699v2.40 article-title: Coordination of Rho GTPase activities during cell protrusion publication-title: Nature – year: 2016 ident: 2021.05.25.445699v2.44 article-title: Tutorial on variational autoencoders – ident: 2021.05.25.445699v2.75 – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: 2021.05.25.445699v2.52 article-title: Bidirectional recurrent neural networks publication-title: IEEE transactions on Signal Processing – year: 2023 ident: 2021.05.25.445699v2.21 article-title: Discriminative and Robust Autoencoders for Unsupervised Feature Selection publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 19 start-page: 260 year: 2009 end-page: 265 ident: 2021.05.25.445699v2.64 article-title: Local cortical tension by myosin II guides 3D endothelial cell branching publication-title: Curr Biol doi: 10.1016/j.cub.2008.12.045 – volume: 1 start-page: 321 year: 1999 end-page: 322 ident: 2021.05.25.445699v2.58 article-title: VASP dynamics during lamellipodia protrusion publication-title: Nature cell biology – start-page: 420 year: 2001 end-page: 434 ident: 2021.05.25.445699v2.17 article-title: On the surprising behavior of distance metrics in high dimensional space publication-title: International conference on database theory – start-page: 8856 year: 2021 end-page: 8865 ident: 2021.05.25.445699v2.39 article-title: Multi-task self-training for learning general representations publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – year: 2020 ident: 2021.05.25.445699v2.49 article-title: Theoretical analysis of self-training with deep networks on unlabeled data – volume: 465 start-page: 373 year: 2010 end-page: 377 ident: 2021.05.25.445699v2.61 article-title: Myosin II contributes to cell-scale actin network treadmilling through network disassembly publication-title: Nature – volume: 460 start-page: 1031 year: 2009 end-page: 1034 ident: 2021.05.25.445699v2.67 article-title: Characterization of two classes of small molecule inhibitors of Arp2/3 complex publication-title: Nature – start-page: 2 year: 2003 end-page: 11 ident: 2021.05.25.445699v2.71 article-title: A symbolic representation of time series, with implications for streaming algorithms publication-title: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery. ACM – start-page: 107 year: 2018 end-page: 117 ident: 2021.05.25.445699v2.47 article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers publication-title: Advances in Neural Information Processing Systems – volume: 14 start-page: e1005927 year: 2018 ident: 2021.05.25.445699v2.10 article-title: Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance publication-title: PLoS computational biology – volume: 7 start-page: 11963 year: 2016 ident: 2021.05.25.445699v2.2 article-title: Memory of cell shape biases stochastic fate decision-making despite mitotic rounding publication-title: Nature communications – volume: 5 start-page: 91 year: 2016 end-page: 98 ident: 2021.05.25.445699v2.70 article-title: A Comprehensive Assessment of the Performance of Modern Algorithms for Enhancement of Digital Volume Pulse Signals publication-title: International Journal of Pharma Medicine and Biological Sciences – volume: 33 start-page: 777 year: 2012 end-page: 780 ident: 2021.05.25.445699v2.14 article-title: Deep phenotyping for precision medicine publication-title: Hum Mutat doi: 10.1002/humu.22080 – start-page: 132 year: 2018 end-page: 149 ident: 2021.05.25.445699v2.45 article-title: Deep clustering for unsupervised learning of visual features publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 7 start-page: 12990 year: 2016 ident: 2021.05.25.445699v2.15 article-title: Deep phenotyping unveils hidden traits and genetic relations in subtle mutants publication-title: Nat Commun doi: 10.1038/ncomms12990 – volume: 199 start-page: 545 year: 2012 end-page: 563 ident: 2021.05.25.445699v2.62 article-title: Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility publication-title: Journal of Cell Biology – volume: 12 start-page: 733 year: 2021 end-page: 747 ident: 2021.05.25.445699v2.25 article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma publication-title: Cell Syst doi: 10.1016/j.cels.2021.05.003 – volume: 465 start-page: 736 year: 2010 end-page: 745 ident: 2021.05.25.445699v2.1 article-title: Measurement of single-cell dynamics publication-title: Nature – start-page: 2 year: 2003 end-page: 11 ident: 2021.05.25.445699v2.42 article-title: A symbolic representation of time series, with implications for streaming algorithms publication-title: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery – volume: 17 start-page: 137 year: 2015 end-page: 147 ident: 2021.05.25.445699v2.63 article-title: Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature publication-title: Nat Cell Biol doi: 10.1038/ncb3092 – volume: 8 start-page: ra41 year: 2015 end-page: ra41 ident: 2021.05.25.445699v2.26 article-title: Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice publication-title: Sci. Signal – volume: 18 start-page: 1253 year: 2016 ident: 2021.05.25.445699v2.31 article-title: Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes publication-title: Nature cell biology – volume: 3 start-page: 896 year: 2013 ident: 2021.05.25.445699v2.48 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop on challenges in representation learning publication-title: ICML – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: 2021.05.25.445699v2.43 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proceedings of the National Academy of Sciences – volume: 9 start-page: 801 year: 2015 end-page: 820 ident: 2021.05.25.445699v2.46 article-title: Weakly supervised clustering: Learning fine-grained signals from coarse labels publication-title: The Annals of Applied Statistics – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: 2021.05.25.445699v2.18 article-title: Representation learning: A review and new perspectives publication-title: IEEE transactions on pattern analysis and machine intelligence – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: 2021.05.25.445699v2.56 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: Journal of computational and applied mathematics – volume: 208 start-page: 629 year: 2015 end-page: 648 ident: 2021.05.25.445699v2.30 article-title: DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior publication-title: J Cell Biol – volume: 1 start-page: 37 year: 2015 end-page: 50 ident: 2021.05.25.445699v2.5 article-title: Functional hierarchy of redundant actin assembly factors revealed by fine-grained registration of intrinsic image fluctuations publication-title: Cell systems – volume: 112 start-page: 453 year: 2003 end-page: 465 ident: 2021.05.25.445699v2.57 article-title: Cellular motility driven by assembly and disassembly of actin filaments publication-title: Cell – year: 2016 ident: 2021.05.25.445699v2.74 article-title: Distance Measures for Time Series in R: The TSdist Package – volume: 5 start-page: e11384 year: 2016 ident: 2021.05.25.445699v2.33 article-title: An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes publication-title: Elife – volume: 33 start-page: 17212 year: 2020 end-page: 17223 ident: 2021.05.25.445699v2.53 article-title: Understanding global feature contributions with additive importance measures publication-title: Advances in Neural Information Processing Systems – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: 2021.05.25.445699v2.41 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical publication-title: Physical and Engineering Sciences – volume: 33 start-page: 507 year: 2017 end-page: 509 ident: 2021.05.25.445699v2.3 article-title: The emergence of dynamic phenotyping publication-title: Cell Biology and Toxicology – volume: 4 start-page: e06585 year: 2015 ident: 2021.05.25.445699v2.59 article-title: Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments publication-title: Elife – volume: 5 start-page: 1464 year: 2013 end-page: 1473 ident: 2021.05.25.445699v2.32 article-title: Motility efficiency and spatiotemporal synchronization in non-metastatic vs. metastatic breast cancer cells publication-title: Integrative Biology – volume: 10 start-page: 1039 year: 2008 end-page: 1050 ident: 2021.05.25.445699v2.66 article-title: Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner publication-title: Nature cell biology – volume: 8 start-page: 73 year: 2016 end-page: 90 ident: 2021.05.25.445699v2.11 article-title: Time series modeling of live-cell shape dynamics for image-based phenotypic profiling publication-title: Integrative Biology – volume: 6 start-page: eaba9319 year: 2020 ident: 2021.05.25.445699v2.12 article-title: Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data publication-title: Science Advances – volume: 2 start-page: 761 year: 2018 end-page: 772 ident: 2021.05.25.445699v2.34 article-title: Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning publication-title: Nature biomedical engineering – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: 2021.05.25.445699v2.24 article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information fusion – volume: 9 year: 2018 ident: 2021.05.25.445699v2.6 article-title: Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging publication-title: Nature communications – volume: 454 year: 1998 ident: 2021.05.25.445699v2.69 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical publication-title: Physical and Engineering Sciences – volume: 160 start-page: 3565 year: 2009 end-page: 3589 ident: 2021.05.25.445699v2.73 article-title: Autocorrelation-based fuzzy clustering of time series publication-title: Fuzzy Sets and Systems – volume: 5 start-page: 6832 year: 2014 ident: 2021.05.25.445699v2.29 article-title: IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer publication-title: Oncotarget – start-page: 226 year: 2005 end-page: 233 ident: 2021.05.25.445699v2.72 article-title: HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence publication-title: In Proc. of the 5th IEEE International Conference on Data Mining – volume: 11 start-page: 363 year: 1965 end-page: 371 ident: 2021.05.25.445699v2.36 article-title: Probability of error of some adaptive pattern-recognition machines publication-title: IEEE Transactions on Information Theory – start-page: 10687 year: 2020 end-page: 10698 ident: 2021.05.25.445699v2.38 article-title: Self-training with noisy student improves imagenet classification publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 33 start-page: ar59 year: 2022 ident: 2021.05.25.445699v2.13 article-title: DynaMorph: self-supervised learning of morphodynamic states of live cells publication-title: Molecular Biology of the Cell – volume: 29 start-page: 4550 year: 2017 end-page: 4568 ident: 2021.05.25.445699v2.7 article-title: Deep learning in microscopy image analysis: A survey publication-title: IEEE transactions on neural networks and learning systems – volume: 153 start-page: 34 year: 1966 end-page: 37 ident: 2021.05.25.445699v2.16 article-title: Dynamic programming publication-title: Science doi: 10.1126/science.153.3731.34 – ident: 2021.05.25.445699v2.22 article-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 33 start-page: 3833 year: 2020 end-page: 3845 ident: 2021.05.25.445699v2.37 article-title: Rethinking pre-training and self-training publication-title: Advances in neural information processing systems – volume: 16 start-page: e2005970 year: 2018 ident: 2021.05.25.445699v2.9 article-title: CellProfiler 3.0: Next-generation image processing for biology publication-title: PLoS biology – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: 2021.05.25.445699v2.23 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nature machine intelligence – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: 2021.05.25.445699v2.20 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: Journal of machine learning research – volume: 34 start-page: 2025 year: 2015 end-page: 2041 ident: 2021.05.25.445699v2.27 article-title: Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8–Escargot switch publication-title: The EMBO journal – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: 2021.05.25.445699v2.51 article-title: Long short-term memory publication-title: Neural computation – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: 2021.05.25.445699v2.50 article-title: Multitask learning publication-title: Machine learning – volume: 344 start-page: 1492 year: 2014 end-page: 1496 ident: 2021.05.25.445699v2.54 article-title: Machine learning. Clustering by fast search and find of density peaks publication-title: Science doi: 10.1126/science.1242072 – volume: 37 start-page: 805 year: 2016 ident: 2021.05.25.445699v2.28 article-title: Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro publication-title: Acta Pharmacologica Sinica – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: 2021.05.25.445699v2.55 article-title: Community detection in graphs publication-title: Physics reports |
| SSID | ssj0002961374 |
| Score | 1.7113088 |
| SecondaryResourceType | preprint |
| Snippet | Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Bioinformatics Cytoskeleton Epithelial cells Fluorescence microscopy Learning algorithms Long short-term memory Machine learning Molecular modelling Neural networks Phenotypes Phenotyping Temporal variations |
| Title | Uncovering Interpretable Fine-Grained Phenotypes of Subcellular Dynamics through Unsupervised Self-Training of Deep Neural Networks |
| URI | https://www.proquest.com/docview/2533059825 https://www.biorxiv.org/content/10.1101/2021.05.25.445699 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYYBWknxo9pHR3yJK6G1Hbi-IS0QQcSqyKgCE6R7TiiUpVkDVTjzD--91IzDkhcOEVJ5Cjys98vf_o-QvadcFypqGSQPCQM6i_HNDxjUipjRGFi0ZFVX5-r8Ti9udFZaLi1AVb57BM7R13UDnvkhxxhkMg2Fx81fxiqRuHpapDQ-EB6yJIgOuhe9r_HwjUEq46ImScaNj6P4nCwCQsRy_4hsnby-EBCGoHsr-t2Ws__ThevHHMXbUYb7_3PT6SXmcbPN8mKr7bI-lJv8nGbPE0qh5BNCFf0BW1oZ56OINlkv1Auwhc0u_NVjb3ZltYlBdeC3X2Eq9LjpX59S4O8D51U7UOD7qaFcZd-VrKroDmBQ4-9byjSf5gZXDq8ebtDJqOTq5-nLKgwMAulmmaQoRinUlSDMNLo1BZQ1TqRKGmLRA8916qIrHMSaiPIH4UstRiWSpio1MqlUnwmq1Vd-S-EYn6R2NRqx70URWKF9xA6yzTSZQqJVJ98DwbImyXXRo5GyqM453G-NFKfDJ7nPQ_brc1fJv3r2693yUf4IuJu2FAMyOr9_MF_I2tucT9t53uk9-NknF3sdasI7rKz39ntPwbbzxA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VloqeeFb0ARgJjoas7cTxAXFgWVp1Wa3ELuot2I4jVlqSdNPXnvk__EZmsll6QOLWA6dIiWwpmdHMN-Mv8wG88tILraOCI3hIONZfnhu8x5XS1srcxrIdVv11qEej9PTUjDfg1_pfGKJVrmNiG6jzylOP_K0gGiRNm4vf12ecVKPodHUtobFyi5OwvMKSrXl33Ef7vhZi8HHy4Yh3qgLcYelhOGZc63VK6gZWWZO6HKs0LxOtXJ6YXhBG55HzXiHWRzwkVWFkr9DSRoXRPlUS970DWwgjRNpSBcd_ejrCYHJsBz-LxGCgEVHcHaSi41OboUdTQkX8RiFsoWmz225WLa5nl38lgja7De7_b9_lAWyNbR0WD2EjlI9ge6WnuXwMP6elJ0oqpmN2w6Z088AGCKb5J5LDCDkbfw9lRb3nhlUFw9BJpxdEx2X9ZWl_zHzDOvkiNi2bi5rCaYPrvoR5wSedpgYt7YdQMxpvYud4afn0zROY3sp778JmWZXhKTDCT4lLnfEiKJknToaA0KBII1OkCBT34GVn8KxezRLJyCmyKM5EnK2cYg8O13bOunDSZDdG3v_34xdw72jyeZgNj0cnB7CDuxPHiPfkIWyeLy7CM7jrL89nzeJ567kMvt22S_wGpCclBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Interpretable+Fine-Grained+Phenotypes+of+Subcellular+Dynamics+through+Unsupervised+Self-Training+of+Deep+Neural+Networks&rft.jtitle=bioRxiv&rft.au=Wang%2C+Chuangqi&rft.au=Choi%2C+Hee+June&rft.au=Woodbury%2C+Lucy&rft.au=Lee%2C+Kwonmoo&rft.date=2024-01-13&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.05.25.445699&rft.externalDocID=2021.05.25.445699v2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |