Uncovering Interpretable Fine-Grained Phenotypes of Subcellular Dynamics through Unsupervised Self-Training of Deep Neural Networks

Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Wang, Chuangqi, Choi, Hee June, Woodbury, Lucy, Lee, Kwonmoo
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 13.01.2024
Cold Spring Harbor Laboratory
Vydanie:1.2
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity.Competing Interest StatementThe authors have declared no competing interest.Footnotes* New Figure 6; Other figures and manuscript were extensively revised; Supplemental files updated.
AbstractList Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity.Competing Interest StatementThe authors have declared no competing interest.Footnotes* New Figure 6; Other figures and manuscript were extensively revised; Supplemental files updated.
Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal heterogeneity within live cell imaging data often obscures critical mechanical details underlying cellular dynamics. Uncovering fine-grained phenotypes of live cell dynamics is pivotal for precise understandings of the heterogeneity of physiological and pathological processes. However, this endeavor introduces formidable technical challenges to unsupervised machine learning, demanding the extraction of features that can faithfully preserve heterogeneity, effectively discriminate between different molecularly perturbed states, and provide interpretability. While deep learning shows promise in extracting useful features from large datasets, it often falls short in producing such high-fidelity features, especially in unsupervised learning settings. To tackle these challenges, we present DeepHACX (Deep phenotyping of Heterogeneous Activities of Cellular dynamics with eXplanations), a self-training deep learning framework designed for fine-grained and interpretable phenotyping. This framework seamlessly integrates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, it incorporates an autoencoder-based regularizer, termed SENSER (SENSitivity-enhancing autoEncoding Regularizer), designed to prompt the student DNN to maximize the heterogeneity associated with molecular perturbations. This approach enables the acquisition of features that not only discriminate between different molecularly perturbed states but also faithfully preserve the heterogeneity linked to these perturbations. In our study, DeepHACX successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, uncovering specific responses to pharmacological perturbations. Remarkably, DeepHACX adeptly captured a minimal number of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability positions DeepHACX as a valuable tool for investigating diverse cellular dynamics and comprehensively studying their heterogeneity.
Author Wang, Chuangqi
Choi, Hee June
Woodbury, Lucy
Lee, Kwonmoo
Author_xml – sequence: 1
  givenname: Chuangqi
  surname: Wang
  fullname: Wang, Chuangqi
– sequence: 2
  givenname: Hee
  surname: Choi
  middlename: June
  fullname: Choi, Hee June
– sequence: 3
  givenname: Lucy
  surname: Woodbury
  fullname: Woodbury, Lucy
– sequence: 4
  givenname: Kwonmoo
  surname: Lee
  fullname: Lee, Kwonmoo
BookMark eNpNkE9PwkAUxDdGExH5AN428eKldf-23aMBQRKiJsC52bavUCy7dbdFOfvFLcGDp98cZua9zA26NNYAQneUhJQS-sgIoyGRIZOhEDJS6gINWKRYkDAiL__pazTyfkcIYSqiPBYD9LM2uT2Aq8wGz00LrnHQ6qwGPK0MBDOnexT4fQvGtscGPLYlXnZZDnXd1drhydHofZV73G6d7TZbvDa-a8AdKt_nllCXwepUcjrQRycADX6Fzum6R_tl3Ye_RVelrj2M_jhE6-nzavwSLN5m8_HTIsgoESqQidB5nBBOpRZaJVnBeZLzKBZZESkKTMUFyfJcJBEjNOKiVJyWMdekVHGeCD5ED-ferLLuuzqkjav22h3T034pkSmT6Xm_3np_tjbOfnbg23RnO2f673oT50SqpOcvCwxynQ
Cites_doi 10.1088/1478-3975/abffbe
10.1016/j.cub.2008.12.045
10.1002/humu.22080
10.1038/ncomms12990
10.1016/j.cels.2021.05.003
10.1038/ncb3092
10.1126/science.153.3731.34
10.1126/science.1242072
ContentType Paper
Copyright 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2021.05.25.445699
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2021.05.25.445699v2
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1049-584ac780315a4a98bd338c3674bd691e297d0bcc486201634f931f73a0f97c843
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 18:51:50 EST 2025
Fri Jul 25 09:21:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1049-584ac780315a4a98bd338c3674bd691e297d0bcc486201634f931f73a0f97c843
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-6838-7094
OpenAccessLink https://www.proquest.com/docview/2533059825?pq-origsite=%requestingapplication%
PQID 2533059825
PQPubID 2050091
PageCount 45
ParticipantIDs biorxiv_primary_2021_05_25_445699
proquest_journals_2533059825
PublicationCentury 2000
PublicationDate 20240113
PublicationDateYYYYMMDD 2024-01-13
PublicationDate_xml – month: 01
  year: 2024
  text: 20240113
  day: 13
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Leithner (2021.05.25.445699v2.31) 2016; 18
Taniuchi, Furihata, Hanazaki, Saito, Saibara (2021.05.25.445699v2.29) 2014; 5
Zoph (2021.05.25.445699v2.37) 2020; 33
Zaritsky (2021.05.25.445699v2.25) 2021; 12
Akanuma, Chen, Sato, Merks, Sato (2021.05.25.445699v2.2) 2016; 7
Pollard, Borisy (2021.05.25.445699v2.57) 2003; 112
Keogh, Lin, Fu (2021.05.25.445699v2.75)
Mori, Mendiburu, Lozano (2021.05.25.445699v2.74) 2016
Rodriguez, Laio (2021.05.25.445699v2.54) 2014; 344
Ioannou (2021.05.25.445699v2.30) 2015; 208
Hansen, Mullins (2021.05.25.445699v2.60) 2010; 191
Caruana (2021.05.25.445699v2.50) 1997; 28
Xie, Luong, Hovy, Le (2021.05.25.445699v2.38) 2020
Wilson (2021.05.25.445699v2.61) 2010; 465
Hochreiter, Schmidhuber (2021.05.25.445699v2.51) 1997; 9
McInnes, Healy, Melville (2021.05.25.445699v2.68) 2018
Xing, Xie, Su, Liu, Yang (2021.05.25.445699v2.7) 2017; 29
Keogh, Lin, Fu (2021.05.25.445699v2.72) 2005
Shafqat-Abbasi (2021.05.25.445699v2.33) 2016; 5
Lee (2021.05.25.445699v2.48) 2013; 3
Kimmel, Chang, Brack, Marshall (2021.05.25.445699v2.10) 2018; 14
Rousseeuw (2021.05.25.445699v2.56) 1987; 20
Le, Patterson, White (2021.05.25.445699v2.47) 2018
Machacek, Danuser (2021.05.25.445699v2.35) 2006; 90
Robinson (2021.05.25.445699v2.14) 2012; 33
Fischer, Gardel, Ma, Adelstein, Waterman (2021.05.25.445699v2.64) 2009; 19
Rottner, Behrendt, Small, Wehland (2021.05.25.445699v2.58) 1999; 1
Rosvall, Bergstrom (2021.05.25.445699v2.43) 2008; 105
Scudder (2021.05.25.445699v2.36) 1965; 11
Sundar, Pahwa, Das, Deshmukh, Robinson (2021.05.25.445699v2.70) 2016; 5
Bengio, Courville, Vincent (2021.05.25.445699v2.18) 2013; 35
Lin, Keogh, Lonardi, Chiu (2021.05.25.445699v2.42) 2003
Hansen, Mullins (2021.05.25.445699v2.59) 2015; 4
Wager, Blocker, Cardin (2021.05.25.445699v2.46) 2015; 9
Morikawa (2021.05.25.445699v2.26) 2015; 8
Caron, Bojanowski, Joulin, Douze (2021.05.25.445699v2.45) 2018
Yosinski, Clune, Bengio, Lipson (2021.05.25.445699v2.19) 2014; 27
Nolen (2021.05.25.445699v2.67) 2009; 460
Choi (2021.05.25.445699v2.4) 2021
Wang (2021.05.25.445699v2.12) 2020; 6
Fortunato (2021.05.25.445699v2.55) 2010; 486
Vincent, Larochelle, Lajoie, Bengio, Manzagol (2021.05.25.445699v2.20) 2010; 11
(2021.05.25.445699v2.28) 2016; 37
Bellman (2021.05.25.445699v2.16) 1966; 153
Wang (2021.05.25.445699v2.6) 2018; 9
Ling, Nie, Yu, Li (2021.05.25.445699v2.21) 2023
Aggarwal, Hinneburg, Keim (2021.05.25.445699v2.17) 2001
San-Miguel (2021.05.25.445699v2.15) 2016; 7
Choi (2021.05.25.445699v2.66) 2008; 10
Lin, Keogh, Lonardi, Chiu (2021.05.25.445699v2.71) 2003
Spiller, Wood, Rand, White (2021.05.25.445699v2.1) 2010; 465
Chandrasekaran, Ceulemans, Boyd, Carpenter (2021.05.25.445699v2.8) 2021; 20
Arrieta (2021.05.25.445699v2.24) 2020; 58
Antonello, Reiff, Ballesta-Illan, Dominguez (2021.05.25.445699v2.27) 2015; 34
Doersch (2021.05.25.445699v2.44) 2016
Elliott (2021.05.25.445699v2.63) 2015; 17
Ghiasi, Zoph, Cubuk, Le, Lin (2021.05.25.445699v2.39) 2021
McQuin (2021.05.25.445699v2.9) 2018; 16
Manak (2021.05.25.445699v2.34) 2018; 2
Pierpaolo, Maharaj (2021.05.25.445699v2.73) 2009; 160
Kuo, Han, Hsiao, Yates, Waterman (2021.05.25.445699v2.65) 2011; 13
Wang, Ding, Fu (2021.05.25.445699v2.22)
Schuster, Paliwal (2021.05.25.445699v2.52) 1997; 45
Ruderman (2021.05.25.445699v2.3) 2017; 33
Lee (2021.05.25.445699v2.5) 2015; 1
Ng, Besser, Danuser, Brugge (2021.05.25.445699v2.62) 2012; 199
Hermans (2021.05.25.445699v2.32) 2013; 5
Gordonov (2021.05.25.445699v2.11) 2016; 8
Huang (2021.05.25.445699v2.69) 1998; 454
Machacek (2021.05.25.445699v2.40) 2009; 461
Wu (2021.05.25.445699v2.13) 2022; 33
Covert, Lundberg, Lee (2021.05.25.445699v2.53) 2020; 33
Rudin (2021.05.25.445699v2.23) 2019; 1
Huang (2021.05.25.445699v2.41) 1998; 454
Wei, Shen, Chen, Ma (2021.05.25.445699v2.49) 2020
References_xml – volume: 27
  year: 2014
  ident: 2021.05.25.445699v2.19
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in neural information processing systems
– volume: 20
  start-page: 145
  year: 2021
  end-page: 159
  ident: 2021.05.25.445699v2.8
  article-title: Image-based profiling for drug discovery: due for a machine-learning upgrade?
  publication-title: Nature Reviews Drug Discovery
– volume: 90
  start-page: 1439
  year: 2006
  end-page: 1452
  ident: 2021.05.25.445699v2.35
  article-title: Morphodynamic profiling of protrusion phenotypes
  publication-title: Biophysical journal
– year: 2018
  ident: 2021.05.25.445699v2.68
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
– year: 2021
  ident: 2021.05.25.445699v2.4
  article-title: Emerging machine learning approaches to phenotyping cellular motility and morphodynamics
  publication-title: Phys Biol
  doi: 10.1088/1478-3975/abffbe
– volume: 191
  start-page: 571
  year: 2010
  end-page: 584
  ident: 2021.05.25.445699v2.60
  article-title: VASP is a processive actin polymerase that requires monomeric actin for barbed end association
  publication-title: Journal of Cell Biology
– volume: 13
  start-page: 383
  year: 2011
  end-page: 393
  ident: 2021.05.25.445699v2.65
  article-title: Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation
  publication-title: Nature cell biology
– volume: 461
  start-page: 99
  year: 2009
  ident: 2021.05.25.445699v2.40
  article-title: Coordination of Rho GTPase activities during cell protrusion
  publication-title: Nature
– year: 2016
  ident: 2021.05.25.445699v2.44
  article-title: Tutorial on variational autoencoders
– ident: 2021.05.25.445699v2.75
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: 2021.05.25.445699v2.52
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE transactions on Signal Processing
– year: 2023
  ident: 2021.05.25.445699v2.21
  article-title: Discriminative and Robust Autoencoders for Unsupervised Feature Selection
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 19
  start-page: 260
  year: 2009
  end-page: 265
  ident: 2021.05.25.445699v2.64
  article-title: Local cortical tension by myosin II guides 3D endothelial cell branching
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.12.045
– volume: 1
  start-page: 321
  year: 1999
  end-page: 322
  ident: 2021.05.25.445699v2.58
  article-title: VASP dynamics during lamellipodia protrusion
  publication-title: Nature cell biology
– start-page: 420
  year: 2001
  end-page: 434
  ident: 2021.05.25.445699v2.17
  article-title: On the surprising behavior of distance metrics in high dimensional space
  publication-title: International conference on database theory
– start-page: 8856
  year: 2021
  end-page: 8865
  ident: 2021.05.25.445699v2.39
  article-title: Multi-task self-training for learning general representations
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– year: 2020
  ident: 2021.05.25.445699v2.49
  article-title: Theoretical analysis of self-training with deep networks on unlabeled data
– volume: 465
  start-page: 373
  year: 2010
  end-page: 377
  ident: 2021.05.25.445699v2.61
  article-title: Myosin II contributes to cell-scale actin network treadmilling through network disassembly
  publication-title: Nature
– volume: 460
  start-page: 1031
  year: 2009
  end-page: 1034
  ident: 2021.05.25.445699v2.67
  article-title: Characterization of two classes of small molecule inhibitors of Arp2/3 complex
  publication-title: Nature
– start-page: 2
  year: 2003
  end-page: 11
  ident: 2021.05.25.445699v2.71
  article-title: A symbolic representation of time series, with implications for streaming algorithms
  publication-title: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery. ACM
– start-page: 107
  year: 2018
  end-page: 117
  ident: 2021.05.25.445699v2.47
  article-title: Supervised autoencoders: Improving generalization performance with unsupervised regularizers
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: e1005927
  year: 2018
  ident: 2021.05.25.445699v2.10
  article-title: Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance
  publication-title: PLoS computational biology
– volume: 7
  start-page: 11963
  year: 2016
  ident: 2021.05.25.445699v2.2
  article-title: Memory of cell shape biases stochastic fate decision-making despite mitotic rounding
  publication-title: Nature communications
– volume: 5
  start-page: 91
  year: 2016
  end-page: 98
  ident: 2021.05.25.445699v2.70
  article-title: A Comprehensive Assessment of the Performance of Modern Algorithms for Enhancement of Digital Volume Pulse Signals
  publication-title: International Journal of Pharma Medicine and Biological Sciences
– volume: 33
  start-page: 777
  year: 2012
  end-page: 780
  ident: 2021.05.25.445699v2.14
  article-title: Deep phenotyping for precision medicine
  publication-title: Hum Mutat
  doi: 10.1002/humu.22080
– start-page: 132
  year: 2018
  end-page: 149
  ident: 2021.05.25.445699v2.45
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 7
  start-page: 12990
  year: 2016
  ident: 2021.05.25.445699v2.15
  article-title: Deep phenotyping unveils hidden traits and genetic relations in subtle mutants
  publication-title: Nat Commun
  doi: 10.1038/ncomms12990
– volume: 199
  start-page: 545
  year: 2012
  end-page: 563
  ident: 2021.05.25.445699v2.62
  article-title: Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility
  publication-title: Journal of Cell Biology
– volume: 12
  start-page: 733
  year: 2021
  end-page: 747
  ident: 2021.05.25.445699v2.25
  article-title: Interpretable deep learning uncovers cellular properties in label-free live cell images that are predictive of highly metastatic melanoma
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2021.05.003
– volume: 465
  start-page: 736
  year: 2010
  end-page: 745
  ident: 2021.05.25.445699v2.1
  article-title: Measurement of single-cell dynamics
  publication-title: Nature
– start-page: 2
  year: 2003
  end-page: 11
  ident: 2021.05.25.445699v2.42
  article-title: A symbolic representation of time series, with implications for streaming algorithms
  publication-title: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery
– volume: 17
  start-page: 137
  year: 2015
  end-page: 147
  ident: 2021.05.25.445699v2.63
  article-title: Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3092
– volume: 8
  start-page: ra41
  year: 2015
  end-page: ra41
  ident: 2021.05.25.445699v2.26
  article-title: Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice
  publication-title: Sci. Signal
– volume: 18
  start-page: 1253
  year: 2016
  ident: 2021.05.25.445699v2.31
  article-title: Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes
  publication-title: Nature cell biology
– volume: 3
  start-page: 896
  year: 2013
  ident: 2021.05.25.445699v2.48
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop on challenges in representation learning
  publication-title: ICML
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: 2021.05.25.445699v2.43
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proceedings of the National Academy of Sciences
– volume: 9
  start-page: 801
  year: 2015
  end-page: 820
  ident: 2021.05.25.445699v2.46
  article-title: Weakly supervised clustering: Learning fine-grained signals from coarse labels
  publication-title: The Annals of Applied Statistics
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: 2021.05.25.445699v2.18
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE transactions on pattern analysis and machine intelligence
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: 2021.05.25.445699v2.56
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: Journal of computational and applied mathematics
– volume: 208
  start-page: 629
  year: 2015
  end-page: 648
  ident: 2021.05.25.445699v2.30
  article-title: DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior
  publication-title: J Cell Biol
– volume: 1
  start-page: 37
  year: 2015
  end-page: 50
  ident: 2021.05.25.445699v2.5
  article-title: Functional hierarchy of redundant actin assembly factors revealed by fine-grained registration of intrinsic image fluctuations
  publication-title: Cell systems
– volume: 112
  start-page: 453
  year: 2003
  end-page: 465
  ident: 2021.05.25.445699v2.57
  article-title: Cellular motility driven by assembly and disassembly of actin filaments
  publication-title: Cell
– year: 2016
  ident: 2021.05.25.445699v2.74
  article-title: Distance Measures for Time Series in R: The TSdist Package
– volume: 5
  start-page: e11384
  year: 2016
  ident: 2021.05.25.445699v2.33
  article-title: An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes
  publication-title: Elife
– volume: 33
  start-page: 17212
  year: 2020
  end-page: 17223
  ident: 2021.05.25.445699v2.53
  article-title: Understanding global feature contributions with additive importance measures
  publication-title: Advances in Neural Information Processing Systems
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: 2021.05.25.445699v2.41
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical
  publication-title: Physical and Engineering Sciences
– volume: 33
  start-page: 507
  year: 2017
  end-page: 509
  ident: 2021.05.25.445699v2.3
  article-title: The emergence of dynamic phenotyping
  publication-title: Cell Biology and Toxicology
– volume: 4
  start-page: e06585
  year: 2015
  ident: 2021.05.25.445699v2.59
  article-title: Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments
  publication-title: Elife
– volume: 5
  start-page: 1464
  year: 2013
  end-page: 1473
  ident: 2021.05.25.445699v2.32
  article-title: Motility efficiency and spatiotemporal synchronization in non-metastatic vs. metastatic breast cancer cells
  publication-title: Integrative Biology
– volume: 10
  start-page: 1039
  year: 2008
  end-page: 1050
  ident: 2021.05.25.445699v2.66
  article-title: Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner
  publication-title: Nature cell biology
– volume: 8
  start-page: 73
  year: 2016
  end-page: 90
  ident: 2021.05.25.445699v2.11
  article-title: Time series modeling of live-cell shape dynamics for image-based phenotypic profiling
  publication-title: Integrative Biology
– volume: 6
  start-page: eaba9319
  year: 2020
  ident: 2021.05.25.445699v2.12
  article-title: Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data
  publication-title: Science Advances
– volume: 2
  start-page: 761
  year: 2018
  end-page: 772
  ident: 2021.05.25.445699v2.34
  article-title: Live-cell phenotypic-biomarker microfluidic assay for the risk stratification of cancer patients via machine learning
  publication-title: Nature biomedical engineering
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: 2021.05.25.445699v2.24
  article-title: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Information fusion
– volume: 9
  year: 2018
  ident: 2021.05.25.445699v2.6
  article-title: Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging
  publication-title: Nature communications
– volume: 454
  year: 1998
  ident: 2021.05.25.445699v2.69
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical
  publication-title: Physical and Engineering Sciences
– volume: 160
  start-page: 3565
  year: 2009
  end-page: 3589
  ident: 2021.05.25.445699v2.73
  article-title: Autocorrelation-based fuzzy clustering of time series
  publication-title: Fuzzy Sets and Systems
– volume: 5
  start-page: 6832
  year: 2014
  ident: 2021.05.25.445699v2.29
  article-title: IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer
  publication-title: Oncotarget
– start-page: 226
  year: 2005
  end-page: 233
  ident: 2021.05.25.445699v2.72
  article-title: HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence
  publication-title: In Proc. of the 5th IEEE International Conference on Data Mining
– volume: 11
  start-page: 363
  year: 1965
  end-page: 371
  ident: 2021.05.25.445699v2.36
  article-title: Probability of error of some adaptive pattern-recognition machines
  publication-title: IEEE Transactions on Information Theory
– start-page: 10687
  year: 2020
  end-page: 10698
  ident: 2021.05.25.445699v2.38
  article-title: Self-training with noisy student improves imagenet classification
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 33
  start-page: ar59
  year: 2022
  ident: 2021.05.25.445699v2.13
  article-title: DynaMorph: self-supervised learning of morphodynamic states of live cells
  publication-title: Molecular Biology of the Cell
– volume: 29
  start-page: 4550
  year: 2017
  end-page: 4568
  ident: 2021.05.25.445699v2.7
  article-title: Deep learning in microscopy image analysis: A survey
  publication-title: IEEE transactions on neural networks and learning systems
– volume: 153
  start-page: 34
  year: 1966
  end-page: 37
  ident: 2021.05.25.445699v2.16
  article-title: Dynamic programming
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– ident: 2021.05.25.445699v2.22
  article-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 33
  start-page: 3833
  year: 2020
  end-page: 3845
  ident: 2021.05.25.445699v2.37
  article-title: Rethinking pre-training and self-training
  publication-title: Advances in neural information processing systems
– volume: 16
  start-page: e2005970
  year: 2018
  ident: 2021.05.25.445699v2.9
  article-title: CellProfiler 3.0: Next-generation image processing for biology
  publication-title: PLoS biology
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: 2021.05.25.445699v2.23
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nature machine intelligence
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: 2021.05.25.445699v2.20
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of machine learning research
– volume: 34
  start-page: 2025
  year: 2015
  end-page: 2041
  ident: 2021.05.25.445699v2.27
  article-title: Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8–Escargot switch
  publication-title: The EMBO journal
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: 2021.05.25.445699v2.51
  article-title: Long short-term memory
  publication-title: Neural computation
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: 2021.05.25.445699v2.50
  article-title: Multitask learning
  publication-title: Machine learning
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: 2021.05.25.445699v2.54
  article-title: Machine learning. Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 37
  start-page: 805
  year: 2016
  ident: 2021.05.25.445699v2.28
  article-title: Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro
  publication-title: Acta Pharmacologica Sinica
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: 2021.05.25.445699v2.55
  article-title: Community detection in graphs
  publication-title: Physics reports
SSID ssj0002961374
Score 1.7113088
SecondaryResourceType preprint
Snippet Live cell imaging provides unparallel insights into dynamic cellular processes across spatiotemporal scales. Despite its potential, the inherent spatiotemporal...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bioinformatics
Cytoskeleton
Epithelial cells
Fluorescence microscopy
Learning algorithms
Long short-term memory
Machine learning
Molecular modelling
Neural networks
Phenotypes
Phenotyping
Temporal variations
Title Uncovering Interpretable Fine-Grained Phenotypes of Subcellular Dynamics through Unsupervised Self-Training of Deep Neural Networks
URI https://www.proquest.com/docview/2533059825
https://www.biorxiv.org/content/10.1101/2021.05.25.445699
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYYBWknxo9pHR3yJK6G1Hbi-IS0QQcSqyKgCE6R7TiiUpVkDVTjzD--91IzDkhcOEVJ5Cjys98vf_o-QvadcFypqGSQPCQM6i_HNDxjUipjRGFi0ZFVX5-r8Ti9udFZaLi1AVb57BM7R13UDnvkhxxhkMg2Fx81fxiqRuHpapDQ-EB6yJIgOuhe9r_HwjUEq46ImScaNj6P4nCwCQsRy_4hsnby-EBCGoHsr-t2Ws__ThevHHMXbUYb7_3PT6SXmcbPN8mKr7bI-lJv8nGbPE0qh5BNCFf0BW1oZ56OINlkv1Auwhc0u_NVjb3ZltYlBdeC3X2Eq9LjpX59S4O8D51U7UOD7qaFcZd-VrKroDmBQ4-9byjSf5gZXDq8ebtDJqOTq5-nLKgwMAulmmaQoRinUlSDMNLo1BZQ1TqRKGmLRA8916qIrHMSaiPIH4UstRiWSpio1MqlUnwmq1Vd-S-EYn6R2NRqx70URWKF9xA6yzTSZQqJVJ98DwbImyXXRo5GyqM453G-NFKfDJ7nPQ_brc1fJv3r2693yUf4IuJu2FAMyOr9_MF_I2tucT9t53uk9-NknF3sdasI7rKz39ntPwbbzxA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VloqeeFb0ARgJjoas7cTxAXFgWVp1Wa3ELuot2I4jVlqSdNPXnvk__EZmsll6QOLWA6dIiWwpmdHMN-Mv8wG88tILraOCI3hIONZfnhu8x5XS1srcxrIdVv11qEej9PTUjDfg1_pfGKJVrmNiG6jzylOP_K0gGiRNm4vf12ecVKPodHUtobFyi5OwvMKSrXl33Ef7vhZi8HHy4Yh3qgLcYelhOGZc63VK6gZWWZO6HKs0LxOtXJ6YXhBG55HzXiHWRzwkVWFkr9DSRoXRPlUS970DWwgjRNpSBcd_ejrCYHJsBz-LxGCgEVHcHaSi41OboUdTQkX8RiFsoWmz225WLa5nl38lgja7De7_b9_lAWyNbR0WD2EjlI9ge6WnuXwMP6elJ0oqpmN2w6Z088AGCKb5J5LDCDkbfw9lRb3nhlUFw9BJpxdEx2X9ZWl_zHzDOvkiNi2bi5rCaYPrvoR5wSedpgYt7YdQMxpvYud4afn0zROY3sp778JmWZXhKTDCT4lLnfEiKJknToaA0KBII1OkCBT34GVn8KxezRLJyCmyKM5EnK2cYg8O13bOunDSZDdG3v_34xdw72jyeZgNj0cnB7CDuxPHiPfkIWyeLy7CM7jrL89nzeJ567kMvt22S_wGpCclBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Interpretable+Fine-Grained+Phenotypes+of+Subcellular+Dynamics+through+Unsupervised+Self-Training+of+Deep+Neural+Networks&rft.jtitle=bioRxiv&rft.au=Wang%2C+Chuangqi&rft.au=Choi%2C+Hee+June&rft.au=Woodbury%2C+Lucy&rft.au=Lee%2C+Kwonmoo&rft.date=2024-01-13&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.05.25.445699&rft.externalDocID=2021.05.25.445699v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon