Visual Image Reconstructed Without Semantics from Human Brain Activity Using Linear Image Decoders and Nonlinear Noise Suppression
In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual c...
Gespeichert in:
| Veröffentlicht in: | bioRxiv |
|---|---|
| 1. Verfasser: | |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
31.12.2024
Cold Spring Harbor Laboratory |
| Ausgabe: | 1.6 |
| Schlagworte: | |
| ISSN: | 2692-8205, 2692-8205 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity. In response to this limitation, our study introduces a novel approach that combines linear mapping with nonlinear noise suppression to reconstruct visual images perceived by subjects based on their brain activity patterns. The primary challenge associated with linear mapping lies in its susceptibility to noise interference. To address this issue, we leverage a flexible denoised deep convolutional neural network, which can suppress noise from linear mapping. Our investigation encompasses linear mapping as well as the training of shallow and deep autoencoder denoised neural networks, including a pre-trained, state-of-the-art denoised neural network. The outcome of our study reveals that combining linear image decoding with nonlinear noise reduction significantly enhances the quality of reconstructed images from human brain activity. This suggests that our methodology holds promise for decoding intricate perceptual experiences directly from brain activity patterns without semantic information. Moreover, the model has strong neural explanatory power because it shares structural and functional similarities with the visual brain.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated the references and the text. |
|---|---|
| AbstractList | In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity. In response to this limitation, our study introduces a novel approach that combines linear mapping with nonlinear noise suppression to reconstruct visual images perceived by subjects based on their brain activity patterns. The primary challenge associated with linear mapping lies in its susceptibility to noise interference. To address this issue, we leverage a flexible denoised deep convolutional neural network, which can suppress noise from linear mapping. Our investigation encompasses linear mapping as well as the training of shallow and deep autoencoder denoised neural networks, including a pre-trained, state-of-the-art denoised neural network. The outcome of our study reveals that combining linear image decoding with nonlinear noise reduction significantly enhances the quality of reconstructed images from human brain activity. This suggests that our methodology holds promise for decoding intricate perceptual experiences directly from brain activity patterns without semantic information. Moreover, the model has strong neural explanatory power because it shares structural and functional similarities with the visual brain. In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual representations from human brain activity while considering semantic information. This advancement not only enables the recreation of visual content but also provides valuable insights into the intricate processes occurring within high-order functional brain regions, contributing to a deeper understanding of brain function. However, considering fusion semantics in reconstructing visual images from brain activity involves semantic-to-image guide reconstruction and may ignore underlying neural computational mechanisms, which does not represent true reconstruction from brain activity. In response to this limitation, our study introduces a novel approach that combines linear mapping with nonlinear noise suppression to reconstruct visual images perceived by subjects based on their brain activity patterns. The primary challenge associated with linear mapping lies in its susceptibility to noise interference. To address this issue, we leverage a flexible denoised deep convolutional neural network, which can suppress noise from linear mapping. Our investigation encompasses linear mapping as well as the training of shallow and deep autoencoder denoised neural networks, including a pre-trained, state-of-the-art denoised neural network. The outcome of our study reveals that combining linear image decoding with nonlinear noise reduction significantly enhances the quality of reconstructed images from human brain activity. This suggests that our methodology holds promise for decoding intricate perceptual experiences directly from brain activity patterns without semantic information. Moreover, the model has strong neural explanatory power because it shares structural and functional similarities with the visual brain.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Updated the references and the text. |
| Author | Li, Qiang |
| Author_xml | – sequence: 1 givenname: Qiang surname: Li fullname: Li, Qiang |
| BookMark | eNpNUE1PAjEUbAwmIvIDvDXx4gVsu90tPSJ-QEIwEdHjprRvsQRabHeJXP3l1sDBy7w3700mk7lELecdIHRNSZ9SQu8YYVmfyH7CPJeUizPUZoVkvQEjeevffoG6Ma4JIUwWNBO8jX7ebWzUBk-2agX4FbR3sQ6NrsHgD1t_-qbGc9gqV1sdcRX8Fo-bRPF9UNbhoa7t3tYHvIjWrfDUOlDhZPaQzAyEiJUzeObd5viceRsBz5vdLkCM1rsrdF6pTYTuaXbQ4unxbTTuTV-eJ6PhtLekhIueGMiCZULkRkFRcC5FxXUGQIHLwogCNNdLkagy2lTUZEoQYvKcawNVOmQddHv0XVofvu2-3AW7VeFQ_tVXElkmPNaXpDdH6S74rwZiXa59E1xKVzLJBiK1Lkn2C2jpc1w |
| ContentType | Paper |
| Copyright | 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
| DOI | 10.1101/2023.09.23.559147 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.6 |
| ExternalDocumentID | 2023.09.23.559147v6 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1047-789623775dae664497f4c3ee1e496d76ec4cb7e1eadcdf1d3a700d554cdefdf13 |
| IEDL.DBID | BENPR |
| ISSN | 2692-8205 |
| IngestDate | Thu Jan 02 20:48:46 EST 2025 Fri Jul 25 09:22:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Functional Similarities Visual Image Reconstruction Neural Explanatory Linear Decoding Deep Autoencoder Denoised Neural Networks Brain Activity |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1047-789623775dae664497f4c3ee1e496d76ec4cb7e1eadcdf1d3a700d554cdefdf13 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-5337-0676 |
| OpenAccessLink | https://www.proquest.com/docview/2928711090?pq-origsite=%requestingapplication% |
| PQID | 2928711090 |
| PQPubID | 2050091 |
| PageCount | 11 |
| ParticipantIDs | biorxiv_primary_2023_09_23_559147 proquest_journals_2928711090 |
| PublicationCentury | 2000 |
| PublicationDate | 20241231 |
| PublicationDateYYYYMMDD | 2024-12-31 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241231 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Thirion (2023.09.23.559147v6.18) 2007; 33 Zhang, Zuo, Chen, Meng, Zhang (2023.09.23.559147v6.24) 2016 Li (2023.09.23.559147v6.57) 2022 Hurvich, Jameson (2023.09.23.559147v6.45) 1957; 64 Conway, Malik-Moraleda, Gibson (2023.09.23.559147v6.48) 2023 Li, Gomez-Villa, Bertalmío, Malo (2023.09.23.559147v6.31) 2022; 22 Raghavan, Thomson (2023.09.23.559147v6.21) 2019 Shen, Dwivedi, Majima, Horikawa, Kamitani (2023.09.23.559147v6.13) 2019; 13 Hochreiter, Schmidhuber (2023.09.23.559147v6.34) 1997; 9 Chang (2023.09.23.559147v6.37) 2019; 6 Kamitani, Tong (2023.09.23.559147v6.17) 2005; 8 Huang (2023.09.23.559147v6.36) 2024; 112 Mordvintsev, Olah, Tyka (2023.09.23.559147v6.40) 2015 Allen (2023.09.23.559147v6.53) 2021 Power (2023.09.23.559147v6.1) 2011; 72 Ren (2023.09.23.559147v6.15) 2021; 228 Miyawaki (2023.09.23.559147v6.6) 2009; 60 Goodfellow (2023.09.23.559147v6.33) 2014; 27 Bontempi (2023.09.23.559147v6.38) 2021 Li (2023.09.23.559147v6.23) 2023; 34 Yamins, Hong, Cadieu, DiCarlo (2023.09.23.559147v6.43) 2013; 26 Li, Steeg, Yu, Malo (2023.09.23.559147v6.54) 2022; 24 Schurgin (2023.09.23.559147v6.4) 2018; 80 Park, Friston (2023.09.23.559147v6.2) 2013; 342 Liu (2023.09.23.559147v6.8) 2016; 143 Fujiwara, Miyawaki, Kamitani (2023.09.23.559147v6.11) 2009; 22 Quan, Chen, Pang, Ji (2023.09.23.559147v6.29) 2020 Zhang, Zuo, Zhang (2023.09.23.559147v6.25) 2017 Stanley, Li, Dan (2023.09.23.559147v6.30) 1999; 19 Naselaris, Prenger, Kay, Oliver, Gallant (2023.09.23.559147v6.19) 2009; 63 Abdelhack, Kamitani (2023.09.23.559147v6.49) 2018; 5 Li, Calhoun, Iraji (2023.09.23.559147v6.3) 2024; 822 Kay, Naselaris, Prenger, Gallant (2023.09.23.559147v6.20) 2008; 452 Nishimoto (2023.09.23.559147v6.16) 2011; 21 Buchsbaum, Gottschalk (2023.09.23.559147v6.46) 1983; 220 Soh, Cho (2023.09.23.559147v6.52) 2021 Naselaris, Kay, Nishimoto, Gallant (2023.09.23.559147v6.5) 2011; 56 Krizhevsky, Sutskever, Hinton (2023.09.23.559147v6.39) 2012; 25 Schmidhuber (2023.09.23.559147v6.50) 2014; 61 Li (2023.09.23.559147v6.9) 2022; 146 VanRullen, Reddy (2023.09.23.559147v6.14) 2019; 2 Chang, Cunningham, Glover (2023.09.23.559147v6.7) 2008; 44 Chen, Lin, Wang, Yang, Cheng (2023.09.23.559147v6.27) 2021; 30 Ozcelik, VanRullen (2023.09.23.559147v6.32) 2023; 13 Ulyanov, Vedaldi, Lempitsky (2023.09.23.559147v6.28) 2020; 128 Li, Ver Steeg, Malo (2023.09.23.559147v6.55) 2023; 571 Li (2023.09.23.559147v6.56) 2021 Hering (2023.09.23.559147v6.47) 1878 Guo, Yan, Zhang, Zuo, Zhang (2023.09.23.559147v6.26) 2019 Li, Fergus, Perona, Zekrifa (2023.09.23.559147v6.51) 2013; 106 Szegedy (2023.09.23.559147v6.41) 2015 Li, Calhoun, Pham, Iraji (2023.09.23.559147v6.10) 2024; 34 Shen, Horikawa, Majima, Kamitani (2023.09.23.559147v6.12) 2019; 15 Yamins, DiCarlo (2023.09.23.559147v6.42) 2016; 19 Hartmann, Lazar, Nessler, Triesch (2023.09.23.559147v6.22) 2015; 11 Cadieu (2023.09.23.559147v6.44) 2014; 10 Maass (2023.09.23.559147v6.35) 1997; 10 |
| References_xml | – volume: 220 start-page: 113 year: 1983 end-page: 89 ident: 2023.09.23.559147v6.46 article-title: Trichromacy, opponent colours coding and optimum colour information transmission in the retina publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences – start-page: 109 year: 2022 end-page: 116 ident: 2023.09.23.559147v6.57 article-title: Investigate Bidirectional Functional Brain Networks Using Directed Information publication-title: in 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) – volume: 143 year: 2016 ident: 2023.09.23.559147v6.8 article-title: Noise contributions to the fMRI signal: An Overview publication-title: NeuroImage – volume: 10 start-page: 1659 year: 1997 end-page: 1671 ident: 2023.09.23.559147v6.35 article-title: Networks of spiking neurons: The third generation of neural network models publication-title: Neural Networks – volume: 27 year: 2014 ident: 2023.09.23.559147v6.33 publication-title: in Advances in Neural Information Processing Systems – year: 2017 ident: 2023.09.23.559147v6.25 article-title: FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising publication-title: IEEE Transactions on Image Processing PP – volume: 30 start-page: 2313 year: 2021 end-page: 2324 ident: 2023.09.23.559147v6.27 article-title: Spatial Information Guided Convolution for Real-Time RGBD Semantic Segmentation publication-title: IEEE Transactions on Image Processing – volume: 56 start-page: 400 year: 2011 end-page: 10 ident: 2023.09.23.559147v6.5 article-title: Encoding and decoding in fMRI publication-title: NeuroImage – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: 2023.09.23.559147v6.1 article-title: Functional Network Organization of the Human Brain publication-title: Neuron – year: 2021 ident: 2023.09.23.559147v6.52 article-title: Deep Universal Blind Image Denoising publication-title: in (25th International Conference on Pattern Recognition, Underline Science I – year: 2015 ident: 2023.09.23.559147v6.40 publication-title: Inceptionism: Going Deeper into Neural Networks – volume: 44 start-page: 857 year: 2008 end-page: 69 ident: 2023.09.23.559147v6.7 article-title: Influence of heart rate on the BOLD signal: The cardiac response function publication-title: NeuroImage – volume: 34 year: 2023 ident: 2023.09.23.559147v6.23 article-title: Saliency prediction based on multi-channel models of visual processing publication-title: Machine Vision and Applications – volume: 15 start-page: e1006633 year: 2019 ident: 2023.09.23.559147v6.12 article-title: Deep image reconstruction from human brain activity publication-title: PLOS Computational Biology – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: 2023.09.23.559147v6.34 article-title: Long short-term memory publication-title: Neural computation – volume: 13 year: 2023 ident: 2023.09.23.559147v6.32 article-title: Natural scene reconstruction from fMRI signals using generative latent diffusion publication-title: Scientific Reports – volume: 822 start-page: 137624 year: 2024 ident: 2023.09.23.559147v6.3 article-title: Revealing complex functional topology brain network correspondences between humans and marmosets publication-title: Neuroscience Letters – volume: 26 year: 2013 ident: 2023.09.23.559147v6.43 publication-title: in Advances in Neural Information Processing Systems – volume: 228 start-page: 117602 year: 2021 ident: 2023.09.23.559147v6.15 article-title: Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning publication-title: NeuroImage – year: 2016 ident: 2023.09.23.559147v6.24 article-title: Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising publication-title: IEEE Transactions on Image Processing PP – volume: 22 year: 2009 ident: 2023.09.23.559147v6.11 publication-title: in Advances in Neural Information Processing Systems – start-page: 1712 year: 2019 end-page: 1722 ident: 2023.09.23.559147v6.26 article-title: Toward Convolutional Blind Denoising of Real Photographs publication-title: in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 33 start-page: 1104 year: 2007 end-page: 16 ident: 2023.09.23.559147v6.18 article-title: Inverse retinotopy: Inferring the visual content of images from brain activation patterns publication-title: NeuroImage – volume: 60 start-page: 915 year: 2009 end-page: 29 ident: 2023.09.23.559147v6.6 article-title: Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders publication-title: Neuron – volume: 34 year: 2024 ident: 2023.09.23.559147v6.10 article-title: Exploring nonlinear dynamics in brain functionality through phase portraits and fuzzy recurrence plots publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – volume: 64 start-page: 384 year: 1957 end-page: 404 ident: 2023.09.23.559147v6.45 article-title: An opponent-process theory of color vision publication-title: Psychological review – start-page: 1 year: 2015 end-page: 9 ident: 2023.09.23.559147v6.41 article-title: Going deeper with convolutions publication-title: in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2021 ident: 2023.09.23.559147v6.38 publication-title: “Statistical foundations of machine learning” – volume: 21 start-page: 1641 year: 2011 end-page: 6 ident: 2023.09.23.559147v6.16 article-title: Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies publication-title: Current biology : CB – volume: 11 start-page: e1004640 year: 2015 ident: 2023.09.23.559147v6.22 article-title: Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network publication-title: PLoS computational biology – volume: 5 year: 2018 ident: 2023.09.23.559147v6.49 article-title: Sharpening of Hierarchical Visual Feature Representations of Blurred Images publication-title: eneuro – volume: 10 start-page: 1 year: 2014 end-page: 18 ident: 2023.09.23.559147v6.44 article-title: Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition publication-title: PLOS Computational Biology – volume: 80 year: 2018 ident: 2023.09.23.559147v6.4 article-title: Visual memory, the long and the short of it: A review of visual working memory and long-term memory publication-title: Attention, Perception, Psychophysics – year: 1878 ident: 2023.09.23.559147v6.47 publication-title: Zur Lehre vom Lichtsinne: sechs Mittheilungen an die Kaiser. Akad. der Wissenschaften in Wien – start-page: 1887 year: 2020 end-page: 1895 ident: 2023.09.23.559147v6.29 article-title: Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image publication-title: in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 61 start-page: 85 year: 2014 end-page: 117 ident: 2023.09.23.559147v6.50 article-title: Deep learning in neural networks: An overview publication-title: Neural networks : the official journal of the International Neural Network Society – volume: 19 start-page: 8036 year: 1999 end-page: 42 ident: 2023.09.23.559147v6.30 article-title: Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus publication-title: The Journal of neuroscience : the official journal of the Society for Neuroscience – volume: 112 start-page: 102573 year: 2024 ident: 2023.09.23.559147v6.36 article-title: From Sight to Insight: A Multi-task Approach with the Visual Language Decoding Model publication-title: Information Fusion – volume: 6 year: 2019 ident: 2023.09.23.559147v6.37 article-title: BOLD5000, a public fMRI dataset while viewing 5000 visual images publication-title: Scientific Data – year: 2023 ident: 2023.09.23.559147v6.48 article-title: Color appearance and the end of Hering’s Opponent-Colors Theory publication-title: Trends in Cognitive Sciences – volume: 22 start-page: 8 year: 2022 end-page: 8 ident: 2023.09.23.559147v6.31 article-title: Contrast sensitivity functions in autoencoders publication-title: Journal of Vision – volume: 571 start-page: 127143 year: 2023 ident: 2023.09.23.559147v6.55 article-title: Functional connectivity via total correlation: Analytical results in visual areas publication-title: Neurocomputing – start-page: 57 year: 2021 end-page: 66 ident: 2023.09.23.559147v6.56 publication-title: in Brain Informatics – volume: 106 start-page: 59 year: 2013 end-page: 70 ident: 2023.09.23.559147v6.51 article-title: Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories publication-title: Computer Vision and Image Understanding – volume: 146 start-page: 85 year: 2022 end-page: 97 ident: 2023.09.23.559147v6.9 article-title: Functional connectivity inference from fMRI data using multivariate information measures publication-title: Neural Networks – volume: 25 year: 2012 ident: 2023.09.23.559147v6.39 publication-title: in Advances in Neural Information Processing Systems – year: 2019 ident: 2023.09.23.559147v6.21 publication-title: Neural networks grown and self-organized by noise in NeurIPS – volume: 2 year: 2019 ident: 2023.09.23.559147v6.14 article-title: Reconstructing faces from fMRI patterns using deep generative neural networks publication-title: Communications Biology – volume: 452 start-page: 352 year: 2008 end-page: 5 ident: 2023.09.23.559147v6.20 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 19 start-page: 356 year: 2016 end-page: 365 ident: 2023.09.23.559147v6.42 article-title: Using goal-driven deep learning models to understand sensory cortex publication-title: Nat. Neurosci – year: 2021 ident: 2023.09.23.559147v6.53 article-title: A massive 7T fMRI dataset to bridge cognitive and computational neuroscience publication-title: bioRxiv – volume: 13 start-page: 21 year: 2019 ident: 2023.09.23.559147v6.13 article-title: End-to-End Deep Image Reconstruction From Human Brain Activity publication-title: Frontiers in Computational Neuroscience – volume: 63 start-page: 902 year: 2009 end-page: 15 ident: 2023.09.23.559147v6.19 article-title: Bayesian Reconstruction of Natural Images from Human Brain Activity publication-title: Neuron – volume: 8 start-page: 679 year: 2005 end-page: 85 ident: 2023.09.23.559147v6.17 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nature neuroscience – volume: 24 start-page: 1725 year: 2022 ident: 2023.09.23.559147v6.54 article-title: Functional Connectome of the Human Brain with Total Correlation publication-title: Entropy – volume: 342 start-page: 1238411 year: 2013 ident: 2023.09.23.559147v6.2 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science – volume: 128 year: 2020 ident: 2023.09.23.559147v6.28 article-title: Deep Image Prior publication-title: International Journal of Computer Vision |
| SSID | ssj0002961374 |
| Score | 1.7445607 |
| SecondaryResourceType | preprint |
| Snippet | In recent years, substantial strides have been made in the field of visual image reconstruction, particularly in its capacity to generate high-quality visual... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Activity patterns Brain Computational neuroscience Image processing Neural networks Neuroimaging Neuroscience Noise reduction Semantics Structure-function relationships |
| Title | Visual Image Reconstructed Without Semantics from Human Brain Activity Using Linear Image Decoders and Nonlinear Noise Suppression |
| URI | https://www.proquest.com/docview/2928711090 https://www.biorxiv.org/content/10.1101/2023.09.23.559147 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjyjY9VIngtdvtItidxfaCgpfj2VNJkigVt1-0qevWXO9NGPQhevATSQCiTyWRmMvk-xnbA1yYIte9kgZs5gQg9B7186ejcy5XuZcI0zHM3ZzKO-3d3UWITbrUtq_yyiY2hNpWmHPmuF5FvT2WEe8Nnh1ij6HbVUmhMsg4hlaGedwZHcXLxnWXxIjyuGihmT0S49T03tFebqIoU-PuEcootOtY9oliZyYpq9Fa8_jLNzXlzPPffP51nnUQNYbTAJqBcZDMt4-T7Evu4KeoX9chPn9COcIo9LYIsGH5bjB-qlzG_hCcUd6FrTm9PeJPm5wOikuD7uiWb4E2lAcdAFjeKnewQ6Hn8qOaqNDxuEThwMK6KGjiRh7YVt-Uyuz4-ujo4cSwNg5M1OA6yH6GPJGVoFAh0nyKZB9oH6EEQCSMF6EBnErvKaJP3jK-k6xp0U7SBHD_4K2yqrEpYZVxJwLkyIcmr8BVkpq9EX2PIB57MRbjGtq3802ELtpHSGqVulGLbrtEa636JPbX7rU5_ZL7-9_AGm8UZLVRjl02hiGGTTevXcVGPtqz6bFEFaIK95PQ8uf8E0ejRNA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUkRP0ELFlpcrlWPUrJPYmwOqeIoVS7QSz56CY0_USJAsm4WWa38Qv5Fxki0HJG4cuFhKLI1kz6d52OP5AL6jp40faM9JfDdxfBFwh6J86eiUp0p3EmEq5rnzvoyi7uVlOJiCx8lbGFtWObGJlaE2hbZn5D94aGN7W0b4c3jrWNYoe7s6odCoYXGED38oZSu3enuk303OD_ZPdw-dhlXASaq2BLIbksuXMjAKBUUDoUx97SF20A-FkQK1rxNJn8pok3aMp6TrGvK62mBKPzySOw0zPoHdbcHMoHc8-PX_VIeH5B6r1s9chGRquBs0V6kEfXvQ4NmuqjRSIN-xlC6zSVaM_mb3L1xB5d8O5t_bzizQjqghjj7BFOafYbZm1HxYhH_nWXmnrlnvhuwks7l10yEXDbvIxr-LuzE7wRuCU6ZLZt_WsOoag-1Yqgy2rWsyDVZVUjBK1GldjbA9tM__RyVTuWFR3WGEJqMiK5FZctS6ojhfgrM3WfYXaOVFjsvAlESSlQhpoyZPYWK6SnQ1pbTIZSqCNnxr9B0P62YiscVE7IYxjTUm2rA6UXPc2JMyftbx19enN2Du8PS4H_d70dEKfCTpTVvKVWjRduMafND346wcrTfQZXD11ph4AvnMLao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Image+Reconstructed+Without+Semantics+from+Human+Brain+Activity+Using+Linear+Image+Decoders+and+Nonlinear+Noise+Suppression&rft.jtitle=bioRxiv&rft.au=Li%2C+Qiang&rft.date=2024-12-31&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.09.23.559147&rft.externalDocID=2023.09.23.559147v6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |