Molecular dependencies and genomic consequences of a global DNA damage tolerance defect

DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants. Double mutant (DM) cells displayed increased replication stress, hypersensitivit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:bioRxiv
Hlavní autoři: Groot, Daniel De, Spanjaard, Aldo, Shah, Ronak, Kreft, Maaike, Morris, Ben, Cor Lieftink Sr, Joyce Ji Catsman, Ormel, Shirley, Ayidah, Matilda, Pilzecker, Bas, Buoninfante, Olimpia Alessandra, Paul Cm Van Denberk, Beijersbergen, Roderick L, Jacobs, Heinz
Médium: Paper
Jazyk:angličtina
Vydáno: Cold Spring Harbor Cold Spring Harbor Laboratory Press 06.11.2023
Cold Spring Harbor Laboratory
Vydání:1.2
Témata:
ISSN:2692-8205, 2692-8205
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants. Double mutant (DM) cells displayed increased replication stress, hypersensitivity to genotoxic agents, replication speed, and repriming. A whole genome CRISPR-Cas9 screen revealed a strict reliance of DM cells on the CST complex, where CST promotes fork stability. Whole genome sequencing indicated that this DM DDT defect favors the generation of large, replication-stress inducible deletions of 0.4-4.0kbp, defined as type 3 deletions. Junction break sites of these deletions revealed preferential microhomology preferences of 1-2 base pairs, differing from the smaller type 1 and type 2 deletions. These differential characteristics suggest the existence of molecularly distinct deletion pathways. Type 3 deletions are abundant in human tumors, can dominate the deletion landscape and are associated with DNA damage response status and treatment modality. Our data highlight the essential contribution of the DDT system to genome maintenance and type 3 deletions as mutational signature of replication stress. The unique characteristics of type 3 deletions implicate the existence of a novel deletion pathway in mice and humans that is counteracted by DDT.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Corrected some typographical errors and improved layout.
AbstractList DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants. Double mutant (DM) cells displayed increased replication stress, hypersensitivity to genotoxic agents, replication speed, and repriming. A whole genome CRISPR-Cas9 screen revealed a strict reliance of DM cells on the CST complex, where CST promotes fork stability. Whole genome sequencing indicated that this DM DDT defect favors the generation of large, replication-stress inducible deletions of 0.4-4.0kbp, defined as type 3 deletions. Junction break sites of these deletions revealed preferential microhomology preferences of 1-2 base pairs, differing from the smaller type 1 and type 2 deletions. These differential characteristics suggest the existence of molecularly distinct deletion pathways. Type 3 deletions are abundant in human tumors, can dominate the deletion landscape and are associated with DNA damage response status and treatment modality. Our data highlight the essential contribution of the DDT system to genome maintenance and type 3 deletions as mutational signature of replication stress. The unique characteristics of type 3 deletions implicate the existence of a novel deletion pathway in mice and humans that is counteracted by DDT.
DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. To determine the molecular and genomic impact of a global DDT defect, we studied PcnaK164R/-;Rev1-/- compound mutants. Double mutant (DM) cells displayed increased replication stress, hypersensitivity to genotoxic agents, replication speed, and repriming. A whole genome CRISPR-Cas9 screen revealed a strict reliance of DM cells on the CST complex, where CST promotes fork stability. Whole genome sequencing indicated that this DM DDT defect favors the generation of large, replication-stress inducible deletions of 0.4-4.0kbp, defined as type 3 deletions. Junction break sites of these deletions revealed preferential microhomology preferences of 1-2 base pairs, differing from the smaller type 1 and type 2 deletions. These differential characteristics suggest the existence of molecularly distinct deletion pathways. Type 3 deletions are abundant in human tumors, can dominate the deletion landscape and are associated with DNA damage response status and treatment modality. Our data highlight the essential contribution of the DDT system to genome maintenance and type 3 deletions as mutational signature of replication stress. The unique characteristics of type 3 deletions implicate the existence of a novel deletion pathway in mice and humans that is counteracted by DDT.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Corrected some typographical errors and improved layout.
Author Shah, Ronak
Morris, Ben
Buoninfante, Olimpia Alessandra
Cor Lieftink Sr
Joyce Ji Catsman
Pilzecker, Bas
Kreft, Maaike
Paul Cm Van Denberk
Jacobs, Heinz
Spanjaard, Aldo
Ormel, Shirley
Ayidah, Matilda
Beijersbergen, Roderick L
Groot, Daniel De
Author_xml – sequence: 1
  givenname: Daniel
  surname: Groot
  middlename: De
  fullname: Groot, Daniel De
– sequence: 2
  givenname: Aldo
  surname: Spanjaard
  fullname: Spanjaard, Aldo
– sequence: 3
  givenname: Ronak
  surname: Shah
  fullname: Shah, Ronak
– sequence: 4
  givenname: Maaike
  surname: Kreft
  fullname: Kreft, Maaike
– sequence: 5
  givenname: Ben
  surname: Morris
  fullname: Morris, Ben
– sequence: 6
  fullname: Cor Lieftink Sr
– sequence: 7
  fullname: Joyce Ji Catsman
– sequence: 8
  givenname: Shirley
  surname: Ormel
  fullname: Ormel, Shirley
– sequence: 9
  givenname: Matilda
  surname: Ayidah
  fullname: Ayidah, Matilda
– sequence: 10
  givenname: Bas
  surname: Pilzecker
  fullname: Pilzecker, Bas
– sequence: 11
  givenname: Olimpia
  surname: Buoninfante
  middlename: Alessandra
  fullname: Buoninfante, Olimpia Alessandra
– sequence: 12
  fullname: Paul Cm Van Denberk
– sequence: 13
  givenname: Roderick
  surname: Beijersbergen
  middlename: L
  fullname: Beijersbergen, Roderick L
– sequence: 14
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
BookMark eNpNkDtPAzEQhC0UJELID6CzRENzwfbZZ18ZhacUoAFRWn6so4sudvAlCP49hlBQ7a7m02hnTtEopggInVMyo5TQK0ZYPfs9ZqKhSvAjNGZNyyrFiBj920_QdBjWhBDWNrSWfIzeHlMPbt-bjD1sIXqIroMBm-jxCmLadA67FAd43xelCClgg1d9sqbH109z7M3GrADvik02hSg2AdzuDB0H0w8w_ZsT9Hp787K4r5bPdw-L-bKylHBeWQjB2GCk58Bq2YK0gQtqWiUk1B4oB-Fq6RtPPWtsYII55hQLMrTCK1ZP0OXB13Ypf3Yfepu7jclf-qcTTYmmVB86KejFAd3mVNIMO71O-xzLd5op1XAhBFf1N5RzYwU
ContentType Paper
Copyright 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.10.11.561854v2
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.10.11.561854v2
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2023.10.11.561854
DatabaseName bioRxiv
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 2023.10.11.561854v2
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1044-beffabfa7d4e2379e7bf451a9857e3de14e5c37d6d1d26bf252c2c82f7f95d823
ISSN 2692-8205
IngestDate Tue Jan 07 18:59:30 EST 2025
Fri Jul 25 09:19:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b1044-beffabfa7d4e2379e7bf451a9857e3de14e5c37d6d1d26bf252c2c82f7f95d823
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.10.11.561854
PQID 2886455548
PQPubID 2050091
PageCount 39
ParticipantIDs biorxiv_primary_2023_10_11_561854
proquest_journals_2886455548
PublicationCentury 2000
PublicationDate 20231106
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 20231106
  day: 06
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References van Bostelen, van Schendel, Romeijn, Tijsterman (2023.10.11.561854v2.78) 2020; 16
Friedberg (2023.10.11.561854v2.9) 2005; 6
Barazas, Annunziato, Pevf, de Krijger, Ghezraoui, Roobol, Lutz, Frankum, Song, Brough (2023.10.11.561854v2.40) 2018; 23
Zhang, Wang, Li, Liu, Xiao, Geng, Li, Liu, Price, Liu (2023.10.11.561854v2.58) 2019; 47
Edmunds, Simpson, Sale (2023.10.11.561854v2.24) 2008; 30
Langerak, Nygren, Krijger, van den Berk, Jacobs (2023.10.11.561854v2.37) 2007; 204
Ogi, Limsirichaikul, Overmeer, Volker, Takenaka, Cloney, Nakazawa, Niimi, Miki, Jaspers (2023.10.11.561854v2.17) 2010; 37
Hara, Nakaoka, Miyoshi, Ishikawa (2023.10.11.561854v2.43) 2023; 18
Chang, Pannunzio, Adachi, Lieber (2023.10.11.561854v2.11) 2017; 18
Buoninfante, Pilzecker, Aslam, Zavrakidis, van der Wiel, van de Ven, van den Berk, Jacobs (2023.10.11.561854v2.46) 2018; 9
Chou (2023.10.11.561854v2.49) 2010; 70
Gasparayan, Caridi, Julius, Feng, Bachant, Nugent (2023.10.11.561854v2.44) 2022; 68
Marsn-Pardillos, Tsaalbi-Shtylik, Chen, Lazare, van Os, Dethmers-Ausema, Fakouri, Bosshard, Aprigliano, van Loon (2023.10.11.561854v2.33) 2017; 130
Pilzecker, Jacobs (2023.10.11.561854v2.57) 2019; 10
Hendel, Krijger, Diamant, Goren, Langerak, Kim, Reißner, Lee, Geacintov, Carell (2023.10.11.561854v2.70) 2011; 7
Budzowska, Graham, Sobeck, Waga, Walter (2023.10.11.561854v2.16) 2015; 34
Garaycoechea, Crossan, Langevin, Mulderrig, Louzada, Yang, Guilbaud, Park, Roerink, Nik-Zainal (2023.10.11.561854v2.2) 2018; 553
Wit, Buoninfante, van den Berk, Jansen, Hogenbirk, de Wind, Jacobs (2023.10.11.561854v2.21) 2015; 43
Alexandrov, Kim, Haradhvala, Huang, Tian Ng, Wu, Boot, Covington, Gordenin, Bergstrom (2023.10.11.561854v2.63) 2020; 578
Spanjaard, Shah, de Groot, Buoninfante, Morris, Lietink, Pritchard, Zürcher, Ormel, Catsman (2023.10.11.561854v2.36) 2022; 50
Pilzecker, Buoninfante, Van Den Berk, Lancini, Song, Ciferio, Jacobs (2023.10.11.561854v2.7) 2017; 114
Dirac, Bernards (2023.10.11.561854v2.47) 2003; 278
Li, Durbin (2023.10.11.561854v2.50) 2009; 25
Cameron, Schröder, Penington, Do, Molania, Dobrovic, Speed, Papenfuss (2023.10.11.561854v2.51) 2017; 27
Quinet, Carvajal-Maldonado, Lemacon, Vindigni (2023.10.11.561854v2.56) 2017
Wu, Yang, Tsai (2023.10.11.561854v2.13) 2017; 1
Guo, Fischhaber, Luk-Paszyc, Masuda, Zhou, Kamiya, Kisker, Friedberg (2023.10.11.561854v2.26) 2003; 22
Sharma, Canman (2023.10.11.561854v2.76) 2012; 53
Gao, Mufer-Rofmayer, Greenwalt, Goldfarb, Yan, Yang, Martinez-Chacin, Pearce, Tateishi, Major (2023.10.11.561854v2.10) 2016; 7
Daigaku, Davies, Ulrich (2023.10.11.561854v2.22) 2010; 465
Vujanovic, Krietsch, Raso, Terraneo, Zellweger, Schmid, Taglialatela, Huang, Holland, Zwicky (2023.10.11.561854v2.23) 2017; 67
Schumacher, Pothof, Vijg, Hoeijmakers (2023.10.11.561854v2.3) 2021; 592
Maya-Mendoza, Moudry, Merchut-Maya, Lee, Strauss, Bartek (2023.10.11.561854v2.74) 2018; 559
Lyu, Lei, Biak Sang, Shiva, Chastain, Chi, Chai (2023.10.11.561854v2.41) 2021; 40
Bainbridge, Teague, Doherty (2023.10.11.561854v2.67) 2021; 49
Klug, Cummings, Spencer, Palladino (2023.10.11.561854v2.60) 2015
Yang, Gao (2023.10.11.561854v2.29) 2018; 87
He, Lin, Chavez, Agrawal, Lusk, Lim (2023.10.11.561854v2.45) 2022; 608
Tsuda, Terada, Ooka, Kobayashi, Sasanuma, Fujisawa, Tsurimoto, Yamamoto, Iwai, Kadoda (2023.10.11.561854v2.54) 2017; 8
Hodskinson, Bolner, Sato, Kamimae-Lanning, Rooijers, Wife, Mahesh, Silhan, Petek, Williams (2023.10.11.561854v2.32) 2020; 579
Tubbs, Nussenzweig (2023.10.11.561854v2.1) 2017; 168
Avkin, Sevilya, Toube, Geacintov, Chaney, Oren, Livneh (2023.10.11.561854v2.34) 2006; 22
Koole, Van Schendel, Karambelas, Van Heteren, Okihara, Tijsterman (2023.10.11.561854v2.73) 2014; 5
Pilzecker, Buoninfante, Pritchard, Blomberg, Huijbers, van den Berk, Jacobs (2023.10.11.561854v2.14) 2016; 44
Murga, Campaner, Lopez-Contreras, Toledo, Soria, Montaña, D’Artista, Schleker, Guerra, Garcia (2023.10.11.561854v2.71) 2011; 18
Quinet, Tirman, Cybulla, Meroni, Vindigni (2023.10.11.561854v2.68) 2021; 81
Knipscheer, Enoiu, Angelov, Sun, Griffith, Walter, Ellenberger, Scha (2023.10.11.561854v2.15) 2008; 134
Ross, Simpson, Sale (2023.10.11.561854v2.25) 2005; 33
Goodman, Woodgate (2023.10.11.561854v2.30) 2013; 5
Roepman, de Bruijn, van Lieshout, Schoenmaker, Boelens, Dubbink, Geurts-Giele, Groenendijk, Huibers, Kranendonk (2023.10.11.561854v2.53) 2021; 23
Scully, Panday, Elango, Willis (2023.10.11.561854v2.61) 2019; 20
Ran, Hsu, Wright, Agarwala, Scof, Zhang (2023.10.11.561854v2.48) 2013; 8
Stewart, Wang, Ackerson, Schuck (2023.10.11.561854v2.59) 2018; 23
Gyüre, Póti, Németh, Szikriszt, Lózsa, Krawczyk, Richardson, Szüts (2023.10.11.561854v2.79) 2023; 42
Nguyen, Kim, Le, Ding, Jaiswal, Kostlan, Nguyen, Shiva, Le, Chai (2023.10.11.561854v2.42) 2023; 9
Rossi, Bryder, Seita, Nussenzweig, Hoeijmakers, Weissman (2023.10.11.561854v2.4) 2007; 447
Chapman, Taylor, Boulton (2023.10.11.561854v2.62) 2012; 47
Deans, West (2023.10.11.561854v2.77) 2011; 11
Wu, Semlow, Kamimae-Lanning, Kochenova, Chistol, Hodskinson, Amunugama, Sparks, Wang, Deng (2023.10.11.561854v2.6) 2019; 567
Quinet, Martins, Vessoni, Biard, Sarasin, Stary, Menck (2023.10.11.561854v2.27) 2016; 44
Weaver, Click, Khoang, Todd Washington, Agarwal, Freudenthal (2023.10.11.561854v2.31) 2022; 13
Tzelepis, Koike-Yusa, De Braekeleer, Li, Metzakopian, Dovey, Mupo, Grinkevich, Li, Mazan (2023.10.11.561854v2.55) 2016; 17
Lopes, Foiani, Sogo (2023.10.11.561854v2.75) 2006; 21
Parra, Windle (2023.10.11.561854v2.65) 1993; 5
Jacobs, Doerdelmann, Krietsch, González-Acosta, Mathis, Kushinsky, Guarino, Gómez-Escolar, Martinez, Schmid (2023.10.11.561854v2.66) 2022; 82
Biertümpfel, Zhao, Kondo, Ramón-Maiques, Gregory, Lee, Masutani, Lehmann, Hanaoka, Yang (2023.10.11.561854v2.5) 2010; 465
Mcculloch, Kunkel (2023.10.11.561854v2.12) 2008; 18
Rice, Skordalakes (2023.10.11.561854v2.39) 2016; 14
Mailand, Gibbs-Seymour, Bekker-Jensen (2023.10.11.561854v2.28) 2013; 14
Tomas-Roca, Tsaalbi-Shtylik, Jansen, Singh, Epstein, Altunoglu, Verzijl, Soria, van Beusekom, Roscioli (2023.10.11.561854v2.8) 2015; 6
McCulloch, Kunkel (2023.10.11.561854v2.20) 2008; 18
Silverstein, Johnson, Jain, Prakash, Prakash, Aggarwal (2023.10.11.561854v2.35) 2010; 465
Bensimon, Simon, Chiffaudel, Croquefe, Heslot, Bensimon (2023.10.11.561854v2.64) 1994; 265
Krijger, van den Berk, Wit, Langerak, Jansen, Reynaud, de Wind, Jacobs (2023.10.11.561854v2.69) 2011; 10
Sale, Lehmann, Woodgate (2023.10.11.561854v2.19) 2012; 13
Gaillard, García-Muse, Aguilera (2023.10.11.561854v2.72) 2015; 15
Auwera (2023.10.11.561854v2.52) 2020
Pilzecker, Buoninfante, Jacobs (2023.10.11.561854v2.18) 2019; 47
Buoninfante, Pilzecker, Spanjaard, de Groot, Prekovic, Song, Lietink, Ayidah, Pritchard, Vivié (2023.10.11.561854v2.38) 2023; 120
References_xml – volume: 18
  start-page: e0289304
  year: 2023
  ident: 2023.10.11.561854v2.43
  article-title: The CST complex facilitates cell survival under oxidative genotoxic stress
  publication-title: PloS One
– volume: 68
  start-page: 165
  year: 2022
  end-page: 179
  ident: 2023.10.11.561854v2.44
  article-title: Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint
  publication-title: Curr. Genet
– volume: 20
  start-page: 698
  year: 2019
  end-page: 714
  ident: 2023.10.11.561854v2.61
  article-title: DNA double-strand break repair-pathway choice in somatic mammalian cells
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 204
  start-page: 1989
  year: 2007
  end-page: 1998
  ident: 2023.10.11.561854v2.37
  article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification
  publication-title: J. Exp. Med
– volume: 16
  start-page: 1
  year: 2020
  end-page: 20
  ident: 2023.10.11.561854v2.78
  article-title: Translesion synthesis polymerases are dispensable for C. Elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
  publication-title: PLoS Genet
– volume: 592
  start-page: 695
  year: 2021
  end-page: 703
  ident: 2023.10.11.561854v2.3
  article-title: The central role of DNA damage in the ageing process
  publication-title: Nature
– volume: 7
  start-page: 12105
  year: 2016
  ident: 2023.10.11.561854v2.10
  article-title: A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis
  publication-title: Nat. Commun
– volume: 7
  start-page: e1002262
  year: 2011
  ident: 2023.10.11.561854v2.70
  article-title: PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells
  publication-title: PLOS Genet
– volume: 15
  start-page: 276
  year: 2015
  end-page: 289
  ident: 2023.10.11.561854v2.72
  article-title: Replication stress and cancer
  publication-title: Nat. Rev. Cancer
– volume: 44
  start-page: 5717
  year: 2016
  end-page: 5731
  ident: 2023.10.11.561854v2.27
  article-title: Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: eadd8023
  year: 2023
  ident: 2023.10.11.561854v2.42
  article-title: Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair
  publication-title: Sci. Adv
– volume: 18
  start-page: 1331
  year: 2011
  end-page: 1335
  ident: 2023.10.11.561854v2.71
  article-title: Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors
  publication-title: Nat. Struct. Mol. Biol
– volume: 579
  start-page: 603
  year: 2020
  end-page: 608
  ident: 2023.10.11.561854v2.32
  article-title: Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms
  publication-title: Nature
– volume: 130
  start-page: 1523
  year: 2017
  end-page: 1534
  ident: 2023.10.11.561854v2.33
  article-title: Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions
  publication-title: Blood
– volume: 34
  start-page: 1971
  year: 2015
  end-page: 1985
  ident: 2023.10.11.561854v2.16
  article-title: Regulation of the Rev1–pol ζ complex during bypass of a DNA interstrand cross-link
  publication-title: EMBO J
– volume: 70
  start-page: 440
  year: 2010
  end-page: 446
  ident: 2023.10.11.561854v2.49
  article-title: Drug combination studies and their synergy quantification using the Chou-Talalay method
  publication-title: Cancer Res
– volume: 465
  start-page: 1039
  year: 2010
  end-page: 1043
  ident: 2023.10.11.561854v2.35
  article-title: Structural basis for the suppression of skin cancers by DNA polymerase η
  publication-title: Nature
– volume: 567
  start-page: 267
  year: 2019
  end-page: 272
  ident: 2023.10.11.561854v2.6
  article-title: TRAIP is a master regulator of DNA interstrand crosslink repair
  publication-title: Nature
– volume: 8
  start-page: 33457
  year: 2017
  end-page: 33474
  ident: 2023.10.11.561854v2.54
  article-title: The dominant role of proofreading exonuclease activity of replicative polymerase ε in cellular tolerance to cytarabine (Ara-C)
  publication-title: Oncotarget
– year: 2017
  ident: 2023.10.11.561854v2.56
  article-title: DNA Fiber Analysis: Mind the Gap! 1st ed
  publication-title: Elsevier Inc
– volume: 13
  start-page: 2876
  year: 2022
  ident: 2023.10.11.561854v2.31
  article-title: Mechanism of nucleotide discrimination by the translesion synthesis polymerase Rev1
  publication-title: Nat. Commun
– volume: 465
  start-page: 951
  year: 2010
  end-page: 955
  ident: 2023.10.11.561854v2.22
  article-title: Ubiquitin-dependent DNA damage bypass is separable from genome replication
  publication-title: Nature
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: 2023.10.11.561854v2.48
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc
– volume: 17
  start-page: 1193
  year: 2016
  end-page: 1205
  ident: 2023.10.11.561854v2.55
  article-title: A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia
  publication-title: Cell Rep
– volume: 10
  start-page: 1051
  year: 2011
  end-page: 1059
  ident: 2023.10.11.561854v2.69
  article-title: PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance
  publication-title: DNA Repair
– volume: 11
  start-page: 467
  year: 2011
  end-page: 480
  ident: 2023.10.11.561854v2.77
  article-title: DNA interstrand crosslink repair and cancer
  publication-title: Nat. Rev. Cancer
– volume: 81
  start-page: 649
  year: 2021
  end-page: 658
  ident: 2023.10.11.561854v2.68
  article-title: To skip or not to skip: choosing repriming to tolerate DNA damage
  publication-title: Mol. Cell
– volume: 465
  start-page: 1044
  year: 2010
  end-page: 1048
  ident: 2023.10.11.561854v2.5
  article-title: Structure and mechanism of human DNA polymerase eta
  publication-title: Nature
– volume: 22
  start-page: 407
  year: 2006
  end-page: 413
  ident: 2023.10.11.561854v2.34
  article-title: p53 and p21 Regulate Error-Prone DNA Repair to Yield a Lower Mutation Load
  publication-title: Mol. Cell
– volume: 23
  start-page: 1564
  year: 2018
  end-page: 1586
  ident: 2023.10.11.561854v2.59
  article-title: Emerging roles of CST in maintaining genome stability and human disease
  publication-title: Front. Biosci. Landmark Ed
– volume: 23
  start-page: 816
  year: 2021
  end-page: 833
  ident: 2023.10.11.561854v2.53
  article-title: Clinical Validation of Whole Genome Sequencing for Cancer Diagnostics
  publication-title: J. Mol. Diagn. JMD
– volume: 14
  start-page: 161
  year: 2016
  end-page: 167
  ident: 2023.10.11.561854v2.39
  article-title: Structure and function of the telomeric CST complex
  publication-title: Comput. Struct. Biotechnol. J
– volume: 13
  start-page: 141
  year: 2012
  end-page: 152
  ident: 2023.10.11.561854v2.19
  article-title: Y-family DNA polymerases and their role in tolerance of cellular DNA damage
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 18
  start-page: 148
  year: 2008
  end-page: 161
  ident: 2023.10.11.561854v2.20
  article-title: The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases
  publication-title: Cell Res
– volume: 40
  start-page: e103654
  year: 2021
  ident: 2023.10.11.561854v2.41
  article-title: Human CST complex protects stalled replication forks by directly blocking MRE11 degradation of nascent-strand DNA
  publication-title: EMBO J
– volume: 27
  start-page: 2050
  year: 2017
  end-page: 2060
  ident: 2023.10.11.561854v2.51
  article-title: GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
  publication-title: Genome Res
– volume: 120
  start-page: e2216055120
  year: 2023
  ident: 2023.10.11.561854v2.38
  article-title: Mammalian life depends on two distinct pathways of DNA damage tolerance
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 23
  start-page: 2107
  year: 2018
  end-page: 2118
  ident: 2023.10.11.561854v2.40
  article-title: The CST Complex Mediates End Protection at Double-Strand Breaks and Promotes PARP Inhibitor Sensitivity in BRCA1-Deficient Cells
  publication-title: Cell Rep
– volume: 278
  start-page: 11731
  year: 2003
  end-page: 11734
  ident: 2023.10.11.561854v2.47
  article-title: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53
  publication-title: J. Biol. Chem
– volume: 5
  start-page: 1
  year: 2014
  end-page: 10
  ident: 2023.10.11.561854v2.73
  article-title: A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites
  publication-title: Nat. Commun
– volume: 608
  start-page: 826
  year: 2022
  end-page: 832
  ident: 2023.10.11.561854v2.45
  article-title: Structures of the human CST-Polα– primase complex bound to telomere templates
  publication-title: Nature
– volume: 53
  start-page: 725
  year: 2012
  end-page: 740
  ident: 2023.10.11.561854v2.76
  article-title: REV1 and DNA polymerase zeta in DNA interstrand crosslink repair
  publication-title: Environ. Mol. Mutagen
– volume: 47
  start-page: 7163
  year: 2019
  end-page: 7181
  ident: 2023.10.11.561854v2.18
  article-title: DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy
  publication-title: Nucleic Acids Res
– volume: 553
  start-page: 171
  year: 2018
  end-page: 177
  ident: 2023.10.11.561854v2.2
  article-title: Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells
  publication-title: Nature
– volume: 134
  start-page: 969
  year: 2008
  end-page: 980
  ident: 2023.10.11.561854v2.15
  article-title: Mechanism of Replication-Coupled DNA Interstrand Crosslink Repair
  publication-title: Cell
– year: 2020
  ident: 2023.10.11.561854v2.52
  publication-title: Genomics in the cloud Using docker, gatk, and wdl in terra
– volume: 82
  start-page: 4176
  year: 2022
  end-page: 4188
  ident: 2023.10.11.561854v2.66
  article-title: Stress-triggered hematopoietic stem cell proliferation relies on PrimPol-mediated repriming
  publication-title: Mol. Cell
– volume: 18
  start-page: 495
  year: 2017
  end-page: 506
  ident: 2023.10.11.561854v2.11
  article-title: Non-homologous DNA end joining and alternative pathways to double-strand break repair
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 6
  start-page: 7199
  year: 2015
  ident: 2023.10.11.561854v2.8
  article-title: De novo mutations in PLXND1 and REV3L cause Möbius syndrome
  publication-title: Nat. Commun
– volume: 6
  start-page: 943
  year: 2005
  end-page: 953
  ident: 2023.10.11.561854v2.9
  article-title: Suffering in silence: the tolerance of DNA damage
  publication-title: Nat. Rev. Mol. Cell Biol
– volume: 18
  start-page: 148
  year: 2008
  end-page: 161
  ident: 2023.10.11.561854v2.12
  article-title: The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases
  publication-title: Cell Res
– volume: 5
  start-page: a010363
  year: 2013
  ident: 2023.10.11.561854v2.30
  article-title: Translesion DNA polymerases
  publication-title: Cold Spring Harb. Perspect. Biol
– volume: 44
  start-page: 4734
  year: 2016
  end-page: 4744
  ident: 2023.10.11.561854v2.14
  article-title: PrimPol prevents APOBEC/AID family mediated DNA mutagenesis
  publication-title: Nucleic Acids Res
– volume: 578
  start-page: 94
  year: 2020
  end-page: 101
  ident: 2023.10.11.561854v2.63
  article-title: The repertoire of mutational signatures in human cancer
  publication-title: Nature
– volume: 67
  start-page: 882
  year: 2017
  end-page: 890
  ident: 2023.10.11.561854v2.23
  article-title: Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity
  publication-title: Mol. Cell
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: 2023.10.11.561854v2.50
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinforma. Oxf. Engl
– volume: 37
  start-page: 714
  year: 2010
  end-page: 727
  ident: 2023.10.11.561854v2.17
  article-title: Three DNA Polymerases, Recruited by Different Mechanisms, Carry Out NER Repair Synthesis in Human Cells
  publication-title: Mol. Cell
– volume: 43
  start-page: 282
  year: 2015
  end-page: 294
  ident: 2023.10.11.561854v2.21
  article-title: Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 6621
  year: 2003
  end-page: 6630
  ident: 2023.10.11.561854v2.26
  article-title: Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
  publication-title: EMBO J
– volume: 21
  start-page: 15
  year: 2006
  end-page: 27
  ident: 2023.10.11.561854v2.75
  article-title: Multiple Mechanisms Control Chromosome Integrity ater Replication Fork Uncoupling and Restart at Irreparable UV Lesions
  publication-title: Mol. Cell
– volume: 265
  start-page: 2096
  year: 1994
  end-page: 2098
  ident: 2023.10.11.561854v2.64
  article-title: Alignment and sensitive detection of DNA by a moving interface
  publication-title: Science
– volume: 47
  start-page: 497
  year: 2012
  end-page: 510
  ident: 2023.10.11.561854v2.62
  article-title: Playing the end game: DNA double-strand break repair pathway choice
  publication-title: Mol. Cell
– volume: 168
  start-page: 644
  year: 2017
  end-page: 656
  ident: 2023.10.11.561854v2.1
  article-title: Endogenous DNA Damage as a Source of Genomic Instability in Cancer
  publication-title: Cell
– volume: 33
  start-page: 1280
  year: 2005
  end-page: 1289
  ident: 2023.10.11.561854v2.25
  article-title: Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1
  publication-title: Nucleic Acids Res
– volume: 87
  start-page: 239
  year: 2018
  end-page: 261
  ident: 2023.10.11.561854v2.29
  article-title: Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism
  publication-title: Annu. Rev. Biochem
– volume: 42
  start-page: 112887
  year: 2023
  ident: 2023.10.11.561854v2.79
  article-title: Spontaneous mutagenesis in human cells is controlled by REV1-Polymerase ζ and PRIMPOL
  publication-title: Cell Rep
– volume: 50
  start-page: 7420
  year: 2022
  end-page: 7435
  ident: 2023.10.11.561854v2.36
  article-title: Division of labor within the DNA damage tolerance system reveals non-epistatic and clinically actionable targets for precision cancer medicine
  publication-title: Nucleic Acids Res
– volume: 10
  year: 2019
  ident: 2023.10.11.561854v2.57
  article-title: Mutating for Good: DNA Damage Responses During Somatic Hypermutation
  publication-title: Front. Immunol
– volume: 5
  start-page: 17
  year: 1993
  end-page: 21
  ident: 2023.10.11.561854v2.65
  article-title: High resolution visual mapping of stretched DNA by fluorescent hybridization
  publication-title: Nat. Genet
– volume: 49
  start-page: 4831
  year: 2021
  end-page: 4847
  ident: 2023.10.11.561854v2.67
  article-title: Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication
  publication-title: Nucleic Acids Res
– volume: 30
  start-page: 519
  year: 2008
  end-page: 529
  ident: 2023.10.11.561854v2.24
  article-title: PCNA Ubiquitination and REV1 Define Temporally Distinct Mechanisms for Controlling Translesion Synthesis in the Avian Cell Line DT40
  publication-title: Mol. Cell
– year: 2015
  ident: 2023.10.11.561854v2.60
  publication-title: Concepts of genetics Eleventh edition
– volume: 9
  start-page: 18832
  year: 2018
  end-page: 18843
  ident: 2023.10.11.561854v2.46
  article-title: Precision cancer therapy: Profiting from tumor specific defects in the DNA damage tolerance system
  publication-title: Oncotarget
– volume: 447
  start-page: 725
  year: 2007
  end-page: 729
  ident: 2023.10.11.561854v2.4
  article-title: Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  publication-title: Nature
– volume: 114
  start-page: E6875
  year: 2017
  end-page: E6883
  ident: 2023.10.11.561854v2.7
  article-title: DNA damage tolerance in hematopoietic stem and progenitor cells in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 47
  start-page: 5243
  year: 2019
  end-page: 5259
  ident: 2023.10.11.561854v2.58
  article-title: Mammalian CST averts replication failure by preventing G-quadruplex accumulation
  publication-title: Nucleic Acids Res
– volume: 559
  start-page: 279
  year: 2018
  end-page: 284
  ident: 2023.10.11.561854v2.74
  article-title: High speed of fork progression induces DNA replication stress and genomic instability
  publication-title: Nature
– volume: 1
  start-page: 1
  year: 2017
  end-page: 16
  ident: 2023.10.11.561854v2.13
  article-title: How DNA polymerases catalyse replication and repair with contrasting fidelity
  publication-title: Nat. Rev. Chem
– volume: 14
  start-page: 269
  year: 2013
  end-page: 282
  ident: 2023.10.11.561854v2.28
  article-title: Regulation of PCNA–protein interactions for genome stability
  publication-title: Nat. Rev. Mol. Cell Biol
SSID ssj0002961374
Score 1.7043499
SecondaryResourceType preprint
Snippet DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. To determine the molecular and genomic impact of a global...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms CRISPR
DNA damage
Genomes
Genomics
Genotoxicity
Molecular Biology
Mutants
Replication
Whole genome sequencing
Title Molecular dependencies and genomic consequences of a global DNA damage tolerance defect
URI https://www.proquest.com/docview/2886455548
https://www.biorxiv.org/content/10.1101/2023.10.11.561854
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdgBYk3PsXYmIyEeKkyFufD9uMYnUB0IZo6UZ4iJ7a1jpF0aZnKf8_5o2lQJQQPvES1o8bR3S_22fe7O4ReS2F8Y-lRoCiXQaxVFDDYhgSKhCKGBZmSSttiEzTL2HTKc3-Ys7DlBGhds9WKz_-rqqEPlG1CZ_9B3d1DoQN-g9LhCmqH618p_mxd8Ha4LnALn6_LxGwSshoufNWjULsASZ8X5H12PJTiu-HxLOExrY0nkMpQPvpWbDlrzlez2w13p2mWm3h1mMM2PnlRXwnh6PPH17LpblyKS0fsrkUXK_QJVmsfQCRm31T_QIJENjIv7SB00lyDpWxPJU0gEiB5OHZ4NqSBPrEE5jiScpiQyZFzbKvtvu0Z3lYWMOMe2uYhGIDM5aH-PZt29rk4vRiPi8loOnkzvwlMoTHjkPdVV-6iAaEJh4lw8G6U5efdwRzhYOHY7N3di3hvOAz9dmtg2DeB0FsQ-tZqbk2UyUM0yMVctY_QHVU_RvddjdGfT9CXDg-4jwcMeMAeD7iPB9xoLLDDAwY8YIcH3OEBOzw8RReno8nJh8BX0whK2HLHQam0FqUWVMaKRJQrWuo4CQVnCVWRVGGskiqiMpWhJGmpSUIqUjGiqeaJZCR6hnbqplbPETY1yLQMSxVyZhL2cRpV9r_QqGTEdtErL5Ni7nKmFEZuhd1wFk5uu2h_La3Cfz2LgjCWxglYuOzFn2_voQcb6O2jnWX7Q71E96rb5WzRHniVHhgibw6t_ONZ_vUXKdZq1g
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dependencies+and+genomic+consequences+of+a+global+DNA+damage+tolerance+defect&rft.jtitle=bioRxiv&rft.au=Groot%2C+Daniel+De&rft.au=Spanjaard%2C+Aldo&rft.au=Shah%2C+Ronak&rft.au=Kreft%2C+Maaike&rft.date=2023-11-06&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.10.11.561854&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon