Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease

Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian proces...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Pinaya, Walter H L, Scarpazza, Cristina, Garcia-Dias, Rafael, Vieira, Sandra, Baecker, Lea, Da Costa, Pedro F, Redolfi, Alberto, Frisoni, Giovanni B, Pievani, Michela, Calhoun, Vince D, Sato, João R, Mechelli, Andrea, Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 11.02.2020
Cold Spring Harbor Laboratory
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community. Footnotes * https://github.com/Warvito/Normative-modelling-using-deep-autoencoders
AbstractList Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community. Footnotes * https://github.com/Warvito/Normative-modelling-using-deep-autoencoders
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer’s disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community.
Author Vieira, Sandra
Garcia-Dias, Rafael
Baecker, Lea
Pinaya, Walter H L
Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing
Redolfi, Alberto
Alzheimer's Disease Neuroimaging Initiative
Pievani, Michela
Da Costa, Pedro F
Scarpazza, Cristina
Sato, João R
Frisoni, Giovanni B
Calhoun, Vince D
Mechelli, Andrea
Author_xml – sequence: 1
  givenname: Walter
  surname: Pinaya
  middlename: H L
  fullname: Pinaya, Walter H L
– sequence: 2
  givenname: Cristina
  surname: Scarpazza
  fullname: Scarpazza, Cristina
– sequence: 3
  givenname: Rafael
  surname: Garcia-Dias
  fullname: Garcia-Dias, Rafael
– sequence: 4
  givenname: Sandra
  surname: Vieira
  fullname: Vieira, Sandra
– sequence: 5
  givenname: Lea
  surname: Baecker
  fullname: Baecker, Lea
– sequence: 6
  givenname: Pedro
  surname: Da Costa
  middlename: F
  fullname: Da Costa, Pedro F
– sequence: 7
  givenname: Alberto
  surname: Redolfi
  fullname: Redolfi, Alberto
– sequence: 8
  givenname: Giovanni
  surname: Frisoni
  middlename: B
  fullname: Frisoni, Giovanni B
– sequence: 9
  givenname: Michela
  surname: Pievani
  fullname: Pievani, Michela
– sequence: 10
  givenname: Vince
  surname: Calhoun
  middlename: D
  fullname: Calhoun, Vince D
– sequence: 11
  givenname: João
  surname: Sato
  middlename: R
  fullname: Sato, João R
– sequence: 12
  givenname: Andrea
  surname: Mechelli
  fullname: Mechelli, Andrea
– sequence: 13
  fullname: Alzheimer's Disease Neuroimaging Initiative
– sequence: 14
  fullname: Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing
BookMark eNpNkEtPwzAQhC0EEqX0B3CzxAEuKetHkppbVfGSKrjAOXJsp3UV28VOKsqvJ6UcuMzuaj-NRnOBTn3wBqErAlNCgNxRoDAFOh1uwciM8hM0ooWg2YxCfvpvP0eTlDYAQEVBWMlHaPcaopOd3RnsgjZta_0K9-mg2pgtln0XjFfDK6Z7LLHr285mKqxD7HDqer3HwWNnW41VWHn762TdVtrojO-w9BrP2--1sc7Em4S1TUYmc4nOGtkmM_mbY_Tx-PC-eM6Wb08vi_kyqwlwnnEhZSOY5kZwpfNGlY3MmZaUQw4qZ5wbWlM1qDS6LCUXM9VAzZpigIXWbIxuj761DfHL7qpttE7GfXWorAJaEaiOlQ3o9RHdxvDZm9RVm9BHP6SrKMsZowwKzn4ALs9vmw
ContentType Paper
Copyright 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2020.02.10.931824
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2020.02.10.931824v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1044-49aaf93d4e94cd5fc7fa53da24050c5344e2b2c4e2aed77a498cf0b3f6d5f9dd3
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 18:49:56 EST 2025
Fri Jul 25 09:15:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Normative modelling
autoencoders
deep learning
Alzheimer’s disease
mild cognitive impairment
anomaly detection
neuroimaging
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1044-49aaf93d4e94cd5fc7fa53da24050c5344e2b2c4e2aed77a498cf0b3f6d5f9dd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0002-7503-9781
0000-0002-6218-0292
0000-0002-2141-1963
0000-0002-4126-426X
0000-0002-4145-9059
0000-0003-1291-518X
0000-0002-6419-1753
0000-0002-1794-8987
0000-0001-9058-0747
0000-0002-6770-2934
0000-0003-3739-1087
0000-0001-9332-1580
OpenAccessLink https://www.proquest.com/docview/2353323064?pq-origsite=%requestingapplication%
PQID 2353323064
PQPubID 2050091
PageCount 20
ParticipantIDs biorxiv_primary_2020_02_10_931824
proquest_journals_2353323064
PublicationCentury 2000
PublicationDate 20200211
PublicationDateYYYYMMDD 2020-02-11
PublicationDate_xml – month: 02
  year: 2020
  text: 20200211
  day: 11
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2020
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Kingma, Ba (2020.02.10.931824v1.33) 2014
Cliff (2020.02.10.931824v1.36) 1993; 114
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2020.02.10.931824v1.51) 2013; 80
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (2020.02.10.931824v1.15) 2005; 1
Chételat, Desgranges, De La Sayette, Viader, Eustache, Baron (2020.02.10.931824v1.46) 2002; 13
Fischl (2020.02.10.931824v1.26) 2012; 62
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (2020.02.10.931824v1.28) 2006; 31
Makhzani, Shlens, Jaitly, Goodfellow, Frey (2020.02.10.931824v1.29) 2015
Edmonds, McDonald, Marshall, Thomas, Eppig, Weigand, Delano-Wood, Galasko, Salmon, Bondi (2020.02.10.931824v1.25) 2019; 15
Pinaya, Mechelli, Sato (2020.02.10.931824v1.4) 2019; 40
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (2020.02.10.931824v1.31) 2014
Galluzzi, Geroldi, Ghidoni, Paghera, Amicucci, Bonetti, Zanetti, Cotelli, Gennarelli, Frisoni (2020.02.10.931824v1.18) 2010; 257
Pini, Pievani, Bocchetta, Altomare, Bosco, Cavedo, Galluzzi, Marizzoni, Frisoni (2020.02.10.931824v1.13) 2016; 30
Vieira, Pinaya, Garcia-Dias, Mechelli (2020.02.10.931824v1.10) 2020
Elliott, Peakman (2020.02.10.931824v1.22) 2008; 37
Marquand, Rezek, Buitelaar, Beckmann (2020.02.10.931824v1.1) 2016; 80
Maas, Hannun, Ng (2020.02.10.931824v1.32) 2013; 30
Fox, Schott (2020.02.10.931824v1.44) 2004; 363
Smith (2020.02.10.931824v1.35) 2018
Kang, Lim, Joo, Lee, Lee (2020.02.10.931824v1.48) 2019; 11
Pinaya, Vieira, Garcia-Dias, Mechelli (2020.02.10.931824v1.30) 2020
Wolfers, Doan, Kaufmann, Alnæs, Moberget, Agartz, Buitelaar, Ueland, Melle, Franke (2020.02.10.931824v1.3) 2018; 75
Drago, Babiloni, Bartrés-Faz, Caroli, Bosch, Hensch, Didic, Klafki, Pievani, Jovicich (2020.02.10.931824v1.45) 2011; 26
Malone, Cash, Ridgway, MacManus, Ourselin, Fox, Schott (2020.02.10.931824v1.20) 2013; 70
Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell (2020.02.10.931824v1.43) 2004; 22
Pennanen, Testa, Laakso, Hallikainen, Helkala, Hänninen, Kivipelto, Könönen, Nissinen, Tervo (2020.02.10.931824v1.49) 2005; 76
Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein, Initiative (2020.02.10.931824v1.6) 2018; 169
Ziegler, Ridgway, Dahnke, Gaser, Initiative (2020.02.10.931824v1.7) 2014; 97
Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray (2020.02.10.931824v1.14) 2015; 12
Morris, Storandt, Miller, McKeel, Price, Rubin, Berg (2020.02.10.931824v1.41) 2001; 58
Hämäläinen, Tervo, Grau-Olivares, Niskanen, Pennanen, Huuskonen, Kivipelto, Hänninen, Tapiola, Vanhanen (2020.02.10.931824v1.47) 2007; 37
Frisoni, Prestia, Zanetti, Galluzzi, Romano, Cotelli, Gennarelli, Binetti, Bocchio, Paghera (2020.02.10.931824v1.17) 2009; 5
Marcus, Wang, Parker, Csernansky, Morris, Buckner (2020.02.10.931824v1.19) 2007; 19
Smith (2020.02.10.931824v1.34) 2017
Mulder, Verwey, van der Flier, Bouwman, Kok, van Elk, Scheltens, Blankenstein (2020.02.10.931824v1.50) 2010; 56
Marquand, Kia, Zabihi, Wolfers, Buitelaar, Beckmann (2020.02.10.931824v1.8) 2019; 24
Alfaro-Almagro, Jenkinson, Bangerter, Andersson, Griffanti, Douaud, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Vallee (2020.02.10.931824v1.21) 2018; 166
LeCun, Bengio, Hinton (2020.02.10.931824v1.9) 2015; 521
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (2020.02.10.931824v1.27) 2002; 33
Pihlajamaki, Jauhiainen, Soininen (2020.02.10.931824v1.42) 2009; 6
Kia, Marquand (2020.02.10.931824v1.2) 2018
Ellis, Bush, Darby, De Fazio, Foster, Hudson, Lautenschlager, Lenzo, Martins, Maruff (2020.02.10.931824v1.16) 2009; 21
Cortes, Vapnik (2020.02.10.931824v1.39) 1995; 20
Zabihi, Oldehinkel, Wolfers, Frouin, Goyard, Loth, Charman, Tillmann, Banaschewski, Dumas (2020.02.10.931824v1.5) 2019; 4
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson (2020.02.10.931824v1.23) 2016; 19
Brewer (2020.02.10.931824v1.11) 2009; 21
Aisen, Petersen, Donohue, Gamst, Raman, Thomas, Walter, Trojanowski, Shaw, Beckett (2020.02.10.931824v1.24) 2010; 6
Tipping (2020.02.10.931824v1.38) 2000
Busatto, Diniz, Zanetti (2020.02.10.931824v1.12) 2008; 8
Efron (2020.02.10.931824v1.40) 1981; 9
Efron, Tibshirani (2020.02.10.931824v1.37) 1997; 92
References_xml – year: 2018
  ident: 2020.02.10.931824v1.2
  article-title: Neural processes mixed-effect models for deep normative modeling of clinical neuroimaging data
  publication-title: arXiv preprint
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: 2020.02.10.931824v1.19
  article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults
  publication-title: Journal of cognitive neuroscience
– volume: 114
  start-page: 494
  year: 1993
  ident: 2020.02.10.931824v1.36
  article-title: Dominance statistics: Ordinal analyses to answer ordinal questions
  publication-title: Psychological bulletin
– volume: 9
  start-page: 139
  year: 1981
  end-page: 158
  ident: 2020.02.10.931824v1.40
  article-title: Nonparametric standard errors and confidence intervals
  publication-title: canadian Journal of Statistics
– volume: 37
  start-page: 234
  year: 2008
  end-page: 244
  ident: 2020.02.10.931824v1.22
  article-title: The uk biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine
  publication-title: International journal of epidemiology
– volume: 166
  start-page: 400
  year: 2018
  end-page: 424
  ident: 2020.02.10.931824v1.21
  article-title: Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank
  publication-title: Neuroimage
– volume: 24
  start-page: 1415
  year: 2019
  end-page: 1424
  ident: 2020.02.10.931824v1.8
  article-title: Conceptualizing mental disorders as deviations from normative functioning
  publication-title: Molecular psychiatry
– year: 2014
  ident: 2020.02.10.931824v1.33
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint
– volume: 70
  start-page: 33
  year: 2013
  end-page: 36
  ident: 2020.02.10.931824v1.20
  article-title: Miriad—public release of a multiple time point alzheimer’s mr imaging dataset
  publication-title: NeuroImage
– volume: 1
  start-page: 55
  year: 2005
  end-page: 66
  ident: 2020.02.10.931824v1.15
  article-title: Ways toward an early diagnosis in alzheimer’s disease: the alzheimer’s disease neuroimaging initiative (adni)
  publication-title: Alzheimer’s & Dementia
– volume: 169
  start-page: 11
  year: 2018
  end-page: 22
  ident: 2020.02.10.931824v1.6
  article-title: A spatio-temporal reference model of the aging brain
  publication-title: NeuroImage
– volume: 19
  start-page: 1523
  year: 2016
  ident: 2020.02.10.931824v1.23
  article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study
  publication-title: Nature neuroscience
– volume: 76
  start-page: 11
  year: 2005
  end-page: 14
  ident: 2020.02.10.931824v1.49
  article-title: A voxel based morphometry study on mild cognitive impairment
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 30
  start-page: 25
  year: 2016
  end-page: 48
  ident: 2020.02.10.931824v1.13
  article-title: Brain atrophy in alzheimer’s disease and aging
  publication-title: Ageing research reviews
– year: 2018
  ident: 2020.02.10.931824v1.35
  article-title: A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and weight decay
  publication-title: arXiv preprint
– volume: 11
  start-page: 245
  year: 2019
  ident: 2020.02.10.931824v1.48
  article-title: Differential associations between volumes of atrophic cortical brain regions and memory performances in early and late mild cognitive impairment
  publication-title: Frontiers in aging neuroscience
– volume: 6
  start-page: 239
  year: 2010
  end-page: 246
  ident: 2020.02.10.931824v1.24
  article-title: Clinical core of the alzheimer’s disease neuroimaging initiative: progress and plans
  publication-title: Alzheimer’s & Dementia
– start-page: 464
  year: 2017
  end-page: 472
  ident: 2020.02.10.931824v1.34
  article-title: Cyclical learning rates for training neural networks
– volume: 4
  start-page: 567
  year: 2019
  end-page: 578
  ident: 2020.02.10.931824v1.5
  article-title: Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– volume: 21
  start-page: 672
  year: 2009
  end-page: 687
  ident: 2020.02.10.931824v1.16
  article-title: The australian imaging, biomarkers and lifestyle (aibl) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease
  publication-title: International psychogeriatrics
– volume: 6
  start-page: 179
  year: 2009
  end-page: 185
  ident: 2020.02.10.931824v1.42
  article-title: Structural and functional mri in mild cognitive impairment
  publication-title: Current Alzheimer Research
– volume: 13
  start-page: 1939
  year: 2002
  end-page: 1943
  ident: 2020.02.10.931824v1.46
  article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment
  publication-title: Neuroreport
– start-page: 652
  year: 2000
  end-page: 658
  ident: 2020.02.10.931824v1.38
  article-title: The relevance vector machine
  publication-title: Advances in neural information processing systems
– volume: 363
  start-page: 392
  year: 2004
  end-page: 394
  ident: 2020.02.10.931824v1.44
  article-title: Imaging cerebral atrophy: normal ageing to alzheimer’s disease
  publication-title: The Lancet
– volume: 5
  start-page: 307
  year: 2009
  end-page: 317
  ident: 2020.02.10.931824v1.17
  article-title: Markers of alzheimer’s disease in a population attending a memory clinic
  publication-title: Alzheimer’s & Dementia
– start-page: 157
  year: 2020
  end-page: 172
  ident: 2020.02.10.931824v1.10
  publication-title: Machine Learning
– volume: 37
  start-page: 1122
  year: 2007
  end-page: 1131
  ident: 2020.02.10.931824v1.47
  article-title: Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment
  publication-title: Neuroimage
– volume: 92
  start-page: 548
  year: 1997
  end-page: 560
  ident: 2020.02.10.931824v1.37
  article-title: Improvements on cross-validation: the 632+ bootstrap method
  publication-title: Journal of the American Statistical Association
– volume: 21
  start-page: 21
  year: 2009
  end-page: 28
  ident: 2020.02.10.931824v1.11
  article-title: Fully-automated volumetric mri with normative ranges: translation to clinical practice
  publication-title: Behavioural neurology
– volume: 15
  start-page: 699
  year: 2019
  end-page: 708
  ident: 2020.02.10.931824v1.25
  article-title: Early versus late mci: Improved mci staging using a neuropsychological approach
  publication-title: Alzheimer’s & Dementia
– volume: 12
  year: 2015
  ident: 2020.02.10.931824v1.14
  article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS medicine
– volume: 80
  start-page: 552
  year: 2016
  end-page: 561
  ident: 2020.02.10.931824v1.1
  article-title: Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies
  publication-title: Biological psychiatry
– volume: 75
  start-page: 1146
  year: 2018
  end-page: 1155
  ident: 2020.02.10.931824v1.3
  article-title: Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models
  publication-title: JAMA psychiatry
– volume: 58
  start-page: 397
  year: 2001
  end-page: 405
  ident: 2020.02.10.931824v1.41
  article-title: Mild cognitive impairment represents early-stage alzheimer disease
  publication-title: Archives of neurology
– volume: 97
  start-page: 333
  year: 2014
  end-page: 348
  ident: 2020.02.10.931824v1.7
  article-title: Individualized gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects
  publication-title: NeuroImage
– volume: 56
  start-page: 248
  year: 2010
  end-page: 253
  ident: 2020.02.10.931824v1.50
  article-title: Amyloid-β (1-42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of alzheimer disease
  publication-title: Clinical chemistry
– volume: 40
  start-page: 944
  year: 2019
  end-page: 954
  ident: 2020.02.10.931824v1.4
  article-title: Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study
  publication-title: Human brain mapping
– year: 2015
  ident: 2020.02.10.931824v1.29
  article-title: Adversarial autoencoders
  publication-title: arXiv preprint
– volume: 26
  start-page: 159
  year: 2011
  end-page: 199
  ident: 2020.02.10.931824v1.45
  article-title: Disease tracking markers for alzheimer’s disease at the prodromal (mci) stage
  publication-title: Journal of Alzheimer’s disease
– volume: 22
  start-page: 1754
  year: 2004
  end-page: 1766
  ident: 2020.02.10.931824v1.43
  article-title: Mapping hippocampal and ventricular change in alzheimer disease
  publication-title: Neuroimage
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: 2020.02.10.931824v1.28
  article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest
  publication-title: Neuroimage
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: 2020.02.10.931824v1.31
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 8
  start-page: 1691
  year: 2008
  end-page: 1702
  ident: 2020.02.10.931824v1.12
  article-title: Voxel-based morphometry in alzheimer’s disease
  publication-title: Expert review of neurotherapeutics
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: 2020.02.10.931824v1.9
  article-title: Deep learning
  publication-title: nature
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: 2020.02.10.931824v1.27
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: 2020.02.10.931824v1.39
  article-title: Support-vector networks
  publication-title: Machine learning
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: 2020.02.10.931824v1.26
  article-title: Freesurfer
  publication-title: Neuroimage
– start-page: 193
  year: 2020
  end-page: 208
  ident: 2020.02.10.931824v1.30
  publication-title: Machine Learning
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: 2020.02.10.931824v1.51
  article-title: The wu-minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 257
  start-page: 2004
  year: 2010
  end-page: 2014
  ident: 2020.02.10.931824v1.18
  article-title: The new alzheimer’s criteria in a naturalistic series of patients with mild cognitive impairment
  publication-title: Journal of neurology
– volume: 30
  start-page: p. 3
  year: 2013
  ident: 2020.02.10.931824v1.32
  article-title: Rectifier nonlinearities improve neural network acoustic models
SSID ssj0002961374
Score 1.583801
SecondaryResourceType preprint
Snippet Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Alzheimer's disease
Cognitive ability
Learning algorithms
Machine learning
Neural networks
Neurodegenerative diseases
Neuroimaging
Neuroscience
Regression analysis
Ventricle
Title Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease
URI https://www.proquest.com/docview/2353323064
https://www.biorxiv.org/content/10.1101/2020.02.10.931824
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66OfDkb5zOEUHwVOzSZG28iMqGgo4iKvNU0ibRwtbO7gfqX29e1s2D4MVLITSUkry85L335fsQOgmYbmlBocLKIUARnsPbjDlmbQVt7gWSW83I5zu_1wv6fR6WCbdxCatc-ETrqGWeQI78jHjmYGLPyxejdwdUo6C6WkporKIqsCQQC90LlzkWws1mZYmYSZubhU9cVhY2jSFC2O8CX6dpc2PZcOe9Fqd58ZHOfjlmu9t0N_77n5uoGoqRKrbQisq2UW2uN_m5g2a9-Ql1prBVwIGr6BiQ769YKjXCYjrJgdgSwM3nWGCLNnRAQ7eYYEtEi_MMD9OBxEvYEYZ7lmkBSUYsMokvB19vKh2q4nSMy-rPLnrqdh6vb5xSeMGJTXRGHcqF0NyTVHGaSKYTXwvmSWF2f-YmzKNUkZgk5imU9H1BeZBoN_Z023TmUnp7qJLlmdpHODDxjJQuEb6vqTbuIYiBI1ASARwRTNfRcTnm0WhOrxHBvEQuiUx4Mp-XOmoshjoqV9g4-hnng79fH6J1-CIgrVutBqpMiqk6QmvJbJKOiyaqXnV64UPTGo5phbf34cs3GIjK4w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VtFU5AYWqhQJbqYiThbPejb2VUFUBVaI8lENB5WTW3t3WUmsHJ00fP6q_sTO2Ew5I3HrgYsmytZI9szM7r-8D2I-kazstqMKqKEDRgac6Unq4t6KOCiKjKs7IH4NwNIpOT9V4Be4XszDUVrmwiZWhNkVKOfJPPMCDSXVePpz89og1iqqrCwqNWi369vYaQ7bp595XlO8Hzo-_nXzpeg2rgJdg6CE8obR2KjDCKpEa6dLQaRkYja5N-qkMhLA84SletTVhqIWKUucngevgy8qYANd9AquClL0Fq-PecPxzmdXhCt1jBf3MOwpNDfdlU0pF1adEg08IoXivcC_RlP16khXlTTb_yxVU_u342f_2Z57jH9ETW76AFZtvwnrNqHn7Euaj-gw-t6zi-KFhe0a9_WfMWDth-mpWEHQntW8fMM2qfkqPWILLGaugdlmRs8vswrBlYxWjSdKspDQq07lhRxd35za7tOXHKWvqW6_g-6N86ha08iK328AijNiM8bkOQyccGsAoIRREwzWhYEi3A3uNjONJDSASkx7EPo8xAKv1YAd2F6KNGxsyjf_I9fW_H7-Hje7JcBAPeqP-G3hKq1Nfebu9C61ZeWXfwlo6n2XT8l2jrgx-PbYePACLKyhb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normative+modelling+using+deep+autoencoders%3A+a+multi-cohort+study+on+mild+cognitive+impairment+and+Alzheimer%E2%80%99s+disease&rft.jtitle=bioRxiv&rft.au=Pinaya%2C+Walter+H.+L.&rft.au=Scarpazza%2C+Cristina&rft.au=Garcia-Dias%2C+Rafael&rft.au=Vieira%2C+Sandra&rft.date=2020-02-11&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.02.10.931824&rft.externalDocID=2020.02.10.931824v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon