Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian proces...
Uložené v:
| Vydané v: | bioRxiv |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
11.02.2020
Cold Spring Harbor Laboratory |
| Vydanie: | 1.1 |
| Predmet: | |
| ISSN: | 2692-8205, 2692-8205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community. Footnotes * https://github.com/Warvito/Normative-modelling-using-deep-autoencoders |
|---|---|
| AbstractList | Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community. Footnotes * https://github.com/Warvito/Normative-modelling-using-deep-autoencoders Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer’s disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community. |
| Author | Vieira, Sandra Garcia-Dias, Rafael Baecker, Lea Pinaya, Walter H L Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing Redolfi, Alberto Alzheimer's Disease Neuroimaging Initiative Pievani, Michela Da Costa, Pedro F Scarpazza, Cristina Sato, João R Frisoni, Giovanni B Calhoun, Vince D Mechelli, Andrea |
| Author_xml | – sequence: 1 givenname: Walter surname: Pinaya middlename: H L fullname: Pinaya, Walter H L – sequence: 2 givenname: Cristina surname: Scarpazza fullname: Scarpazza, Cristina – sequence: 3 givenname: Rafael surname: Garcia-Dias fullname: Garcia-Dias, Rafael – sequence: 4 givenname: Sandra surname: Vieira fullname: Vieira, Sandra – sequence: 5 givenname: Lea surname: Baecker fullname: Baecker, Lea – sequence: 6 givenname: Pedro surname: Da Costa middlename: F fullname: Da Costa, Pedro F – sequence: 7 givenname: Alberto surname: Redolfi fullname: Redolfi, Alberto – sequence: 8 givenname: Giovanni surname: Frisoni middlename: B fullname: Frisoni, Giovanni B – sequence: 9 givenname: Michela surname: Pievani fullname: Pievani, Michela – sequence: 10 givenname: Vince surname: Calhoun middlename: D fullname: Calhoun, Vince D – sequence: 11 givenname: João surname: Sato middlename: R fullname: Sato, João R – sequence: 12 givenname: Andrea surname: Mechelli fullname: Mechelli, Andrea – sequence: 13 fullname: Alzheimer's Disease Neuroimaging Initiative – sequence: 14 fullname: Australian Imaging Biomarkers And Lifestyle Flagship Study Of Ageing |
| BookMark | eNpNkEtPwzAQhC0EEqX0B3CzxAEuKetHkppbVfGSKrjAOXJsp3UV28VOKsqvJ6UcuMzuaj-NRnOBTn3wBqErAlNCgNxRoDAFOh1uwciM8hM0ooWg2YxCfvpvP0eTlDYAQEVBWMlHaPcaopOd3RnsgjZta_0K9-mg2pgtln0XjFfDK6Z7LLHr285mKqxD7HDqer3HwWNnW41VWHn762TdVtrojO-w9BrP2--1sc7Em4S1TUYmc4nOGtkmM_mbY_Tx-PC-eM6Wb08vi_kyqwlwnnEhZSOY5kZwpfNGlY3MmZaUQw4qZ5wbWlM1qDS6LCUXM9VAzZpigIXWbIxuj761DfHL7qpttE7GfXWorAJaEaiOlQ3o9RHdxvDZm9RVm9BHP6SrKMsZowwKzn4ALs9vmw |
| ContentType | Paper |
| Copyright | 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
| DOI | 10.1101/2020.02.10.931824 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2020.02.10.931824v1 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1044-49aaf93d4e94cd5fc7fa53da24050c5344e2b2c4e2aed77a498cf0b3f6d5f9dd3 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:49:56 EST 2025 Fri Jul 25 09:15:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Normative modelling autoencoders deep learning Alzheimer’s disease mild cognitive impairment anomaly detection neuroimaging |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1044-49aaf93d4e94cd5fc7fa53da24050c5344e2b2c4e2aed77a498cf0b3f6d5f9dd3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ORCID | 0000-0002-7503-9781 0000-0002-6218-0292 0000-0002-2141-1963 0000-0002-4126-426X 0000-0002-4145-9059 0000-0003-1291-518X 0000-0002-6419-1753 0000-0002-1794-8987 0000-0001-9058-0747 0000-0002-6770-2934 0000-0003-3739-1087 0000-0001-9332-1580 |
| OpenAccessLink | https://www.proquest.com/docview/2353323064?pq-origsite=%requestingapplication% |
| PQID | 2353323064 |
| PQPubID | 2050091 |
| PageCount | 20 |
| ParticipantIDs | biorxiv_primary_2020_02_10_931824 proquest_journals_2353323064 |
| PublicationCentury | 2000 |
| PublicationDate | 20200211 |
| PublicationDateYYYYMMDD | 2020-02-11 |
| PublicationDate_xml | – month: 02 year: 2020 text: 20200211 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2020 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Kingma, Ba (2020.02.10.931824v1.33) 2014 Cliff (2020.02.10.931824v1.36) 1993; 114 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (2020.02.10.931824v1.51) 2013; 80 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (2020.02.10.931824v1.15) 2005; 1 Chételat, Desgranges, De La Sayette, Viader, Eustache, Baron (2020.02.10.931824v1.46) 2002; 13 Fischl (2020.02.10.931824v1.26) 2012; 62 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman (2020.02.10.931824v1.28) 2006; 31 Makhzani, Shlens, Jaitly, Goodfellow, Frey (2020.02.10.931824v1.29) 2015 Edmonds, McDonald, Marshall, Thomas, Eppig, Weigand, Delano-Wood, Galasko, Salmon, Bondi (2020.02.10.931824v1.25) 2019; 15 Pinaya, Mechelli, Sato (2020.02.10.931824v1.4) 2019; 40 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (2020.02.10.931824v1.31) 2014 Galluzzi, Geroldi, Ghidoni, Paghera, Amicucci, Bonetti, Zanetti, Cotelli, Gennarelli, Frisoni (2020.02.10.931824v1.18) 2010; 257 Pini, Pievani, Bocchetta, Altomare, Bosco, Cavedo, Galluzzi, Marizzoni, Frisoni (2020.02.10.931824v1.13) 2016; 30 Vieira, Pinaya, Garcia-Dias, Mechelli (2020.02.10.931824v1.10) 2020 Elliott, Peakman (2020.02.10.931824v1.22) 2008; 37 Marquand, Rezek, Buitelaar, Beckmann (2020.02.10.931824v1.1) 2016; 80 Maas, Hannun, Ng (2020.02.10.931824v1.32) 2013; 30 Fox, Schott (2020.02.10.931824v1.44) 2004; 363 Smith (2020.02.10.931824v1.35) 2018 Kang, Lim, Joo, Lee, Lee (2020.02.10.931824v1.48) 2019; 11 Pinaya, Vieira, Garcia-Dias, Mechelli (2020.02.10.931824v1.30) 2020 Wolfers, Doan, Kaufmann, Alnæs, Moberget, Agartz, Buitelaar, Ueland, Melle, Franke (2020.02.10.931824v1.3) 2018; 75 Drago, Babiloni, Bartrés-Faz, Caroli, Bosch, Hensch, Didic, Klafki, Pievani, Jovicich (2020.02.10.931824v1.45) 2011; 26 Malone, Cash, Ridgway, MacManus, Ourselin, Fox, Schott (2020.02.10.931824v1.20) 2013; 70 Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Hong, Herman, Gravano, Doddrell (2020.02.10.931824v1.43) 2004; 22 Pennanen, Testa, Laakso, Hallikainen, Helkala, Hänninen, Kivipelto, Könönen, Nissinen, Tervo (2020.02.10.931824v1.49) 2005; 76 Huizinga, Poot, Vernooij, Roshchupkin, Bron, Ikram, Rueckert, Niessen, Klein, Initiative (2020.02.10.931824v1.6) 2018; 169 Ziegler, Ridgway, Dahnke, Gaser, Initiative (2020.02.10.931824v1.7) 2014; 97 Sudlow, Gallacher, Allen, Beral, Burton, Danesh, Downey, Elliott, Green, Landray (2020.02.10.931824v1.14) 2015; 12 Morris, Storandt, Miller, McKeel, Price, Rubin, Berg (2020.02.10.931824v1.41) 2001; 58 Hämäläinen, Tervo, Grau-Olivares, Niskanen, Pennanen, Huuskonen, Kivipelto, Hänninen, Tapiola, Vanhanen (2020.02.10.931824v1.47) 2007; 37 Frisoni, Prestia, Zanetti, Galluzzi, Romano, Cotelli, Gennarelli, Binetti, Bocchio, Paghera (2020.02.10.931824v1.17) 2009; 5 Marcus, Wang, Parker, Csernansky, Morris, Buckner (2020.02.10.931824v1.19) 2007; 19 Smith (2020.02.10.931824v1.34) 2017 Mulder, Verwey, van der Flier, Bouwman, Kok, van Elk, Scheltens, Blankenstein (2020.02.10.931824v1.50) 2010; 56 Marquand, Kia, Zabihi, Wolfers, Buitelaar, Beckmann (2020.02.10.931824v1.8) 2019; 24 Alfaro-Almagro, Jenkinson, Bangerter, Andersson, Griffanti, Douaud, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Vallee (2020.02.10.931824v1.21) 2018; 166 LeCun, Bengio, Hinton (2020.02.10.931824v1.9) 2015; 521 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (2020.02.10.931824v1.27) 2002; 33 Pihlajamaki, Jauhiainen, Soininen (2020.02.10.931824v1.42) 2009; 6 Kia, Marquand (2020.02.10.931824v1.2) 2018 Ellis, Bush, Darby, De Fazio, Foster, Hudson, Lautenschlager, Lenzo, Martins, Maruff (2020.02.10.931824v1.16) 2009; 21 Cortes, Vapnik (2020.02.10.931824v1.39) 1995; 20 Zabihi, Oldehinkel, Wolfers, Frouin, Goyard, Loth, Charman, Tillmann, Banaschewski, Dumas (2020.02.10.931824v1.5) 2019; 4 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu, Bartsch, Jbabdi, Sotiropoulos, Andersson (2020.02.10.931824v1.23) 2016; 19 Brewer (2020.02.10.931824v1.11) 2009; 21 Aisen, Petersen, Donohue, Gamst, Raman, Thomas, Walter, Trojanowski, Shaw, Beckett (2020.02.10.931824v1.24) 2010; 6 Tipping (2020.02.10.931824v1.38) 2000 Busatto, Diniz, Zanetti (2020.02.10.931824v1.12) 2008; 8 Efron (2020.02.10.931824v1.40) 1981; 9 Efron, Tibshirani (2020.02.10.931824v1.37) 1997; 92 |
| References_xml | – year: 2018 ident: 2020.02.10.931824v1.2 article-title: Neural processes mixed-effect models for deep normative modeling of clinical neuroimaging data publication-title: arXiv preprint – volume: 19 start-page: 1498 year: 2007 end-page: 1507 ident: 2020.02.10.931824v1.19 article-title: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults publication-title: Journal of cognitive neuroscience – volume: 114 start-page: 494 year: 1993 ident: 2020.02.10.931824v1.36 article-title: Dominance statistics: Ordinal analyses to answer ordinal questions publication-title: Psychological bulletin – volume: 9 start-page: 139 year: 1981 end-page: 158 ident: 2020.02.10.931824v1.40 article-title: Nonparametric standard errors and confidence intervals publication-title: canadian Journal of Statistics – volume: 37 start-page: 234 year: 2008 end-page: 244 ident: 2020.02.10.931824v1.22 article-title: The uk biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine publication-title: International journal of epidemiology – volume: 166 start-page: 400 year: 2018 end-page: 424 ident: 2020.02.10.931824v1.21 article-title: Image processing and quality control for the first 10,000 brain imaging datasets from uk biobank publication-title: Neuroimage – volume: 24 start-page: 1415 year: 2019 end-page: 1424 ident: 2020.02.10.931824v1.8 article-title: Conceptualizing mental disorders as deviations from normative functioning publication-title: Molecular psychiatry – year: 2014 ident: 2020.02.10.931824v1.33 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint – volume: 70 start-page: 33 year: 2013 end-page: 36 ident: 2020.02.10.931824v1.20 article-title: Miriad—public release of a multiple time point alzheimer’s mr imaging dataset publication-title: NeuroImage – volume: 1 start-page: 55 year: 2005 end-page: 66 ident: 2020.02.10.931824v1.15 article-title: Ways toward an early diagnosis in alzheimer’s disease: the alzheimer’s disease neuroimaging initiative (adni) publication-title: Alzheimer’s & Dementia – volume: 169 start-page: 11 year: 2018 end-page: 22 ident: 2020.02.10.931824v1.6 article-title: A spatio-temporal reference model of the aging brain publication-title: NeuroImage – volume: 19 start-page: 1523 year: 2016 ident: 2020.02.10.931824v1.23 article-title: Multimodal population brain imaging in the uk biobank prospective epidemiological study publication-title: Nature neuroscience – volume: 76 start-page: 11 year: 2005 end-page: 14 ident: 2020.02.10.931824v1.49 article-title: A voxel based morphometry study on mild cognitive impairment publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 30 start-page: 25 year: 2016 end-page: 48 ident: 2020.02.10.931824v1.13 article-title: Brain atrophy in alzheimer’s disease and aging publication-title: Ageing research reviews – year: 2018 ident: 2020.02.10.931824v1.35 article-title: A disciplined approach to neural network hyper-parameters: Part 1–learning rate, batch size, momentum, and weight decay publication-title: arXiv preprint – volume: 11 start-page: 245 year: 2019 ident: 2020.02.10.931824v1.48 article-title: Differential associations between volumes of atrophic cortical brain regions and memory performances in early and late mild cognitive impairment publication-title: Frontiers in aging neuroscience – volume: 6 start-page: 239 year: 2010 end-page: 246 ident: 2020.02.10.931824v1.24 article-title: Clinical core of the alzheimer’s disease neuroimaging initiative: progress and plans publication-title: Alzheimer’s & Dementia – start-page: 464 year: 2017 end-page: 472 ident: 2020.02.10.931824v1.34 article-title: Cyclical learning rates for training neural networks – volume: 4 start-page: 567 year: 2019 end-page: 578 ident: 2020.02.10.931824v1.5 article-title: Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging – volume: 21 start-page: 672 year: 2009 end-page: 687 ident: 2020.02.10.931824v1.16 article-title: The australian imaging, biomarkers and lifestyle (aibl) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease publication-title: International psychogeriatrics – volume: 6 start-page: 179 year: 2009 end-page: 185 ident: 2020.02.10.931824v1.42 article-title: Structural and functional mri in mild cognitive impairment publication-title: Current Alzheimer Research – volume: 13 start-page: 1939 year: 2002 end-page: 1943 ident: 2020.02.10.931824v1.46 article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment publication-title: Neuroreport – start-page: 652 year: 2000 end-page: 658 ident: 2020.02.10.931824v1.38 article-title: The relevance vector machine publication-title: Advances in neural information processing systems – volume: 363 start-page: 392 year: 2004 end-page: 394 ident: 2020.02.10.931824v1.44 article-title: Imaging cerebral atrophy: normal ageing to alzheimer’s disease publication-title: The Lancet – volume: 5 start-page: 307 year: 2009 end-page: 317 ident: 2020.02.10.931824v1.17 article-title: Markers of alzheimer’s disease in a population attending a memory clinic publication-title: Alzheimer’s & Dementia – start-page: 157 year: 2020 end-page: 172 ident: 2020.02.10.931824v1.10 publication-title: Machine Learning – volume: 37 start-page: 1122 year: 2007 end-page: 1131 ident: 2020.02.10.931824v1.47 article-title: Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment publication-title: Neuroimage – volume: 92 start-page: 548 year: 1997 end-page: 560 ident: 2020.02.10.931824v1.37 article-title: Improvements on cross-validation: the 632+ bootstrap method publication-title: Journal of the American Statistical Association – volume: 21 start-page: 21 year: 2009 end-page: 28 ident: 2020.02.10.931824v1.11 article-title: Fully-automated volumetric mri with normative ranges: translation to clinical practice publication-title: Behavioural neurology – volume: 15 start-page: 699 year: 2019 end-page: 708 ident: 2020.02.10.931824v1.25 article-title: Early versus late mci: Improved mci staging using a neuropsychological approach publication-title: Alzheimer’s & Dementia – volume: 12 year: 2015 ident: 2020.02.10.931824v1.14 article-title: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS medicine – volume: 80 start-page: 552 year: 2016 end-page: 561 ident: 2020.02.10.931824v1.1 article-title: Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies publication-title: Biological psychiatry – volume: 75 start-page: 1146 year: 2018 end-page: 1155 ident: 2020.02.10.931824v1.3 article-title: Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models publication-title: JAMA psychiatry – volume: 58 start-page: 397 year: 2001 end-page: 405 ident: 2020.02.10.931824v1.41 article-title: Mild cognitive impairment represents early-stage alzheimer disease publication-title: Archives of neurology – volume: 97 start-page: 333 year: 2014 end-page: 348 ident: 2020.02.10.931824v1.7 article-title: Individualized gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects publication-title: NeuroImage – volume: 56 start-page: 248 year: 2010 end-page: 253 ident: 2020.02.10.931824v1.50 article-title: Amyloid-β (1-42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of alzheimer disease publication-title: Clinical chemistry – volume: 40 start-page: 944 year: 2019 end-page: 954 ident: 2020.02.10.931824v1.4 article-title: Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study publication-title: Human brain mapping – year: 2015 ident: 2020.02.10.931824v1.29 article-title: Adversarial autoencoders publication-title: arXiv preprint – volume: 26 start-page: 159 year: 2011 end-page: 199 ident: 2020.02.10.931824v1.45 article-title: Disease tracking markers for alzheimer’s disease at the prodromal (mci) stage publication-title: Journal of Alzheimer’s disease – volume: 22 start-page: 1754 year: 2004 end-page: 1766 ident: 2020.02.10.931824v1.43 article-title: Mapping hippocampal and ventricular change in alzheimer disease publication-title: Neuroimage – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: 2020.02.10.931824v1.28 article-title: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest publication-title: Neuroimage – start-page: 2672 year: 2014 end-page: 2680 ident: 2020.02.10.931824v1.31 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – volume: 8 start-page: 1691 year: 2008 end-page: 1702 ident: 2020.02.10.931824v1.12 article-title: Voxel-based morphometry in alzheimer’s disease publication-title: Expert review of neurotherapeutics – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: 2020.02.10.931824v1.9 article-title: Deep learning publication-title: nature – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: 2020.02.10.931824v1.27 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: 2020.02.10.931824v1.39 article-title: Support-vector networks publication-title: Machine learning – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: 2020.02.10.931824v1.26 article-title: Freesurfer publication-title: Neuroimage – start-page: 193 year: 2020 end-page: 208 ident: 2020.02.10.931824v1.30 publication-title: Machine Learning – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: 2020.02.10.931824v1.51 article-title: The wu-minn human connectome project: an overview publication-title: Neuroimage – volume: 257 start-page: 2004 year: 2010 end-page: 2014 ident: 2020.02.10.931824v1.18 article-title: The new alzheimer’s criteria in a naturalistic series of patients with mild cognitive impairment publication-title: Journal of neurology – volume: 30 start-page: p. 3 year: 2013 ident: 2020.02.10.931824v1.32 article-title: Rectifier nonlinearities improve neural network acoustic models |
| SSID | ssj0002961374 |
| Score | 1.583801 |
| SecondaryResourceType | preprint |
| Snippet | Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Alzheimer's disease Cognitive ability Learning algorithms Machine learning Neural networks Neurodegenerative diseases Neuroimaging Neuroscience Regression analysis Ventricle |
| Title | Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease |
| URI | https://www.proquest.com/docview/2353323064 https://www.biorxiv.org/content/10.1101/2020.02.10.931824 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66OfDkb5zOEUHwVOzSZG28iMqGgo4iKvNU0ibRwtbO7gfqX29e1s2D4MVLITSUkry85L335fsQOgmYbmlBocLKIUARnsPbjDlmbQVt7gWSW83I5zu_1wv6fR6WCbdxCatc-ETrqGWeQI78jHjmYGLPyxejdwdUo6C6WkporKIqsCQQC90LlzkWws1mZYmYSZubhU9cVhY2jSFC2O8CX6dpc2PZcOe9Fqd58ZHOfjlmu9t0N_77n5uoGoqRKrbQisq2UW2uN_m5g2a9-Ql1prBVwIGr6BiQ769YKjXCYjrJgdgSwM3nWGCLNnRAQ7eYYEtEi_MMD9OBxEvYEYZ7lmkBSUYsMokvB19vKh2q4nSMy-rPLnrqdh6vb5xSeMGJTXRGHcqF0NyTVHGaSKYTXwvmSWF2f-YmzKNUkZgk5imU9H1BeZBoN_Z023TmUnp7qJLlmdpHODDxjJQuEb6vqTbuIYiBI1ASARwRTNfRcTnm0WhOrxHBvEQuiUx4Mp-XOmoshjoqV9g4-hnng79fH6J1-CIgrVutBqpMiqk6QmvJbJKOiyaqXnV64UPTGo5phbf34cs3GIjK4w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VtFU5AYWqhQJbqYiThbPejb2VUFUBVaI8lENB5WTW3t3WUmsHJ00fP6q_sTO2Ew5I3HrgYsmytZI9szM7r-8D2I-kazstqMKqKEDRgac6Unq4t6KOCiKjKs7IH4NwNIpOT9V4Be4XszDUVrmwiZWhNkVKOfJPPMCDSXVePpz89og1iqqrCwqNWi369vYaQ7bp595XlO8Hzo-_nXzpeg2rgJdg6CE8obR2KjDCKpEa6dLQaRkYja5N-qkMhLA84SletTVhqIWKUucngevgy8qYANd9AquClL0Fq-PecPxzmdXhCt1jBf3MOwpNDfdlU0pF1adEg08IoXivcC_RlP16khXlTTb_yxVU_u342f_2Z57jH9ETW76AFZtvwnrNqHn7Euaj-gw-t6zi-KFhe0a9_WfMWDth-mpWEHQntW8fMM2qfkqPWILLGaugdlmRs8vswrBlYxWjSdKspDQq07lhRxd35za7tOXHKWvqW6_g-6N86ha08iK328AijNiM8bkOQyccGsAoIRREwzWhYEi3A3uNjONJDSASkx7EPo8xAKv1YAd2F6KNGxsyjf_I9fW_H7-Hje7JcBAPeqP-G3hKq1Nfebu9C61ZeWXfwlo6n2XT8l2jrgx-PbYePACLKyhb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normative+modelling+using+deep+autoencoders%3A+a+multi-cohort+study+on+mild+cognitive+impairment+and+Alzheimer%E2%80%99s+disease&rft.jtitle=bioRxiv&rft.au=Pinaya%2C+Walter+H.+L.&rft.au=Scarpazza%2C+Cristina&rft.au=Garcia-Dias%2C+Rafael&rft.au=Vieira%2C+Sandra&rft.date=2020-02-11&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.02.10.931824&rft.externalDocID=2020.02.10.931824v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |