Measures of epitope binding degeneracy from T cell receptor repertoires
Adaptive immunity is driven by specific binding of hyper-variable receptors to diverse molecular targets. The sequence diversity of receptors and targets are both individually known but, because multiple receptors can recognize the same target, a measure of the effective 'functional' diver...
Gespeichert in:
| Veröffentlicht in: | bioRxiv |
|---|---|
| Hauptverfasser: | , |
| Format: | Paper |
| Sprache: | Englisch |
| Veröffentlicht: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
15.11.2022
Cold Spring Harbor Laboratory |
| Ausgabe: | 1.2 |
| Schlagworte: | |
| ISSN: | 2692-8205, 2692-8205 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Adaptive immunity is driven by specific binding of hyper-variable receptors to diverse molecular targets. The sequence diversity of receptors and targets are both individually known but, because multiple receptors can recognize the same target, a measure of the effective 'functional' diversity of the human immune system has remained elusive. Here, we show that sequence near-coincidences within T cell receptors that bind specific epitopes provide a new window into this problem, and allow the quantification of how binding probability co-varies with sequence. We find that near-coincidence statistics within epitope-specific repertoires imply a measure of binding degeneracy to amino acid changes in receptor sequence that is consistent across disparate experiments. Paired data on both chains of the heterodimeric receptor are particularly revealing since simultaneous near-coincidences are rare and we show how they can be exploited to estimate the number of epitope responses that created the memory compartment. In addition, we find that paired-chain coincidences are strongly suppressed across donors with different human leukocyte antigens, evidence for a central role of antigen-driven selection in making paired chain receptors public. These results demonstrate the power of coincidence analysis to reveal the sequence determinants of epitope binding in receptor repertoires.Competing Interest StatementThe authors have declared no competing interest.Footnotes* The text has been revised to give additional intuition and to increase clarity. |
|---|---|
| AbstractList | Adaptive immunity is driven by specific binding of hyper-variable receptors to diverse molecular targets. The sequence diversity of receptors and targets are both individually known but, because multiple receptors can recognize the same target, a measure of the effective 'functional' diversity of the human immune system has remained elusive. Here, we show that sequence near-coincidences within T cell receptors that bind specific epitopes provide a new window into this problem, and allow the quantification of how binding probability co-varies with sequence. We find that near-coincidence statistics within epitope-specific repertoires imply a measure of binding degeneracy to amino acid changes in receptor sequence that is consistent across disparate experiments. Paired data on both chains of the heterodimeric receptor are particularly revealing since simultaneous near-coincidences are rare and we show how they can be exploited to estimate the number of epitope responses that created the memory compartment. In addition, we find that paired-chain coincidences are strongly suppressed across donors with different human leukocyte antigens, evidence for a central role of antigen-driven selection in making paired chain receptors public. These results demonstrate the power of coincidence analysis to reveal the sequence determinants of epitope binding in receptor repertoires.Competing Interest StatementThe authors have declared no competing interest.Footnotes* The text has been revised to give additional intuition and to increase clarity. Adaptive immunity is driven by specific binding of hyper-variable receptors to diverse molecular targets. The sequence diversity of receptors and targets are both individually known but, because multiple receptors can recognize the same target, a measure of the effective ‘functional’ diversity of the human immune system has remained elusive. Here, we show that sequence near-coincidences within T cell receptors that bind specific epitopes provide a new window into this problem, and allow the quantification of how binding probability co-varies with sequence. We find that near-coincidence statistics within epitope-specific repertoires imply a measure of binding degeneracy to amino acid changes in receptor sequence that is consistent across disparate experiments. Paired data on both chains of the heterodimeric receptor are particularly revealing since simultaneous near-coincidences are rare and we show how they can be exploited to estimate the number of epitope responses that created the memory compartment. In addition, we find that paired-chain coincidences are strongly suppressed across donors with different human leukocyte antigens, evidence for a central role of antigen-driven selection in making paired chain receptors public. These results demonstrate the power of coincidence analysis to reveal the sequence determinants of epitope binding in receptor repertoires. |
| Author | Mayer, Andreas Callan, Curtis G |
| Author_xml | – sequence: 1 givenname: Andreas surname: Mayer fullname: Mayer, Andreas – sequence: 2 givenname: Curtis surname: Callan middlename: G fullname: Callan, Curtis G |
| BookMark | eNpNkD1PwzAURS1UJErpD2CzxMKS8PwRxx5RBQWpiKXMlus8V67aODgpov-eoDIw3Tuc93R1rsmkTS0ScsugZAzYAwfOS6hLXpUVMFGLCzLlyvBCc6gm__oVmff9DgC4USMnp2T5hq4_ZuxpChS7OKQO6Sa2TWy3tMEttpidP9GQ04Guqcf9nmb02A0pj6XDPKQ4nt-Qy-D2Pc7_ckY-np_Wi5di9b58XTyuig0DKQpE1qBywtQugJFcoxAySClAMmWcAq-CEOhYEFJi43zwhutGeqfQNVyLGbk__93ElL_jl-1yPLh8sr8OLNSWV_bsYETvzmiX0-cR-8Hu0jG34zo7CpFgtNYgfgCxYV1P |
| ContentType | Paper |
| Copyright | 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
| DOI | 10.1101/2022.07.25.501373 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.2 |
| ExternalDocumentID | 2022.07.25.501373v2 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1043-ee1de6a397af09428e334f44304169a60c6f33ea1f344edacfc928d4ca6ead283 |
| IEDL.DBID | M7P |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:55:26 EST 2025 Fri Jul 25 09:12:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | repertoire sequencing specificity receptor-ligand binding T cells |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1043-ee1de6a397af09428e334f44304169a60c6f33ea1f344edacfc928d4ca6ead283 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-6643-7622 |
| OpenAccessLink | https://www.proquest.com/docview/2694098880?pq-origsite=%requestingapplication% |
| PQID | 2694098880 |
| PQPubID | 2050091 |
| PageCount | 23 |
| ParticipantIDs | biorxiv_primary_2022_07_25_501373 proquest_journals_2694098880 |
| PublicationCentury | 2000 |
| PublicationDate | 20221115 |
| PublicationDateYYYYMMDD | 2022-11-15 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221115 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2022 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Rossjohn, Gras, Miles, Turner, Godfrey, McCluskey (2022.07.25.501373v2.8) 2015; 33 Mora, Walczak (2022.07.25.501373v2.29) 2019 Tareen, Kinney (2022.07.25.501373v2.66) 2020; 36 Tanno, Gould, Mcdaniel, Cao, Tanno, Durrett (2022.07.25.501373v2.30) 2020; 117 Chao, Gotelli, Hsieh, Sander, Ma, Colwell, Ellison (2022.07.25.501373v2.46) 2014; 84 Arora, Burke, Arnaout (2022.07.25.501373v2.57) 2018 Elhanati, Sethna, Callan, Mora, Walczak (2022.07.25.501373v2.39) 2018; 284 Simpson (2022.07.25.501373v2.36) 1949; 163 Leinster, Cobbold (2022.07.25.501373v2.38) 2012; 93 Coles, Mulvaney, Malla, Walker, Smith, Lloyd, Lowe, McCully, Martinez Hague, Aleksic (2022.07.25.501373v2.10) 2020; 204 Minervina, Komech, Titov, Koraichi, Rosati, Mamedov, Franke, Efimov, Chudakov, Mora (2022.07.25.501373v2.16) 2021; 10 Jost (2022.07.25.501373v2.45) 2006 Fischer, Wu, Schubert, Theis (2022.07.25.501373v2.23) 2020; 16 Carter, Preall, Grigaityte, Goldfless, Jeffery, Briggs, Vigneault, Atwal (2022.07.25.501373v2.54) 2019; 10 Xu, Kula, Xu, Li, Vernon, Ndung’u, Ruxrungtham, Sanchez, Brander, Chung (2022.07.25.501373v2.52) 2015; 348 Li, Moysey, Molloy, Vuidepot, Mahon, Baston, Dunn, Liddy, Jacob, Jakobsen (2022.07.25.501373v2.13) 2005; 23 Robinson, Halliwell, Hayhurst, Flicek, Parham, Marsh (2022.07.25.501373v2.28) 2015; 43 Godfrey, Uldrich, Mccluskey, Rossjohn, Moody (2022.07.25.501373v2.50) 2015 Gruta, Gras, Daley, Thomas, Rossjohn (2022.07.25.501373v2.53) 2018 Lande (2022.07.25.501373v2.44) 1996; 76 Sethna, Isacchini, Dupic, Mora, Walczak, Elhanati (2022.07.25.501373v2.67) 2020; 16 Gielis, Moris, Bittremieux, De Neuter, Ogunjimi, Laukens, Meysman (2022.07.25.501373v2.22) 2019; 10 Heather, Ismail, Oakes, Chain (2022.07.25.501373v2.4) 2017; 19 Sewell (2022.07.25.501373v2.27) 2012; 12 Zhang, Hawkins, He, Gupta, Liu, Choonoo, Jeong, Chen, Dhanik, Dillon (2022.07.25.501373v2.24) 2021; 7 Mudd, Minervina, Pogorelyy, Turner, Kim, Kalaidina, Petersen, Schmitz, Lei, Haile (2022.07.25.501373v2.62) 2022; 185 Farmer, Packard, Perelson (2022.07.25.501373v2.68) 1986; 22 Venturi, Price, Douek, Davenport (2022.07.25.501373v2.47) 2008; 8 Klinger, Pepin, Wilkins, Asbury, Wittkop, Zheng, Moorhead, Faham (2022.07.25.501373v2.40) 2015; 10 Emerson, DeWitt, Vignali, Gravley, Hu, Osborne, Desmarais, Klinger, Carlson, Hansen (2022.07.25.501373v2.3) 2017; 49 Bravi, Balachandran, Greenbaum, Walczak, Mora, Monasson, Cocco (2022.07.25.501373v2.26) 2021; 17 Kosmrlj, Jha, Huseby, Kardar, Chakraborty (2022.07.25.501373v2.42) 2008; 105 Gaimann, Nguyen, Desponds, Mayer (2022.07.25.501373v2.49) 2020; 9 Buchholz, Flossdorf, Hensel, Kretschmer, Weissbrich, Gräf, Verschoor, Schiemann, Höfer, Busch (2022.07.25.501373v2.31) 2013; 340 Montemurro, Schuster, Povlsen, Bentzen, Jurtz, Chronister, Crinklaw, Hadrup, Winther, Peters (2022.07.25.501373v2.25) 2021; 4 Dupic, Marcou, Walczak, Mora (2022.07.25.501373v2.33) 2019; 15 Jaffe, Shahi, Adams, Chrisman, Finnegan, Raman, Royall, Tsai, Vollbrecht, Reyes (2022.07.25.501373v2.41) 2022; 611 Glanville, Huang, Nau, Hatton, Wagar, Rubelt, Ji, Han, Krams, Pettus (2022.07.25.501373v2.19) 2017; 547 Bradley, Thomas (2022.07.25.501373v2.5) 2019; 37 Shcherbinin, Belousov, Shugay (2022.07.25.501373v2.34) 2020; 16 Garcia, Degano, Stanfield, Brunmark, Jackson, Peterson, Teyton, Wilson (2022.07.25.501373v2.6) 1996; 274 Pogorelyy, Elhanati, Marcou, Sycheva, Komech, Nazarov, Britanova, Chudakov, Mamedov, Lebedev (2022.07.25.501373v2.48) 2017; 13 Jensen, Rantos, Jappe, Olsen, Jespersen, Jurtz, Jessen, Lanzarotti, Mahajan, Peters (2022.07.25.501373v2.65) 2019; 9 Holler, Holman, Shusta, Herrin, Wittrup, Kranz (2022.07.25.501373v2.12) 2000; 97 Zareie, Szeto, Farenc, Gunasinghe, Kolawole, Nguyen, Blyth, Sng, Li, Jones (2022.07.25.501373v2.11) 2021; 372 Huang, Wang, Rubelt, Scriba, Davis (2022.07.25.501373v2.21) 2020; 38 Nolan, Vignali, Klinger, Dines, Kaplan, Craft, Boland, Mazza, Dobbs (2022.07.25.501373v2.15) 2020 Murugan, Mora, Walczak, Callan (2022.07.25.501373v2.35) 2012; 109 Johnson, Seale, Gittelman, Rytlewski, Robins, Fields (2022.07.25.501373v2.51) 2021; 16 Pogorelyy, Rosati, Minervina, Mettelman, Scheffold, Franke, Bacher, Thomas (2022.07.25.501373v2.63) 2022 Jankauskaite, Jiménez-García, Dapkunas, Fernández-Recio, Moal (2022.07.25.501373v2.56) 2019; 35 Nunnikhoven (2022.07.25.501373v2.37) 1992; 46 Tickotsky, Sagiv, Prilusky, Shifrut, Friedman (2022.07.25.501373v2.64) 2017; 33 Gerlach, Rohr, Perié, Van Rooij, Van Heijst, Velds, Urbanus, Naik, Jacobs, Beltman (2022.07.25.501373v2.32) 2013; 340 Vujović, Marcatili, Chain, Kaplinsky, Andresen (2022.07.25.501373v2.61) 2021 Bacher, Rosati, Esser, Koehler, Franke, Scheffold (2022.07.25.501373v2.18) 2020; 53 Minervina, Pogorelyy, Kirk, Crawford, Allen, Chou, Mettelman, Allison, Lin, Brice (2022.07.25.501373v2.17) 2022; 23 George, Kessler, Levine (2022.07.25.501373v2.43) 2017 Dash, Fiore-Gartland, Hertz, Wang, Sharma, Souquette, Crawford, Clemens, Nguyen, Kedzierska (2022.07.25.501373v2.14) 2017; 547 Song, Gil, Mishra, Ghersi, Selin, Stern (2022.07.25.501373v2.9) 2017; 24 Cassotta, Paparoditis, Geiger, Mettu, Landry, Donati, Benevento, Foglierini, Lewis, Lanzavecchia (2022.07.25.501373v2.59) 2020; 217 Mayer, Balasubramanian, Walczak, Mora (2022.07.25.501373v2.60) 2019; 116 Davis, Bjorkman (2022.07.25.501373v2.1) 1988; 334 Rudolph, Stanfield, Wilson (2022.07.25.501373v2.7) 2006; 24 Vazquez-Lombardi, Jung, Schlatter, Mei, Mantuano, Bieberich, Hong, Kucharczyk, Kapetanovic, Aznauryan (2022.07.25.501373v2.58) 2022 Mayer-Blackwell, Schattgen, Cohen, Crawford, Souquette, Gaevert, Hertz, Thomas, Bradley, Fiore (2022.07.25.501373v2.55) 2021; 10 Robins, Campregher, Srivastava, Wacher, Turtle, Kahsai, Riddell, Warren, Carlson (2022.07.25.501373v2.2) 2009; 114 Shugay, Bagaev, Zvyagin, Vroomans, Crawford, Dolton, Komech, Sycheva, Koneva, Egorov (2022.07.25.501373v2.20) 2017; 46 |
| References_xml | – volume: 10 start-page: e0141561 year: 2015 ident: 2022.07.25.501373v2.40 publication-title: Plos One – volume: 13 start-page: e1005572 year: 2017 ident: 2022.07.25.501373v2.48 publication-title: PLoS Computational Biology – volume: 84 start-page: 45 year: 2014 ident: 2022.07.25.501373v2.46 publication-title: Ecological Monographs – volume: 24 start-page: 395 year: 2017 ident: 2022.07.25.501373v2.9 publication-title: Nature Structural & Molecular Biology – start-page: 16 year: 2015 ident: 2022.07.25.501373v2.50 publication-title: Nature Immunology – volume: 43 start-page: D423 year: 2015 ident: 2022.07.25.501373v2.28 publication-title: Nucleic Acids Research – volume: 35 start-page: 462 year: 2019 ident: 2022.07.25.501373v2.56 publication-title: Bioinformatics – volume: 163 start-page: 688 year: 1949 ident: 2022.07.25.501373v2.36 publication-title: Nature – volume: 547 start-page: 94 year: 2017 ident: 2022.07.25.501373v2.19 publication-title: Nature – volume: 284 start-page: 167 year: 2018 ident: 2022.07.25.501373v2.39 publication-title: Immunological Reviews – volume: 334 start-page: 395 year: 1988 ident: 2022.07.25.501373v2.1 publication-title: Nature – volume: 348 start-page: aaa0698 year: 2015 ident: 2022.07.25.501373v2.52 publication-title: Science – volume: 340 start-page: 630 year: 2013 ident: 2022.07.25.501373v2.31 publication-title: Science – start-page: 100697 year: 2022 ident: 2022.07.25.501373v2.63 publication-title: Cell Reports Medicine – volume: 17 start-page: e1009297 year: 2021 ident: 2022.07.25.501373v2.26 publication-title: PLoS Computational Biology – volume: 7 start-page: eabf5835 year: 2021 ident: 2022.07.25.501373v2.24 publication-title: Science Advances – volume: 16 start-page: e1007714 year: 2020 ident: 2022.07.25.501373v2.34 publication-title: PLoS Computational Biology – volume: 114 start-page: 4099 year: 2009 ident: 2022.07.25.501373v2.2 publication-title: Blood – year: 2020 ident: 2022.07.25.501373v2.15 publication-title: Research Square Preprint – volume: 37 start-page: 547 year: 2019 ident: 2022.07.25.501373v2.5 publication-title: Annual Review of Immunology – volume: 9 start-page: 14530 year: 2019 ident: 2022.07.25.501373v2.65 publication-title: Scientific Reports – volume: 185 start-page: 603 year: 2022 ident: 2022.07.25.501373v2.62 publication-title: Cell – volume: 10 start-page: 2820 year: 2019 ident: 2022.07.25.501373v2.22 publication-title: Frontiers in Immunology – volume: 24 start-page: 419 year: 2006 ident: 2022.07.25.501373v2.7 publication-title: Annual Review Of Immunology – volume: 46 start-page: D419 year: 2017 ident: 2022.07.25.501373v2.20 publication-title: Nucleic Acids Research – year: 2019 ident: 2022.07.25.501373v2.29 publication-title: Systems Immunology – volume: 33 start-page: 2924 year: 2017 ident: 2022.07.25.501373v2.64 publication-title: Bioinformatics – volume: 105 start-page: 16671 year: 2008 ident: 2022.07.25.501373v2.42 publication-title: Proceedings of the National Academy of Sciences – volume: 19 start-page: 554 year: 2017 ident: 2022.07.25.501373v2.4 publication-title: Briefings in Bioinformatics – volume: 97 start-page: 5387 year: 2000 ident: 2022.07.25.501373v2.12 publication-title: PNAS – year: 2006 ident: 2022.07.25.501373v2.45 publication-title: Entropy and diversity – volume: 93 start-page: 477 year: 2012 ident: 2022.07.25.501373v2.38 publication-title: Ecology – start-page: 1 year: 2018 ident: 2022.07.25.501373v2.53 publication-title: Nature Reviews Immunology – volume: 53 start-page: 1258 year: 2020 ident: 2022.07.25.501373v2.18 publication-title: Immunity – volume: 15 start-page: e1006874 year: 2019 ident: 2022.07.25.501373v2.33 publication-title: PLoS Computational Biology – volume: 611 start-page: 352 year: 2022 ident: 2022.07.25.501373v2.41 publication-title: Nature – volume: 46 start-page: 270 year: 1992 ident: 2022.07.25.501373v2.37 publication-title: American Statistician – volume: 8 start-page: 231 year: 2008 ident: 2022.07.25.501373v2.47 publication-title: Nature Reviews Immunology – volume: 116 start-page: 8815 year: 2019 ident: 2022.07.25.501373v2.60 publication-title: Proceedings of the National Academy of Sciences – volume: 16 start-page: e9416 year: 2020 ident: 2022.07.25.501373v2.23 publication-title: Molecular Systems Biology – volume: 49 start-page: 659 year: 2017 ident: 2022.07.25.501373v2.3 publication-title: Nature Genetics – volume: 16 start-page: 1 year: 2021 ident: 2022.07.25.501373v2.51 publication-title: PLoS ONE – start-page: 483131 year: 2018 ident: 2022.07.25.501373v2.57 publication-title: bioRxiv – volume: 9 start-page: e61639 year: 2020 ident: 2022.07.25.501373v2.49 publication-title: eLife – volume: 547 start-page: 89 year: 2017 ident: 2022.07.25.501373v2.14 publication-title: Nature – year: 2022 ident: 2022.07.25.501373v2.58 publication-title: Immunity – volume: 22 start-page: 187 year: 1986 ident: 2022.07.25.501373v2.68 publication-title: Physica D: Nonlinear Phenomena – volume: 36 start-page: 2272 year: 2020 ident: 2022.07.25.501373v2.66 publication-title: Bioinformatics – volume: 23 start-page: 781 year: 2022 ident: 2022.07.25.501373v2.17 publication-title: Nature Immunology – volume: 16 start-page: e1008394 year: 2020 ident: 2022.07.25.501373v2.67 publication-title: PLoS Computational Biology – start-page: 2021.01.11.417444v2 year: 2021 ident: 2022.07.25.501373v2.61 publication-title: bioRxiv – volume: 117 start-page: 532 year: 2020 ident: 2022.07.25.501373v2.30 publication-title: Proceedings of the National Academy of Sciences – volume: 274 start-page: 209 year: 1996 ident: 2022.07.25.501373v2.6 publication-title: Science – volume: 10 start-page: e63502 year: 2021 ident: 2022.07.25.501373v2.16 publication-title: eLife – volume: 217 start-page: e20200206 year: 2020 ident: 2022.07.25.501373v2.59 publication-title: Journal of Experimental Medicine – volume: 204 start-page: 1943 year: 2020 ident: 2022.07.25.501373v2.10 publication-title: The Journal of Immunology – volume: 10 start-page: 1 year: 2019 ident: 2022.07.25.501373v2.54 publication-title: Frontiers in Immunology – volume: 76 start-page: 5 year: 1996 ident: 2022.07.25.501373v2.44 publication-title: Oikos – start-page: 201708573 year: 2017 ident: 2022.07.25.501373v2.43 publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: e68605 year: 2021 ident: 2022.07.25.501373v2.55 publication-title: eLife – volume: 12 start-page: 669 year: 2012 ident: 2022.07.25.501373v2.27 publication-title: Nature Reviews Immunology – volume: 33 start-page: 169 year: 2015 ident: 2022.07.25.501373v2.8 publication-title: Annual Review of Immunology – volume: 23 start-page: 349 year: 2005 ident: 2022.07.25.501373v2.13 publication-title: Nature Biotechnology – volume: 109 start-page: 16161 year: 2012 ident: 2022.07.25.501373v2.35 publication-title: Proceedings of the National Academy of Sciences – volume: 4 start-page: 1060 year: 2021 ident: 2022.07.25.501373v2.25 publication-title: Communications Biology – volume: 372 start-page: eabe9124 year: 2021 ident: 2022.07.25.501373v2.11 publication-title: Science – volume: 340 start-page: 635 year: 2013 ident: 2022.07.25.501373v2.32 publication-title: Science – volume: 38 start-page: 1194 year: 2020 ident: 2022.07.25.501373v2.21 publication-title: Nature Biotechnology |
| SSID | ssj0002961374 |
| Score | 1.6711532 |
| SecondaryResourceType | preprint |
| Snippet | Adaptive immunity is driven by specific binding of hyper-variable receptors to diverse molecular targets. The sequence diversity of receptors and targets are... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Adaptive immunity Amino acid sequence Antigens Epitopes Immune system Immunology Lymphocytes T Statistical analysis T cell receptors |
| Title | Measures of epitope binding degeneracy from T cell receptor repertoires |
| URI | https://www.proquest.com/docview/2694098880 https://www.biorxiv.org/content/10.1101/2022.07.25.501373 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gA4kTbzEYU5C4Fpom6eOEBBqPw6YKDWmcqjRx0S5racfE_j1O28EBiQu3VlWj1rI_x3b8mZBLozkDFmgnksJzhNTgKGMT8CEwBuiyZGrqYRPBeBxOp1HcJtyq9ljlGhNroDa5tjnya9tx6UYYr7k3xbtjp0bZ6mo7QmOTdC1LAq-P7sXfORYvQmdVEzHj22j4nivbwiYqog37PUvc6ckraYn3bN9OOsvLz9nyFzDX3uZ-97_fuUe6sSqg3CcbMD8g2828ydUheRg1GcGK5hmFAo25AJrO6sYWauCtpqDWK2p7TuiE2qQ-RUSEAgNzvMAlFzlCZHVEXu6Hk7tHp52k4KTMltcBmAFf4d5DZRjPeSFwLjIhuIv7sUj5rvYzzkGxjAsBRulMR15ohFY-ahruQI5JZ57P4YRQCIBDKCIjJRcB_mqqeZRmymWAeBW6PXLRCjEpGr6MxAo6cYPEk0kj6B7pr2WXtCZTJT-CO_378RnZsSvahkAm-6SzKD_gnGzp5WJWlQPSvR2O4-dBrQl4Fz-N4tcv0d26SA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KRU98SiIlAKLBEeD9-XHoeqBUhq1iXIIUnsy690xyiV27fSRP9XfyKzt0EMlbj1ws7TSajXf6Ps0M54ZgE_OSo48tkGqlQiUthgY5xPwCXKOJFk6d-2yiXgySc7P0-kG3K17YfxvlWtObInaldbnyL_6jsswpXgtPKwuA781yldX1ys0Orc4xdUNhWzNweiI8P0sxPH32beToN8qEOTcl5oRucPIkA6bgmIbkaCUqlCK4noepSYKbVRIiYYXUil0xhY2FYlT1kRkdVJjuncTthQ5ezKAreloPL34m9URKcljO_qZ3ktUI0Ldl1LJ9X2iQfhRoUJ_0X7Un-8UyudlfTu_fiAFrb4dP_vfLPOcLGIqrF_ABi5ewna3UXO1Cz_GXc6zYWXBsCK6qpDl87Z1hzn83Q7Ztivmu2rYjPmyBSPOx2pZ1vRBVy5LEoHmFfx8lLe_hsGiXOAbYBijxESlTmupYjJtbmWaFybkSIychEP42IOWVd1EkMwDm4VxJnTWATuE_TVWWU8KTXYP1N6_jz_A05PZ-Cw7G01O38KOv923P3K9D4NlfYXv4Im9Xs6b-n3vfwx-PTawfwDCThX4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measures+of+epitope+binding+degeneracy+from+T+cell+receptor+repertoires&rft.jtitle=bioRxiv&rft.au=Mayer%2C+Andreas&rft.au=Callan%2C+Curtis+G&rft.date=2022-11-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.07.25.501373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |