Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the...
Uložené v:
| Vydané v: | bioRxiv |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Paper |
| Jazyk: | English |
| Vydavateľské údaje: |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
17.11.2023
Cold Spring Harbor Laboratory |
| Vydanie: | 1.1 |
| Predmet: | |
| ISSN: | 2692-8205, 2692-8205 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Competing Interest StatementThe authors have declared no competing interest. |
|---|---|
| AbstractList | Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration. Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Competing Interest StatementThe authors have declared no competing interest. |
| Author | Zhang, Xuegong Xiao, Chuxi Wei, Lei Chen, Yixin |
| Author_xml | – sequence: 1 givenname: Chuxi surname: Xiao fullname: Xiao, Chuxi – sequence: 2 givenname: Yixin surname: Chen fullname: Chen, Yixin – sequence: 3 givenname: Lei surname: Wei fullname: Wei, Lei – sequence: 4 givenname: Xuegong surname: Zhang fullname: Zhang, Xuegong |
| BookMark | eNpNkM1OwzAQhC0EEqX0AbhZ4sIlZdeOnfgYKv6kCiSUe-QkTuuS2MVOEbw9QeXAaWelT6OZuSCnzjtDyBXCEhHwlgHjk1qiWAqZKslPyIxJxZKcgTj9p8_JIsYdADAlkWfpjJR3xjXbQYd36zZ0OPSjTfxgm0itG80m6NF6R3W_8cGO2yFS3QQfI40T3pukMX1P314Kql1Li7JY0VaP-pKcdbqPZvF356R8uC9XT8n69fF5VayTGiHlCWoBGUqRZcxIxoyWWjHVtQJlm6oGWZvnOQgtpxdrkF0HspFdDbnmneB8Tm6OtrX14ct-Vvtgpybf1e8eFWKFojruMaHXR3Qf_MfBxLHa-UNwU7iK5QqBCSEF_wEMsV_b |
| ContentType | Paper |
| Copyright | 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.11.15.564963v1 2023, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.11.15.564963v1 – notice: 2023, Posted by Cold Spring Harbor Laboratory |
| DBID | FX. |
| DOI | 10.1101/2023.11.15.564963 |
| DatabaseName | bioRxiv |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.1 |
| ExternalDocumentID | 2023.11.15.564963v1 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI FX. |
| ID | FETCH-LOGICAL-b1043-1a507165772e622ea6a929fd516d49c12d88805a66d41b06ff06c6fb08a3f533 |
| ISSN | 2692-8205 |
| IngestDate | Tue Jan 07 18:51:34 EST 2025 Fri Jul 25 09:19:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b1043-1a507165772e622ea6a929fd516d49c12d88805a66d41b06ff06c6fb08a3f533 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0002-9684-5643 |
| OpenAccessLink | https://www.biorxiv.org/content/10.1101/2023.11.15.564963 |
| PQID | 2891025565 |
| PQPubID | 2050091 |
| PageCount | 29 |
| ParticipantIDs | biorxiv_primary_2023_11_15_564963 proquest_journals_2891025565 |
| PublicationCentury | 2000 |
| PublicationDate | 20231117 |
| PublicationDateYYYYMMDD | 2023-11-17 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231117 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2023 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Korsunsky, Millard, Fan (2023.11.15.564963v1.24) 2019; 16 Hao, Hao, Andersen-Nissen (2023.11.15.564963v1.19) 2021; 184 Gong, Zhou, Purdom (2023.11.15.564963v1.23) 2021; 22 Welch, Kozareva, Ferreira (2023.11.15.564963v1.12) 2019; 177 Wang, Vilella, Alama (2023.11.15.564963v1.25) 2020; 26 Gayoso, Steier, Lopez (2023.11.15.564963v1.21) 2021; 18 Miao, Humphreys, McMahon (2023.11.15.564963v1.5) 2021; 17 Cao, Bai, Hong (2023.11.15.564963v1.10) 2020; 36 Stuart, Butler, Hoffman (2023.11.15.564963v1.14) 2019; 177 Chen, Lake, Zhang (2023.11.15.564963v1.1) 2019; 37 Ma, Zhang, LaFave (2023.11.15.564963v1.4) 2020; 183 Muto, Wilson, Ledru (2023.11.15.564963v1.6) 2021; 12 Cao, Cusanovich, Ramani (2023.11.15.564963v1.2) 2018; 361 Liu, Huang, Singh (2023.11.15.564963v1.11) 2019; 143 Butler, Hoffman, Smibert (2023.11.15.564963v1.28) 2018; 36 Lee, Kaestner, Li (2023.11.15.564963v1.9) 2023; 24 Saelens, Cannoodt, Todorov (2023.11.15.564963v1.29) 2019; 37 Stanojevic, Li, Ristivojevic (2023.11.15.564963v1.8) 2022; 20 Zhang, Hocker, Miller (2023.11.15.564963v1.26) 2021; 184 Argelaguet, Arnol, Bredikhin (2023.11.15.564963v1.18) 2020; 21 Dou, Liang, Mohanty (2023.11.15.564963v1.13) 2022; 23 Cao, Gao (2023.11.15.564963v1.17) 2022; 40 Singh, Demetci, Bonora (2023.11.15.564963v1.30) 2020 Jin, Zhang, Nie (2023.11.15.564963v1.7) 2020; 21 Zhu, Yu, Huang (2023.11.15.564963v1.3) 2019; 26 Zhang, Yang, Zhang (2023.11.15.564963v1.15) 2022; 23 Li, Fu, Wang (2023.11.15.564963v1.20) 2022; 23 Lin, Wu, Wan (2023.11.15.564963v1.16) 2022; 40 Luecken, Büttner, Chaichoompu (2023.11.15.564963v1.27) 2022; 19 Ashuach, Gabitto, Koodli (2023.11.15.564963v1.22) 2023; 20 |
| References_xml | – volume: 40 start-page: 703 year: 2022 end-page: 10 ident: 2023.11.15.564963v1.16 article-title: scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning publication-title: Nat Biotechnol – volume: 16 start-page: 1289 year: 2019 end-page: 96 ident: 2023.11.15.564963v1.24 article-title: Fast, sensitive and accurate integration of single-cell data with Harmony publication-title: Nat Methods – volume: 26 start-page: 1063 year: 2019 end-page: 70 ident: 2023.11.15.564963v1.3 article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome publication-title: Nat Struct Mol Biol – volume: 21 start-page: 111 year: 2020 ident: 2023.11.15.564963v1.18 article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data publication-title: Genome Biol – volume: 36 start-page: i48 year: 2020 end-page: 56 ident: 2023.11.15.564963v1.10 article-title: Unsupervised topological alignment for single-cell multi-omics integration publication-title: Bioinformatics – volume: 23 start-page: 20 year: 2022 ident: 2023.11.15.564963v1.20 article-title: A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data publication-title: Genome Biol – volume: 19 start-page: 41 year: 2022 end-page: 50 ident: 2023.11.15.564963v1.27 article-title: Benchmarking atlas-level data integration in single-cell genomics publication-title: Nat Methods – volume: 177 start-page: 1873 year: 2019 end-page: 1887 ident: 2023.11.15.564963v1.12 article-title: Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity publication-title: Cell – volume: 183 start-page: 1103 year: 2020 end-page: 1116 ident: 2023.11.15.564963v1.4 article-title: Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin publication-title: Cell – volume: 18 start-page: 272 year: 2021 end-page: 82 ident: 2023.11.15.564963v1.21 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI publication-title: Nat Methods – volume: 184 start-page: 5985 year: 2021 end-page: 6001 ident: 2023.11.15.564963v1.26 article-title: A single-cell atlas of chromatin accessibility in the human genome publication-title: Cell – volume: 184 start-page: 3573 year: 2021 end-page: 3587 ident: 2023.11.15.564963v1.19 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: 2023.11.15.564963v1.14 article-title: Comprehensive Integration of Single-Cell Data publication-title: Cell – volume: 12 start-page: 2190 year: 2021 ident: 2023.11.15.564963v1.6 article-title: Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney publication-title: Nat Commun – volume: 23 start-page: 112 year: 2022 ident: 2023.11.15.564963v1.13 article-title: Bi-order multimodal integration of single-cell data publication-title: Genome Biol – volume: 143 start-page: 10 year: 2019 ident: 2023.11.15.564963v1.11 article-title: Jointly Embedding Multiple Single-Cell Omics Measurements publication-title: Algorithms Bioinform – volume: 23 start-page: 139 year: 2022 ident: 2023.11.15.564963v1.15 article-title: scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously publication-title: Genome Biol – volume: 36 start-page: 411 year: 2018 end-page: 20 ident: 2023.11.15.564963v1.28 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat Biotechnol – volume: 24 start-page: 244 year: 2023 ident: 2023.11.15.564963v1.9 article-title: Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data publication-title: Genome Biol – volume: 37 start-page: 1452 year: 2019 end-page: 7 ident: 2023.11.15.564963v1.1 article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell publication-title: Nat Biotechnol – volume: 20 start-page: 836 year: 2022 end-page: 49 ident: 2023.11.15.564963v1.8 article-title: Computational Methods for Single-cell Multi-omics Integration and Alignment publication-title: Genomics, Proteomics & Bioinformatics – volume: 40 start-page: 1458 year: 2022 end-page: 66 ident: 2023.11.15.564963v1.17 article-title: Multi-omics single-cell data integration and regulatory inference with graph-linked embedding publication-title: Nat Biotechnol – start-page: 1 year: 2020 end-page: 10 ident: 2023.11.15.564963v1.30 publication-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics – volume: 37 start-page: 547 year: 2019 end-page: 54 ident: 2023.11.15.564963v1.29 article-title: A comparison of single-cell trajectory inference methods publication-title: Nat Biotechnol – volume: 361 start-page: 1380 year: 2018 end-page: 5 ident: 2023.11.15.564963v1.2 article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells publication-title: Science – volume: 20 start-page: 1222 year: 2023 end-page: 31 ident: 2023.11.15.564963v1.22 article-title: MultiVI: deep generative model for the integration of multimodal data publication-title: Nat Methods – volume: 21 start-page: 25 year: 2020 ident: 2023.11.15.564963v1.7 article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles publication-title: Genome Biol – volume: 17 start-page: 710 year: 2021 end-page: 24 ident: 2023.11.15.564963v1.5 article-title: Multi-omics integration in the age of million single-cell data publication-title: Nat Rev Nephrol – volume: 22 start-page: 351 year: 2021 ident: 2023.11.15.564963v1.23 article-title: Cobolt: integrative analysis of multimodal single-cell sequencing data publication-title: Genome Biol – volume: 26 start-page: 1644 year: 2020 end-page: 53 ident: 2023.11.15.564963v1.25 article-title: Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle publication-title: Nat Med |
| SSID | ssj0002961374 |
| Score | 1.7051798 |
| SecondaryResourceType | preprint |
| Snippet | Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,... |
| SourceID | biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Bioinformatics Biological analysis Integration |
| Title | Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data |
| URI | https://www.proquest.com/docview/2891025565 https://www.biorxiv.org/content/10.1101/2023.11.15.564963 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe2ZpP2tk-tXVd50rQXRBdI7ODHtErVShlDEdPoEzJgGqQUMkgq9t_v_FFCFWnqHvaCwKAY7n65L9_5EPqcsISA3qV2ShJuj7OJsL1Rxu2cJbnLKAetlqlmExPf96KIBWahvVHtBCZl6bUtW_9XVsMYMFuWzv4Du7sfhQE4B6bDEdgOx0cx_gxeZnnLVQxc5wvasvK46XaGUAnIq5uqLjbL28biSlFaMmawErYM5FsLf6oWFabh9Nwy1WudCZsU1aIt7u45FRVcR1uX27bYJQtoaXZdtEWHvp9CV2KL7rEuWh1txU1ldKgJQbgjWYunKy51JlC1AttYxSFl6RFg15prBMs0gX4qCUg1lzIQwe5QL2WL_bF9ma56Cch54fzUIaeEjpmRig_2z_a_xxc_5vM4nEXhl_UvW7YWk0vwps_KUzRwJ4SB6Buczfxg0YXiAJPOSO3X3b2IWf-Gqb_uTQyeElC6Bkrv6W9llIQv0SDga1G_Qk9E-Ro9111Ff79BYR8BuIcA3EMA3iEAawTgHgIwIAADArBEAJYIeIvCi1l4fmmb5hl24siMCodLS58S8J4EdV3BKQdLOM-IQ7MxSx0380B0E07h0kmGNM-HNKV5MvT4KAcf4B06KKtSvEcYPjlPcnBswTYegzZknAhp1wpXpKARskP0ydAjXusdUmJJM_AtY4fEmmaH6PieUrH5rzQx-PqO2gKPHP399gf0Yge7Y3SwqbfiI3qW3m2Kpj4x7DyRabsBXAVX34LrP0fSY4Q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+multi-omics+integration+algorithms+across+single-cell+RNA+and+ATAC+data&rft.jtitle=bioRxiv&rft.au=Xiao%2C+Chuxi&rft.au=Chen%2C+Yixin&rft.au=Wei%2C+Lei&rft.au=Zhang%2C+Xuegong&rft.date=2023-11-17&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.11.15.564963&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |