Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data

Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Xiao, Chuxi, Chen, Yixin, Wei, Lei, Zhang, Xuegong
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 17.11.2023
Cold Spring Harbor Laboratory
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Competing Interest StatementThe authors have declared no competing interest.
AbstractList Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.
Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research, especially in the single cell RNA and ATAC data. The joint analysis across scRNA-seq data and scATAC-seq data has paved the way to comprehending the cellular heterogeneity and complex cellular regulatory networks. Multi-omics integration is gaining attention as an important step in joint analysis, and the number of computational tools in this field is growing rapidly. In this paper, we benchmarked 12 multi-omics integration methods on three integration tasks via qualitative visualization and quantitative metrics, considering six main aspects that matter in multi-omics data analysis. Overall, we found that different methods have their own advantages on different aspects, while some methods outperformed other methods in most aspects. We therefore provided guidelines for selecting appropriate methods for specific scenarios and tasks to help obtain meaningful insights from multi-omics data integration.Competing Interest StatementThe authors have declared no competing interest.
Author Zhang, Xuegong
Xiao, Chuxi
Wei, Lei
Chen, Yixin
Author_xml – sequence: 1
  givenname: Chuxi
  surname: Xiao
  fullname: Xiao, Chuxi
– sequence: 2
  givenname: Yixin
  surname: Chen
  fullname: Chen, Yixin
– sequence: 3
  givenname: Lei
  surname: Wei
  fullname: Wei, Lei
– sequence: 4
  givenname: Xuegong
  surname: Zhang
  fullname: Zhang, Xuegong
BookMark eNpNkM1OwzAQhC0EEqX0AbhZ4sIlZdeOnfgYKv6kCiSUe-QkTuuS2MVOEbw9QeXAaWelT6OZuSCnzjtDyBXCEhHwlgHjk1qiWAqZKslPyIxJxZKcgTj9p8_JIsYdADAlkWfpjJR3xjXbQYd36zZ0OPSjTfxgm0itG80m6NF6R3W_8cGO2yFS3QQfI40T3pukMX1P314Kql1Li7JY0VaP-pKcdbqPZvF356R8uC9XT8n69fF5VayTGiHlCWoBGUqRZcxIxoyWWjHVtQJlm6oGWZvnOQgtpxdrkF0HspFdDbnmneB8Tm6OtrX14ct-Vvtgpybf1e8eFWKFojruMaHXR3Qf_MfBxLHa-UNwU7iK5QqBCSEF_wEMsV_b
ContentType Paper
Copyright 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.11.15.564963v1
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.biorxiv.org/content/10.1101/2023.11.15.564963v1
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2023.11.15.564963
DatabaseName bioRxiv
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2023.11.15.564963v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1043-1a507165772e622ea6a929fd516d49c12d88805a66d41b06ff06c6fb08a3f533
ISSN 2692-8205
IngestDate Tue Jan 07 18:51:34 EST 2025
Fri Jul 25 09:19:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b1043-1a507165772e622ea6a929fd516d49c12d88805a66d41b06ff06c6fb08a3f533
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-9684-5643
OpenAccessLink https://www.biorxiv.org/content/10.1101/2023.11.15.564963
PQID 2891025565
PQPubID 2050091
PageCount 29
ParticipantIDs biorxiv_primary_2023_11_15_564963
proquest_journals_2891025565
PublicationCentury 2000
PublicationDate 20231117
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 20231117
  day: 17
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Korsunsky, Millard, Fan (2023.11.15.564963v1.24) 2019; 16
Hao, Hao, Andersen-Nissen (2023.11.15.564963v1.19) 2021; 184
Gong, Zhou, Purdom (2023.11.15.564963v1.23) 2021; 22
Welch, Kozareva, Ferreira (2023.11.15.564963v1.12) 2019; 177
Wang, Vilella, Alama (2023.11.15.564963v1.25) 2020; 26
Gayoso, Steier, Lopez (2023.11.15.564963v1.21) 2021; 18
Miao, Humphreys, McMahon (2023.11.15.564963v1.5) 2021; 17
Cao, Bai, Hong (2023.11.15.564963v1.10) 2020; 36
Stuart, Butler, Hoffman (2023.11.15.564963v1.14) 2019; 177
Chen, Lake, Zhang (2023.11.15.564963v1.1) 2019; 37
Ma, Zhang, LaFave (2023.11.15.564963v1.4) 2020; 183
Muto, Wilson, Ledru (2023.11.15.564963v1.6) 2021; 12
Cao, Cusanovich, Ramani (2023.11.15.564963v1.2) 2018; 361
Liu, Huang, Singh (2023.11.15.564963v1.11) 2019; 143
Butler, Hoffman, Smibert (2023.11.15.564963v1.28) 2018; 36
Lee, Kaestner, Li (2023.11.15.564963v1.9) 2023; 24
Saelens, Cannoodt, Todorov (2023.11.15.564963v1.29) 2019; 37
Stanojevic, Li, Ristivojevic (2023.11.15.564963v1.8) 2022; 20
Zhang, Hocker, Miller (2023.11.15.564963v1.26) 2021; 184
Argelaguet, Arnol, Bredikhin (2023.11.15.564963v1.18) 2020; 21
Dou, Liang, Mohanty (2023.11.15.564963v1.13) 2022; 23
Cao, Gao (2023.11.15.564963v1.17) 2022; 40
Singh, Demetci, Bonora (2023.11.15.564963v1.30) 2020
Jin, Zhang, Nie (2023.11.15.564963v1.7) 2020; 21
Zhu, Yu, Huang (2023.11.15.564963v1.3) 2019; 26
Zhang, Yang, Zhang (2023.11.15.564963v1.15) 2022; 23
Li, Fu, Wang (2023.11.15.564963v1.20) 2022; 23
Lin, Wu, Wan (2023.11.15.564963v1.16) 2022; 40
Luecken, Büttner, Chaichoompu (2023.11.15.564963v1.27) 2022; 19
Ashuach, Gabitto, Koodli (2023.11.15.564963v1.22) 2023; 20
References_xml – volume: 40
  start-page: 703
  year: 2022
  end-page: 10
  ident: 2023.11.15.564963v1.16
  article-title: scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning
  publication-title: Nat Biotechnol
– volume: 16
  start-page: 1289
  year: 2019
  end-page: 96
  ident: 2023.11.15.564963v1.24
  article-title: Fast, sensitive and accurate integration of single-cell data with Harmony
  publication-title: Nat Methods
– volume: 26
  start-page: 1063
  year: 2019
  end-page: 70
  ident: 2023.11.15.564963v1.3
  article-title: An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome
  publication-title: Nat Struct Mol Biol
– volume: 21
  start-page: 111
  year: 2020
  ident: 2023.11.15.564963v1.18
  article-title: MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data
  publication-title: Genome Biol
– volume: 36
  start-page: i48
  year: 2020
  end-page: 56
  ident: 2023.11.15.564963v1.10
  article-title: Unsupervised topological alignment for single-cell multi-omics integration
  publication-title: Bioinformatics
– volume: 23
  start-page: 20
  year: 2022
  ident: 2023.11.15.564963v1.20
  article-title: A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
  publication-title: Genome Biol
– volume: 19
  start-page: 41
  year: 2022
  end-page: 50
  ident: 2023.11.15.564963v1.27
  article-title: Benchmarking atlas-level data integration in single-cell genomics
  publication-title: Nat Methods
– volume: 177
  start-page: 1873
  year: 2019
  end-page: 1887
  ident: 2023.11.15.564963v1.12
  article-title: Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity
  publication-title: Cell
– volume: 183
  start-page: 1103
  year: 2020
  end-page: 1116
  ident: 2023.11.15.564963v1.4
  article-title: Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin
  publication-title: Cell
– volume: 18
  start-page: 272
  year: 2021
  end-page: 82
  ident: 2023.11.15.564963v1.21
  article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI
  publication-title: Nat Methods
– volume: 184
  start-page: 5985
  year: 2021
  end-page: 6001
  ident: 2023.11.15.564963v1.26
  article-title: A single-cell atlas of chromatin accessibility in the human genome
  publication-title: Cell
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587
  ident: 2023.11.15.564963v1.19
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: 2023.11.15.564963v1.14
  article-title: Comprehensive Integration of Single-Cell Data
  publication-title: Cell
– volume: 12
  start-page: 2190
  year: 2021
  ident: 2023.11.15.564963v1.6
  article-title: Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney
  publication-title: Nat Commun
– volume: 23
  start-page: 112
  year: 2022
  ident: 2023.11.15.564963v1.13
  article-title: Bi-order multimodal integration of single-cell data
  publication-title: Genome Biol
– volume: 143
  start-page: 10
  year: 2019
  ident: 2023.11.15.564963v1.11
  article-title: Jointly Embedding Multiple Single-Cell Omics Measurements
  publication-title: Algorithms Bioinform
– volume: 23
  start-page: 139
  year: 2022
  ident: 2023.11.15.564963v1.15
  article-title: scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
  publication-title: Genome Biol
– volume: 36
  start-page: 411
  year: 2018
  end-page: 20
  ident: 2023.11.15.564963v1.28
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat Biotechnol
– volume: 24
  start-page: 244
  year: 2023
  ident: 2023.11.15.564963v1.9
  article-title: Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
  publication-title: Genome Biol
– volume: 37
  start-page: 1452
  year: 2019
  end-page: 7
  ident: 2023.11.15.564963v1.1
  article-title: High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
  publication-title: Nat Biotechnol
– volume: 20
  start-page: 836
  year: 2022
  end-page: 49
  ident: 2023.11.15.564963v1.8
  article-title: Computational Methods for Single-cell Multi-omics Integration and Alignment
  publication-title: Genomics, Proteomics & Bioinformatics
– volume: 40
  start-page: 1458
  year: 2022
  end-page: 66
  ident: 2023.11.15.564963v1.17
  article-title: Multi-omics single-cell data integration and regulatory inference with graph-linked embedding
  publication-title: Nat Biotechnol
– start-page: 1
  year: 2020
  end-page: 10
  ident: 2023.11.15.564963v1.30
  publication-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
– volume: 37
  start-page: 547
  year: 2019
  end-page: 54
  ident: 2023.11.15.564963v1.29
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nat Biotechnol
– volume: 361
  start-page: 1380
  year: 2018
  end-page: 5
  ident: 2023.11.15.564963v1.2
  article-title: Joint profiling of chromatin accessibility and gene expression in thousands of single cells
  publication-title: Science
– volume: 20
  start-page: 1222
  year: 2023
  end-page: 31
  ident: 2023.11.15.564963v1.22
  article-title: MultiVI: deep generative model for the integration of multimodal data
  publication-title: Nat Methods
– volume: 21
  start-page: 25
  year: 2020
  ident: 2023.11.15.564963v1.7
  article-title: scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles
  publication-title: Genome Biol
– volume: 17
  start-page: 710
  year: 2021
  end-page: 24
  ident: 2023.11.15.564963v1.5
  article-title: Multi-omics integration in the age of million single-cell data
  publication-title: Nat Rev Nephrol
– volume: 22
  start-page: 351
  year: 2021
  ident: 2023.11.15.564963v1.23
  article-title: Cobolt: integrative analysis of multimodal single-cell sequencing data
  publication-title: Genome Biol
– volume: 26
  start-page: 1644
  year: 2020
  end-page: 53
  ident: 2023.11.15.564963v1.25
  article-title: Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle
  publication-title: Nat Med
SSID ssj0002961374
Score 1.7051798
SecondaryResourceType preprint
Snippet Recent advancements in single-cell sequencing technologies have generated extensive omics data in various modalities and revolutionized cell research,...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bioinformatics
Biological analysis
Integration
Title Benchmarking multi-omics integration algorithms across single-cell RNA and ATAC data
URI https://www.proquest.com/docview/2891025565
https://www.biorxiv.org/content/10.1101/2023.11.15.564963
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe2ZpP2tk-tXVd50rQXRBdI7ODHtErVShlDEdPoEzJgGqQUMkgq9t_v_FFCFWnqHvaCwKAY7n65L9_5EPqcsISA3qV2ShJuj7OJsL1Rxu2cJbnLKAetlqlmExPf96KIBWahvVHtBCZl6bUtW_9XVsMYMFuWzv4Du7sfhQE4B6bDEdgOx0cx_gxeZnnLVQxc5wvasvK46XaGUAnIq5uqLjbL28biSlFaMmawErYM5FsLf6oWFabh9Nwy1WudCZsU1aIt7u45FRVcR1uX27bYJQtoaXZdtEWHvp9CV2KL7rEuWh1txU1ldKgJQbgjWYunKy51JlC1AttYxSFl6RFg15prBMs0gX4qCUg1lzIQwe5QL2WL_bF9ma56Cch54fzUIaeEjpmRig_2z_a_xxc_5vM4nEXhl_UvW7YWk0vwps_KUzRwJ4SB6Buczfxg0YXiAJPOSO3X3b2IWf-Gqb_uTQyeElC6Bkrv6W9llIQv0SDga1G_Qk9E-Ro9111Ff79BYR8BuIcA3EMA3iEAawTgHgIwIAADArBEAJYIeIvCi1l4fmmb5hl24siMCodLS58S8J4EdV3BKQdLOM-IQ7MxSx0380B0E07h0kmGNM-HNKV5MvT4KAcf4B06KKtSvEcYPjlPcnBswTYegzZknAhp1wpXpKARskP0ydAjXusdUmJJM_AtY4fEmmaH6PieUrH5rzQx-PqO2gKPHP399gf0Yge7Y3SwqbfiI3qW3m2Kpj4x7DyRabsBXAVX34LrP0fSY4Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+multi-omics+integration+algorithms+across+single-cell+RNA+and+ATAC+data&rft.jtitle=bioRxiv&rft.au=Xiao%2C+Chuxi&rft.au=Chen%2C+Yixin&rft.au=Wei%2C+Lei&rft.au=Zhang%2C+Xuegong&rft.date=2023-11-17&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.11.15.564963&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon